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Lemma

Let p, q ∈ R− {0, 1} such that 1
p + 1

q = 1. Then we have p > 1 if and
only if q > 1. Furthermore, one of the numbers p, q belongs to the
interval (0, 1) if and only if the other number is negative.
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Lemma

Let p, q ∈ R− {0, 1} be two numbers such that 1
p + 1

q = 1 and p > 1.
Then, for every a, b ∈ R⩾0, we have

ab ⩽
ap

p
+

bq

q
,

where the equality holds if and only if a = b−
1

1−p .
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Proof

We have q > 1. Consider the function f (x) = xp

p + 1
q − x for x ⩾ 0. We

have f ′(x) = xp−1 − 1, so the minimum is achieved when x = 1 and
f (1) = 0. Thus,

f
(
ab−

1
p−1

)
⩾ f (1) = 0,

which amounts to
apb−

p
p−1

p
+

1

q
− ab−

1
p−1 ⩾ 0.

By multiplying both sides of this inequality by b
p

p−1 , we obtain the desired
inequality.
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Observe that if 1
p + 1

q = 1 and p < 1, then q < 0. In this case, we have
the reverse inequality

ab ⩾
ap

p
+

bq

q
. (1)

which can be shown by observing that the function f has a maximum in
x = 1. The same inequality holds when q < 1 and therefore p < 0.
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Theorem

(The Hölder Inequality) Let a1, . . . , an and b1, . . . , bn be 2n nonnegative
numbers, and let p and q be two numbers such that 1

p + 1
q = 1 and p > 1.

We have
n∑

i=1

aibi ⩽

(
n∑

i=1

api

) 1
p

·

(
n∑

i=1

bqi

) 1
q

.
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Proof
If a1 = · · · = an = 0 or if b1 = · · · = bn = 0, then the inequality is clearly
satisfied. Therefore, we may assume that at least one of a1, . . . , an and at
least one of b1, . . . , bn is non-zero. Define the numbers

xi =
ai(∑n

i=1 a
p
i

) 1
p

and yi =
bi(∑n

i=1 b
q
i

) 1
q

for 1 ⩽ i ⩽ n. Lemma on Slide 3 applied to xi , yi yields

aibi(∑n
i=1 a

p
i

) 1
p
(∑n

i=1 b
q
i

) 1
q

⩽
1

p

api∑n
i=1 a

p
i

+
1

q

bpi∑n
i=1 b

p
i

.

Adding these inequalities, we obtain

n∑
i=1

aibi ⩽

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bqi

) 1
q

because 1
p + 1

q = 1.
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The nonnegativity of the numbers a1, . . . , an, b1, . . . , bn can be relaxed by
using absolute values.

Theorem

Let a1, . . . , an and b1, . . . , bn be 2n numbers and let p and q be two
numbers such that 1

p + 1
q = 1 and p > 1. We have

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ⩽
(

n∑
i=1

|ai |p
) 1

p

·

(
n∑

i=1

|bi |q
) 1

q

.
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Proof

By a previous theorem, we have:

n∑
i=1

|ai ||bi | ⩽

(
n∑

i=1

|ai |p
) 1

p

·

(
n∑

i=1

|bi |q
) 1

q

.

The needed equality follows from the fact that∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ⩽
n∑

i=1

|ai ||bi |.
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Corollary

(The Cauchy-Schwarz Inequality for Rn) Let a1, . . . , an and b1, . . . , bn be
2n real numbers. We have∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣ ⩽
√√√√ n∑

i=1

a2i ·

√√√√ n∑
i=1

b2i .

Proof.

The inequality follows immediately by taking p = q = 2.
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Theorem

(Minkowski’s Inequality) Let a1, . . . , an and b1, . . . , bn be 2n nonnegative
real numbers. If p ⩾ 1, we have(

n∑
i=1

(ai + bi )
p

) 1
p

⩽

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.

If p < 1, the inequality sign is reversed.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4 11 / 54



Proof

For p = 1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n∑
i=1

(ai + bi )
p =

n∑
i=1

ai (ai + bi )
p−1 +

n∑
i=1

bi (ai + bi )
p−1.

