CS724: Topics in Algorithms Norms and Inner Products - I Slide Set 4

Prof. Dan A. Simovici

Basic Inequalities

2 Metric Spaces

Lemma

Let $p, q \in \mathbb{R} - \{0, 1\}$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Then we have p > 1 if and only if q > 1. Furthermore, one of the numbers p, q belongs to the interval (0, 1) if and only if the other number is negative.

Lemma

Let $p, q \in \mathbb{R} - \{0, 1\}$ be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. Then, for every $a, b \in \mathbb{R}_{\geq 0}$, we have

$$ab\leqslant rac{a^p}{p}+rac{b^q}{q},$$

where the equality holds if and only if $a = b^{-\frac{1}{1-p}}$.

Proof

We have q > 1. Consider the function $f(x) = \frac{x^p}{p} + \frac{1}{q} - x$ for $x \ge 0$. We have $f'(x) = x^{p-1} - 1$, so the minimum is achieved when x = 1 and f(1) = 0. Thus,

$$f\left(ab^{-\frac{1}{p-1}}\right)\geqslant f(1)=0,$$

which amounts to

$$\frac{a^{p}b^{-\frac{p}{p-1}}}{p} + \frac{1}{q} - ab^{-\frac{1}{p-1}} \geqslant 0.$$

By multiplying both sides of this inequality by $b^{\frac{p}{p-1}}$, we obtain the desired inequality.

Observe that if $\frac{1}{p} + \frac{1}{q} = 1$ and p < 1, then q < 0. In this case, we have the reverse inequality

$$ab \geqslant \frac{a^p}{p} + \frac{b^q}{q}.$$
 (1)

which can be shown by observing that the function f has a maximum in x = 1. The same inequality holds when q < 1 and therefore p < 0.

Theorem

(The Hölder Inequality) Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n nonnegative numbers, and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. We have

$$\sum_{i=1}^n a_i b_i \leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}.$$

Proof

If $a_1 = \cdots = a_n = 0$ or if $b_1 = \cdots = b_n = 0$, then the inequality is clearly satisfied. Therefore, we may assume that at least one of a_1, \ldots, a_n and at least one of b_1, \ldots, b_n is non-zero. Define the numbers

$$x_i = \frac{a_i}{\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}} \text{ and } y_i = \frac{b_i}{\left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}}$$

for $1 \le i \le n$. Lemma on Slide 3 applied to x_i, y_i yields

$$\frac{a_i b_i}{\left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}} \leqslant \frac{1}{p} \frac{a_i^p}{\sum_{i=1}^n a_i^p} + \frac{1}{q} \frac{b_i^p}{\sum_{i=1}^n b_i^p}.$$

Adding these inequalities, we obtain

$$\sum_{i=1}^n a_i b_i \leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^n b_i^q\right)^{\frac{1}{q}}$$

because $\frac{1}{p} + \frac{1}{q} = 1$.

The nonnegativity of the numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ can be relaxed by using absolute values.

Theorem

Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n numbers and let p and q be two numbers such that $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1. We have

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n |b_i|^q\right)^{\frac{1}{q}}.$$

Proof

By a previous theorem, we have:

$$\sum_{i=1}^{n} |a_i| |b_i| \leqslant \left(\sum_{i=1}^{n} |a_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |b_i|^q\right)^{\frac{1}{q}}.$$

The needed equality follows from the fact that

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \sum_{i=1}^n |a_i| |b_i|.$$

Corollary

(The Cauchy-Schwarz Inequality for \mathbb{R}^n) Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n real numbers. We have

$$\left|\sum_{i=1}^n a_i b_i\right| \leqslant \sqrt{\sum_{i=1}^n a_i^2} \cdot \sqrt{\sum_{i=1}^n b_i^2}.$$

Proof.

The inequality follows immediately by taking p = q = 2.

Theorem

(Minkowski's Inequality) Let a_1, \ldots, a_n and b_1, \ldots, b_n be 2n nonnegative real numbers. If $p \geqslant 1$, we have

$$\left(\sum_{i=1}^n (a_i+b_i)^p\right)^{\frac{1}{p}}\leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n b_i^p\right)^{\frac{1}{p}}.$$

If p < 1, the inequality sign is reversed.