By Hölder’s inequality for p, q such that p > 1 and 1
p + 1

q = 1, we have

n∑
i=1

ai (ai + bi )
p−1 ⩽

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
(p−1)q

) 1
q

=

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.
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Proof cont’d

Similarly, we can write

n∑
i=1

bi (ai + bi )
p−1 ⩽

(
n∑

i=1

bpi

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.

Adding the last two inequalities yields

n∑
i=1

(ai + bi )
p ⩽

( n∑
i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

( n∑
i=1

(ai + bi )
p

) 1
q

,

which is equivalent to inequality(
n∑

i=1

(ai + bi )
p

) 1
p

⩽

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bpi

) 1
p

.
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Definition

A function d : S2 −→ R⩾0 is a metric if it has the following properties:
d(x , y) = 0 if and only if x = y for x , y ∈ S ;
d(x , y) = d(y , x) for x , y ∈ S ;
d(x , y) ⩽ d(x , z) + d(z , y) for x , y , z ∈ S .

The pair (S , d) will be referred to as a metric space.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4 14 / 54



If property (i) is replaced by the weaker requirement that d(x , x) = 0 for
x ∈ S , then we refer to d as a semimetric on S . Thus, if d is a semimetric
d(x , y) = 0 does not necessarily imply x = y and we can have for two
distinct elements x , y of S , d(x , y) = 0. If d is a semimetric, then we refer
to the pair (S , d) as a semimetric space.
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Example

Let S be a nonempty set. Define the mapping d : S2 −→ R⩾0 by

d(u, v) =

{
1 if u ̸= v ,

0 otherwise,

for x , y ∈ S . It is easy to see that d satisfies the definiteness property. To
prove that d satisfies the triangular inequality, we need to show that

d(x , y) ⩽ d(x , z) + d(z , y)

for all x , y , z ∈ S . This is clearly the case if x = y . Suppose that x ̸= y ,
so d(x , y) = 1. Then, for every z ∈ S , we have at least one of the
inequalities x ̸= z or z ̸= y , so at least one of the numbers d(x , z) or
d(z , y) equals 1. Thus d satisfies the triangular inequality. The metric d
introduced here is the discrete metric on S .
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Example

Consider the mapping d : (Seqn(S))
2 −→ R⩾0 defined by

d(ppp,qqq) = |{i | 0 ⩽ i ⩽ n − 1 and ppp(i) ̸= qqq(i)}|

for all sequences ppp,qqq of length n on the set S .
It is easy to see that d is a metric. We justify here only the triangular
inequality. Let ppp,qqq, rrr be three sequences of length n on the set S . If
ppp(i) ̸= qqq(i), then rrr(i) must be distinct from at least one of ppp(i) and qqq(i).
Therefore,

{i | 0 ⩽ i ⩽ n − 1 and ppp(i) ̸= qqq(i)}
⊆ {i | 0 ⩽ i ⩽ n − 1 and ppp(i) ̸= rrr(i)} ∪ {i | 0 ⩽ i ⩽ n − 1 and rrr(i) ̸= qqq(i)},

which implies the triangular inequality.
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Example

For xxx ∈ Rn and yyy ∈ Rn the Euclidean metric is the mapping

d2(xxx ,yyy) =

√√√√ n∑
i=1

(xi − yi )2.

The first two conditions of Definition 7 are obviously satisfied.
To prove the third inequality, let xxx ,yyy ,zzz ∈ Rn. Choosing ai = xi − yi and
bi = yi − zi for 1 ⩽ i ⩽ n in Minkowski’s inequality implies√√√√ n∑

i=1

(xi − zi )2 ⩽

√√√√ n∑
i=1

(xi − yi )2 +

√√√√ n∑
i=1

(yi − zi )2,

which amounts to d(xxx ,zzz) ⩽ d(xxx ,yyy) + d(yyy ,zzz). Thus, we conclude that d
is indeed a metric on Rn.
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We use frequently use the notions of closed sphere and open sphere.

Definition

Let (S , d) be a metric space. The closed sphere centered in x ∈ S of
radius r is the set

Bd [x , r ] = {y ∈ S |d(x , y) ⩽ r}.

The open sphere centered in x ∈ S of radius r is the set

Bd(x , r) = {y ∈ S |d(x , y) < r}.
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Definition

Let (S , d) be a metric space. The diameter of a subset U of S is the
number diamS,d(U) = sup{d(x , y) | x , y ∈ U}. The set U is bounded if
diamS,d(U) is finite.
The diameter of the metric space (S , d) is the number

diamS ,d = sup{d(x , y) | x , y ∈ S}.