Proof

For p=1, the inequality is immediate. Therefore, we can assume that p>1. Note that

$$\sum_{i=1}^{n} (a_i + b_i)^p = \sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} + \sum_{i=1}^{n} b_i (a_i + b_i)^{p-1}.$$

By Hölder's inequality for p,q such that p>1 and $\frac{1}{p}+\frac{1}{q}=1$, we have

$$\sum_{i=1}^{n} a_i (a_i + b_i)^{p-1} \leq \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^{(p-1)q}\right)^{\frac{1}{q}}$$

$$= \left(\sum_{i=1}^{n} a_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{q}}.$$

Proof cont'd

Similarly, we can write

$$\sum_{i=1}^{n} b_i (a_i + b_i)^{p-1} \leqslant \left(\sum_{i=1}^{n} b_i^p\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} (a_i + b_i)^p\right)^{\frac{1}{q}}.$$

Adding the last two inequalities yields

$$\sum_{i=1}^{n} (a_i + b_i)^p \leqslant \left(\left(\sum_{i=1}^{n} a_i^p \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} b_i^p \right)^{\frac{1}{p}} \right) \left(\sum_{i=1}^{n} (a_i + b_i)^p \right)^{\frac{1}{q}},$$

which is equivalent to inequality

$$\left(\sum_{i=1}^n (a_i+b_i)^p\right)^{\frac{1}{p}}\leqslant \left(\sum_{i=1}^n a_i^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n b_i^p\right)^{\frac{1}{p}}.$$

Definition

A function $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ is a *metric* if it has the following properties:

- d(x,y) = 0 if and only if x = y for $x, y \in S$;
- d(x,y) = d(y,x) for $x,y \in S$;
- $d(x,y) \leqslant d(x,z) + d(z,y)$ for $x,y,z \in S$.

The pair (S, d) will be referred to as a *metric space*.

If property (i) is replaced by the weaker requirement that d(x,x)=0 for $x\in S$, then we refer to d as a semimetric on S. Thus, if d is a semimetric d(x,y)=0 does not necessarily imply x=y and we can have for two distinct elements x,y of S, d(x,y)=0. If d is a semimetric, then we refer to the pair (S,d) as a semimetric space.

Let S be a nonempty set. Define the mapping $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ by

$$d(u,v) = \begin{cases} 1 & \text{if } u \neq v, \\ 0 & \text{otherwise,} \end{cases}$$

for $x, y \in S$. It is easy to see that d satisfies the definiteness property. To prove that d satisfies the triangular inequality, we need to show that

$$d(x,y) \leqslant d(x,z) + d(z,y)$$

for all $x,y,z\in S$. This is clearly the case if x=y. Suppose that $x\neq y$, so d(x,y)=1. Then, for every $z\in S$, we have at least one of the inequalities $x\neq z$ or $z\neq y$, so at least one of the numbers d(x,z) or d(z,y) equals 1. Thus d satisfies the triangular inequality. The metric d introduced here is the *discrete metric* on S.

Consider the mapping $d: (\mathbf{Seq}_n(S))^2 \longrightarrow \mathbb{R}_{\geq 0}$ defined by

$$d(\boldsymbol{p}, \boldsymbol{q}) = |\{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \boldsymbol{p}(i) \neq \boldsymbol{q}(i)\}|$$

for all sequences $\boldsymbol{p}, \boldsymbol{q}$ of length n on the set S.

It is easy to see that d is a metric. We justify here only the triangular inequality. Let p, q, r be three sequences of length n on the set S. If $p(i) \neq q(i)$, then r(i) must be distinct from at least one of p(i) and q(i).

Therefore.

$$\{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \boldsymbol{p}(i) \neq \boldsymbol{q}(i)\}$$

 $\subseteq \{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \boldsymbol{p}(i) \neq \boldsymbol{r}(i)\} \cup \{i \mid 0 \leqslant i \leqslant n-1 \text{ and } \boldsymbol{r}(i) \neq \boldsymbol{q}\}$

which implies the triangular inequality.

For $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in \mathbb{R}^n$ the *Euclidean metric* is the mapping

$$d_2(\boldsymbol{x},\boldsymbol{y}) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

The first two conditions of Definition 7 are obviously satisfied. To prove the third inequality, let $x, y, z \in \mathbb{R}^n$. Choosing $a_i = x_i - y_i$ and $b_i = y_i - z_i$ for $1 \le i \le n$ in Minkowski's inequality implies

$$\sqrt{\sum_{i=1}^{n}(x_i-z_i)^2} \leqslant \sqrt{\sum_{i=1}^{n}(x_i-y_i)^2} + \sqrt{\sum_{i=1}^{n}(y_i-z_i)^2},$$

which amounts to $d(x,z) \leq d(x,y) + d(y,z)$. Thus, we conclude that d is indeed a metric on \mathbb{R}^n .