If the metric space is clear from the context, then we denote the diameter
of a subset U just by diam(U).
If (S , d) is a finite metric space, then diamS ,d = max{d(x , y) | x , y ∈ S}.
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A mapping d : S × S −→ R̂⩾0 can be extended to the set of subsets of S
by defining d(U,V ) as

d(U,V ) = inf{d(u, v) | u ∈ U and v ∈ V }

for U,V ∈ P(S).
Observe that, even if d is a metric, then its extension is not, in general, a
metric on P(S) because it does not satisfy the triangular inequality.
Instead, we can show that for every U,V ,W we have

d(U,W ) ⩽ d(U,V ) + diam(V ) + d(V ,W ).
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Indeed, by the definition of d(U,V ) and d(V ,W ), for every ϵ > 0, there
exist u ∈ U, v , v ′ ∈ V , and w ∈ W such that

d(U,V ) ⩽ d(u, v) ⩽ d(U,V ) + ϵ
2 ,

d(V ,W ) ⩽ d(v ′,w) ⩽ d(V ,W ) + ϵ
2 .

By the triangular axiom, we have

d(u,w) ⩽ d(u, v) + d(v , v ′) + d(v ′,w).

Hence,
d(u,w) ⩽ d(U,V ) + diam(V ) + d(V ,W ) + ϵ,

which implies

d(U,W ) ⩽ d(U,V ) + diam(V ) + d(V ,W ) + ϵ

for every ϵ > 0. This yields the needed inequality.
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Definition

Let (S , d) be a metric space. The sets U,V ∈ P(S) are separate if
d(U,V ) > 0.

We denote the number d({u},V ) = inf{d(u, v) | v ∈ V } by d(u,V ). It
is clear that u ∈ V implies d(u,V ) = 0.
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The notion of dissimilarity is a generalization of the notion of metric.

Definition

A dissimilarity on a set S is a function d : S2 −→ R⩾0 satisfying the
following conditions:

d(x , x) = 0 for all x ∈ S ;
d(x , y) = d(y , x) for all x , y ∈ S .

The pair (S , d) is a dissimilarity space.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4 24 / 54



A related concept is the notion of similarity.

Definition

A similarity on a set S is a function s : S2 −→ R⩾0 satisfying the following
conditions:

s(x , y) ⩽ s(x , x) = 1 for all x , y ∈ S ;
s(x , y) = s(y , x) for all x , y ∈ S .

The pair (S , s) is a similarity space.
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Example

Let d : S2 −→ R⩾0 be a metric on the set S . Then s : S2 −→ R⩾0 defined
by s(x , y) = 2−d(x ,y) for x , y ∈ S is a dissimilarity, such that s(x , x) = 1
for every x , y ∈ S .
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Definition

A seminorm on an F -linear space V is a mapping ν : V −→ R that
satisfies the following conditions:

ν(xxx + yyy) ⩽ ν(xxx) + ν(yyy) (subadditivity), and
ν(axxx) = |a|ν(xxx) (positive homogeneity),

for xxx ,yyy ∈ V and a ∈ F .

By taking a = 0 in the second condition of the definition we have ν(000) = 0
for every seminorm on a real or complex space.
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Theorem

If V is a real or complex linear space and ν : V −→ R is a seminorm on V ,
then

ν(xxx − yyy) ⩾ |ν(xxx)− ν(yyy)|,

for xxx ,yyy ∈ V .

Proof.

We have ν(xxx) ⩽ ν(xxx − yyy) + ν(yyy), so

ν(xxx)− ν(yyy) ⩽ ν(xxx − yyy). (2)

Since ν(xxx − yyy) = | − 1|ν(yyy − xxx) ⩾ ν(yyy)− ν(xxx) we have

− (ν(xxx)− ν(yyy)) ⩽ ν(xxx)− ν(yyy). (3)

The Inequalities (2) and (3) give the desired inequality.
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Corollary

If p : V −→ R is a seminorm on V , then p(xxx) ⩾ 0 for xxx ∈ V .

Proof.

By choosing yyy = 000 we have ν(xxx) ⩾ |ν(xxx)| ⩾ 0.
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Definition

Let F = (F , {0, 1,+,−, ·}) be the real or the complex field. A norm on an
F -linear space V is a seminorm ν : V −→ R such that ν(xxx) = 0 implies
xxx = 000 for xxx ∈ V .
The pair (V , ν) is referred to as a normed linear space.
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Example

The set of real-valued continuous functions defined on the interval [−1, 1]
is a real linear space. The addition of two such functions f , g , is defined
by (f + g)(x) = f (x) + g(x) for x ∈ [−1, 1]; the multiplication of f by a
scalar a ∈ R is (af )(x) = af (x) for x ∈ [−1, 1].
Define ν(f ) = sup{|f (x)| | x ∈ [−1, 1]}. Since |f (x)| ⩽ ν(f ) and
|g(x)| ⩽ ν(g) for x ∈ [−1, 1]}, it follows that
|(f + g)(x)| ⩽ |f (x)|+ |g(x)| ⩽ ν(f ) + ν(g). Thus,
ν(f + g) ⩽ ν(f ) + ν(g).
We denote ν(f ) by ∥ f ∥.
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Theorem

For p ⩾ 1, the function νp : Rn −→ R⩾0 defined by

νp(x1, . . . , xn) =

(
n∑

i=1

|xi |p
) 1

p

,

where xxx = (x1, . . . , xn) ∈ Rn, is a norm on Rn.
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Proof

We must prove that νp satisfies the conditions of the definition of norms
and that νp(xxx) = 0 implies xxx = 000.
Let xxx = (x1, . . . , xn), yyy = (y1, . . . , yn) ∈ Rn. Minkowski’s inequality
applied to the nonnegative numbers ai = |xi | and bi = |yi | amounts to(

n∑
i=1

(|xi |+ |yi |)p
) 1

p

⩽

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

.

Since |xi + yi | ⩽ |xi |+ |yi | for every i , we have(
n∑

i=1

(|xi + yi |)p
) 1

p

⩽

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

,

that is, νp(xxx + yyy) ⩽ νp(xxx) + νp(yyy). Thus, νp is a norm on Rn.
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Example

The mapping ν1 : Rn −→ R given by

ν1(xxx) = |x1|+ |x2|+ · · ·+ |xn|,

for xxx = (x1, . . . , xn) ∈ Rn. ν1 is a norm on Rn.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4 34 / 54



Example

A special norm on Rn is the function ν∞ : Rn −→ R⩾0 given by

ν∞(xxx) = max{|xi | | 1 ⩽ i ⩽ n}

for xxx = (x1, . . . , xn) ∈ Rn.
We start from the inequality

|xi + yi | ⩽ |xi |+ |yi | ⩽ ν∞(xxx) + ν∞(yyy)

for every i , 1 ⩽ i ⩽ n. This implies

ν∞(xxx + yyy) = max{|xi + yi | | 1 ⩽ i ⩽ n} ⩽ ν∞(xxx) + ν∞(yyy),

which gives the desired inequality.
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Example

This norm can be regarded as a limit case of the norms νp. Indeed, let
xxx ∈ Rn and let M = max{|xi | | 1 ⩽ i ⩽ n} = |xℓ1 | = · · · = |xℓk | for some
ℓ1, . . . , ℓk , where 1 ⩽ ℓ1, . . . , ℓk ⩽ n. Here xℓ1 , . . . , xℓk are the components
of xxx that have the maximal absolute value and k ⩾ 1. We can write

lim
p→∞

νp(xxx) = lim
p→∞

M

(
n∑

i=1

(
|xi |
M

)p
) 1

p

= lim
p→∞

M(k)
1
p = M,

which justifies the notation ν∞.
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We use the alternative notation ∥ xxx ∥p for νp(xxx). We refer ∥ xxx ∥2 as the
Euclidean norm of xxx and we denote this norm simply by ∥ xxx ∥ when there
is no risk of confusion.
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Example

For p ⩾ 1, let ℓp be the set that consists of sequences of real numbers
xxx = (x0, x1, . . .) such that the series

∑∞
i=0 |xi |p is convergent. We can

show that ℓp is a linear space.
Let xxx ,yyy ∈ ℓp be two sequences in ℓp. Using Minkowski’s inequality we have

n∑
i=0

|xi + yi |p ⩽
n∑

i=0

(|xi |+ |yi |)p ⩽
n∑

i=0

|xi |p +
n∑

i=0

|yi |p,

which shows that xxx + yyy ∈ ℓp. It is immediate that xxx ∈ ℓp implies axxx ∈ ℓp
for every a ∈ R and xxx ∈ ℓp.
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The following statement shows that any norm defined on a linear space
generates a metric on the space.