We use frequently use the notions of closed sphere and open sphere.

Definition

Let (S, d) be a metric space. The *closed sphere* centered in $x \in S$ of radius r is the set

$$B_d[x,r] = \{ y \in S | d(x,y) \leqslant r \}.$$

The *open sphere* centered in $x \in S$ of radius r is the set

$$B_d(x,r) = \{ y \in S | d(x,y) < r \}.$$

Definition

Let (S,d) be a metric space. The *diameter* of a subset U of S is the number $diam_{S,d}(U) = \sup\{d(x,y) \mid x,y \in U\}$. The set U is *bounded* if $diam_{S,d}(U)$ is finite.

The *diameter* of the metric space (S, d) is the number

$$diam_{S,d} = \sup\{d(x,y) \mid x,y \in S\}.$$

If the metric space is clear from the context, then we denote the diameter of a subset U just by diam(U).

If (S, d) is a finite metric space, then $diam_{S,d} = \max\{d(x, y) \mid x, y \in S\}$.

A mapping $d: S \times S \longrightarrow \hat{\mathbb{R}}_{\geqslant 0}$ can be extended to the set of subsets of S by defining d(U,V) as

$$d(U,V) = \inf\{d(u,v) \mid u \in U \text{ and } v \in V\}$$

for $U, V \in \mathcal{P}(S)$.

Observe that, even if d is a metric, then its extension is not, in general, a metric on $\mathcal{P}(S)$ because it does not satisfy the triangular inequality. Instead, we can show that for every U, V, W we have

$$d(U, W) \leq d(U, V) + diam(V) + d(V, W).$$

Indeed, by the definition of d(U, V) and d(V, W), for every $\epsilon > 0$, there exist $u \in U$, $v, v' \in V$, and $w \in W$ such that

$$d(U, V) \leqslant d(u, v) \leqslant d(U, V) + \frac{\epsilon}{2},$$

$$d(V, W) \leqslant d(v', w) \leqslant d(V, W) + \frac{\epsilon}{2}.$$

By the triangular axiom, we have

$$d(u,w) \leqslant d(u,v) + d(v,v') + d(v',w).$$

Hence,

$$d(u,w) \leqslant d(U,V) + diam(V) + d(V,W) + \epsilon,$$

which implies

$$d(U, W) \leq d(U, V) + diam(V) + d(V, W) + \epsilon$$

for every $\epsilon > 0$. This yields the needed inequality.

Definition

Let (S, d) be a metric space. The sets $U, V \in \mathcal{P}(S)$ are *separate* if d(U, V) > 0.

We denote the number $d(\{u\}, V) = \inf\{d(u, v) \mid v \in V\}$ by d(u, V). It is clear that $u \in V$ implies d(u, V) = 0.

The notion of dissimilarity is a generalization of the notion of metric.

Definition

A *dissimilarity on a set S* is a function $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ satisfying the following conditions:

- d(x,x) = 0 for all $x \in S$;
- d(x,y) = d(y,x) for all $x,y \in S$.

The pair (S, d) is a dissimilarity space.

A related concept is the notion of similarity.

Definition

A *similarity on a set S* is a function $s: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ satisfying the following conditions:

- $s(x,y) \leqslant s(x,x) = 1$ for all $x,y \in S$;
- s(x,y) = s(y,x) for all $x,y \in S$.

The pair (S, s) is a *similarity space*.

Let $d: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ be a metric on the set S. Then $s: S^2 \longrightarrow \mathbb{R}_{\geqslant 0}$ defined by $s(x,y) = 2^{-d(x,y)}$ for $x,y \in S$ is a dissimilarity, such that s(x,x) = 1 for every $x,y \in S$.

Definition

A *seminorm* on an *F*-linear space V is a mapping $\nu:V\longrightarrow\mathbb{R}$ that satisfies the following conditions:

- $\nu(\mathbf{x} + \mathbf{y}) \leqslant \nu(\mathbf{x}) + \nu(\mathbf{y})$ (subadditivity), and
- $\nu(a\mathbf{x}) = |a|\nu(\mathbf{x})$ (positive homogeneity),

for $\mathbf{x}, \mathbf{y} \in V$ and $a \in F$.