Theorem

Each norm ν : V −→ R⩾0 on a real linear space V generates a metric on
the set V defined by dν(xxx ,yyy) = ν(xxx − yyy) for xxx ,yyy ∈ V .

Proof.

Note that if dν(xxx ,yyy) = ν(xxx − yyy) = 0, it follows that xxx − yyy = 000; that is,
xxx = yyy .
The symmetry of dν is obvious and so we need to verify only the triangular
axiom. Let xxx ,yyy ,zzz ∈ L. Applying the subaditivity of norms we have we have

ν(xxx − zzz) = ν(xxx − yyy + yyy − zzz) ⩽ ν(xxx − yyy) + ν(yyy − zzz)

or, equivalently, dν(xxx ,zzz) ⩽ dν(xxx ,yyy) + dν(yyy ,zzz), for every xxx ,yyy ,zzz ∈ L, which
concludes the argument.
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Observe that the norm ν can be expressed using dν as

ν(xxx) = dν(xxx ,000)

for xxx ∈ V .
For p ⩾ 1, then dp denotes the metric dνp induced by the norm νp on the
linear space Rn known as the Minkowski metric.
If p = 2, we have the Euclidean metric on Rn given by

d2(xxx ,yyy) =

√√√√ n∑
i=1

|xi − yi |2 =

√√√√ n∑
i=1

(xi − yi )2.
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For p = 1, we have

d1(xxx ,yyy) =
n∑

i=1

|xi − yi |.

This metric is known also as the city-block metric.
The norm ν∞ generates the metric d∞ given by

d∞(xxx ,yyy) = max{|xi − yi | | 1 ⩽ i ⩽ n},

also known as the Chebyshev metric.
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A representation of these metrics can be seen below for the special case of
R2. If xxx = (x0, x1) and yyy = (y0, y1), then d2(xxx ,yyy) is the length of the
hypotenuse of the right triangle and d1(xxx ,yyy) is the sum of the lengths of
the two legs of the triangle.

-

6

x = (x0, x1)

y = (y0, y1)

(y0, x1)

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4 42 / 54



Theorem

(Projections on Closed Sets Theorem) Let U be a closed subset of Rn

such that U ̸= ∅ and let xxx0 ∈ Rn −U. Then, there exists xxx1 ∈ U such that
∥ xxx − xxx0 ∥2⩾∥ xxx1 − xxx0 ∥2 for every xxx ∈ U.
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Proof

Let d = inf{∥ xxx − xxx0 ∥2 | xxx ∈ U} and let Un = U ∩ B
(
xxx0, d + 1

n

)
. Note

that the sets form a descending sequence of bounded and closed sets
U1 ⊇ U2 ⊇ · · · ⊇ Un ⊇ · · · . Since U1 is compact,

⋂
n⩾1 Un ̸= ∅. Let

xxx1 ∈
⋂

n⩾1 Un. Since Un ⊆ U for every n, it follows that xxx1 ∈ U.

Note that ∥ xxx1 − xxx0 ∥2⩽ d + 1
n for every n because

xxx1 ∈ Un = U ∩ B
(
xxx0, d + 1

n

)
. This implies ∥ xxx1 − xxx0 ∥2⩽ d ⩽∥ xxx − xxx0 ∥2

for every xxx ∈ U.
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Lemma

Let a1, . . . , an be n positive numbers. If p and q are two positive numbers
such that p ⩽ q, then(

ap1 + · · ·+ apn
) 1

p ⩾
(
aq1 + · · ·+ aqn

) 1
q .

Proof: Let f : R>0 −→ R be the function defined by

f (r) = (ar1 + · · ·+ arn)
1
r .

Since

ln f (r) =
ln (ar1 + · · ·+ arn)

r
,

it follows that

f ′(r)

f (r)
= − 1

r2
ln (ar1 + · · ·+ arn) +

1

r
· a

r
1 ln a1 + · · ·+ arn ln ar

ar1 + · · ·+ arn
.
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Proof cont’d

To prove that f ′(r) < 0, it suffices to show that

ar1 ln a1 + · · ·+ arn ln ar
ar1 + · · ·+ arn

⩽
ln (ar1 + · · ·+ arn)

r
.

This last inequality is easily seen to be equivalent to

n∑
i=1

ari
ar1 + · · ·+ arn

ln
ari

ar1 + · · ·+ arn
⩽ 0,

which holds because
ari

ar1 + · · ·+ arn
⩽ 1

for 1 ⩽ i ⩽ n.
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Theorem

Let p and q be two positive numbers such that p ⩽ q. For every uuu ∈ Rn,
we have ∥ uuu ∥p⩾∥ uuu ∥q.

Proof.

This statement follows immediately from previous Lemma.
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Corollary

Let p, q be two positive numbers such that p ⩽ q. For every xxx ,yyy ∈ Rn, we
have dp(xxx ,yyy) ⩾ dq(xxx ,yyy).

Proof.

This statement follows immediately from the previous Theorem.
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Example

For p = 1 and q = 2 the inequality of the Theorem becomes

n∑
i=1

|ui | ⩽

√√√√ n∑
i=1

|ui |2,

which is equivalent to ∑n
i=1 |ui |
n

⩽

√∑n
i=1 |ui |2
n

.
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Theorem

Let p ⩾ 1. For every xxx ∈ Rn we have

∥ xxx ∥∞⩽∥ xxx ∥p⩽ n ∥ xxx ∥∞ .

Proof.

Starting from the definition of νp we have

∥ xxx ∥p=

(
n∑

i=1

|xi |p
) 1

p

⩽ n
1
p max
1⩽i⩽n

|xi | = n
1
p ∥ xxx ∥∞ .

The first inequality is immediate.
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Corollary

Let p and q be two numbers such that p, q ⩾ 1. There exist two constants
c , d ∈ R>0 such that

c ∥ xxx ∥q⩽∥ xxx ∥p⩽ d ∥ xxx ∥q

for xxx ∈ Rn.

Proof.

Since ∥ xxx ∥∞⩽∥ xxx ∥p and ∥ x ∥q⩽ n ∥ xxx ∥∞, it follows that
∥ x ∥q⩽ n ∥ xxx ∥p. Exchanging the roles of p and q, we have
∥ x ∥p⩽ n ∥ xxx ∥q, so

1

n
∥ xxx ∥q⩽∥ xxx ∥p⩽ n ∥ xxx ∥q

for every xxx ∈ Rn.
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Corollary

For every xxx ,yyy ∈ Rn and p ⩾ 1, we have d∞(xxx ,yyy) ⩽ dp(xxx ,yyy) ⩽ nd∞(xxx ,yyy).
Further, for p, q > 1, there exist c , d ∈ R>0 such that

cdq(xxx ,yyy) ⩽ dp(xxx ,yyy) ⩽ cdq(xxx ,yyy)

for xxx ,yyy ∈ Rn.
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If p ⩽ q, then the closed sphere Bdp(xxx , r) is included in the closed sphere
Bdq(xxx , r). For example, we have

Bd1(000, 1) ⊆ Bd2(000, 1) ⊆ Bd∞(000, 1).

In (a) - (c) we represent the closed spheres Bd1(000, 1), Bd2(000, 1), and
Bd∞(000, 1).

6 6 6

- - -
�

�
@
@�

�
@

@

&%
'$

(a) (b) (c)
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Theorem

Let x1, . . . , xm and y1, . . . , ym be 2m nonnegative numbers such that∑m
i=1 xi =

∑m
i=1 yi = 1 and let p and q be two positive numbers such that

1
p + 1

q = 1. We have
m∑
j=1

x
1
p

j y
1
q

j ⩽ 1.

Proof.

The Hölder inequality applied to x
1
p

1 , . . . , x
1
p
m and y

1
q

1 , . . . , y
1
q
m yields the

needed inequality
m∑
j=1

x
1
p

j y
1
q

j ⩽
m∑
j=1

xj

m∑
j=1

yj = 1
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