By taking a=0 in the second condition of the definition we have $\nu(\mathbf{0})=0$ for every seminorm on a real or complex space.

Theorem

If V is a real or complex linear space and $\nu:V\longrightarrow\mathbb{R}$ is a seminorm on V, then

$$\nu(\mathbf{x} - \mathbf{y}) \geqslant |\nu(\mathbf{x}) - \nu(\mathbf{y})|,$$

for $\mathbf{x}, \mathbf{y} \in V$.

Proof.

We have $\nu(\mathbf{x}) \leqslant \nu(\mathbf{x} - \mathbf{y}) + \nu(\mathbf{y})$, so

$$\nu(\mathbf{x}) - \nu(\mathbf{y}) \leqslant \nu(\mathbf{x} - \mathbf{y}). \tag{2}$$

Since $\nu(\mathbf{x} - \mathbf{y}) = |-1|\nu(\mathbf{y} - \mathbf{x}) \geqslant \nu(\mathbf{y}) - \nu(\mathbf{x})$ we have

$$-(\nu(\mathbf{x}) - \nu(\mathbf{y})) \leqslant \nu(\mathbf{x}) - \nu(\mathbf{y}). \tag{3}$$

The Inequalities (2) and (3) give the desired inequality.

BOSTON

Corollary

If $p: V \longrightarrow \mathbb{R}$ is a seminorm on V, then $p(\mathbf{x}) \geqslant 0$ for $\mathbf{x} \in V$.

Proof.

By choosing $\mathbf{y} = \mathbf{0}$ we have $\nu(\mathbf{x}) \geqslant |\nu(\mathbf{x})| \geqslant 0$.

Definition

Let $\mathcal{F}=(F,\{0,1,+,-,\cdot\})$ be the real or the complex field. A *norm* on an F-linear space V is a seminorm $\nu:V\longrightarrow\mathbb{R}$ such that $\nu(\mathbf{x})=0$ implies $\mathbf{x}=\mathbf{0}$ for $\mathbf{x}\in V$.

The pair (V, ν) is referred to as a *normed linear space*.

The set of real-valued continuous functions defined on the interval [-1,1] is a real linear space. The addition of two such functions f,g, is defined by (f+g)(x)=f(x)+g(x) for $x\in [-1,1]$; the multiplication of f by a scalar $a\in\mathbb{R}$ is (af)(x)=af(x) for $x\in [-1,1]$. Define $\nu(f)=\sup\{|f(x)|\ |\ x\in [-1,1]\}$. Since $|f(x)|\leqslant \nu(f)$ and $|g(x)|\leqslant \nu(g)$ for $x\in [-1,1]\}$, it follows that $|(f+g)(x)|\leqslant |f(x)|+|g(x)|\leqslant \nu(f)+\nu(g)$. Thus, $\nu(f+g)\leqslant \nu(f)+\nu(g)$.

We denote $\nu(f)$ by ||f||.

Theorem

For $p \geqslant 1$, the function $\nu_p : \mathbb{R}^n \longrightarrow \mathbb{R}_{\geqslant 0}$ defined by

$$\nu_p(x_1,\ldots,x_n) = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},$$

where $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, is a norm on \mathbb{R}^n .

Proof

We must prove that ν_p satisfies the conditions of the definition of norms and that $\nu_p(\mathbf{x}) = 0$ implies $\mathbf{x} = \mathbf{0}$.

Let $\mathbf{x} = (x_1, \dots, x_n)$, $\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{R}^n$. Minkowski's inequality applied to the nonnegative numbers $a_i = |x_i|$ and $b_i = |y_i|$ amounts to

$$\left(\sum_{i=1}^{n}(|x_i|+|y_i|)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}}.$$

Since $|x_i + y_i| \le |x_i| + |y_i|$ for every i, we have

$$\left(\sum_{i=1}^{n}(|x_i+y_i|)^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n}|x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n}|y_i|^p\right)^{\frac{1}{p}},$$

that is, $\nu_p(\mathbf{x}+\mathbf{y}) \leqslant \nu_p(\mathbf{x}) + \nu_p(\mathbf{y})$. Thus, ν_p is a norm on \mathbb{P}_p^n .

The mapping $\nu_1: \mathbb{R}^n \longrightarrow \mathbb{R}$ given by

$$\nu_1(\mathbf{x}) = |x_1| + |x_2| + \cdots + |x_n|,$$

for $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. ν_1 is a norm on \mathbb{R}^n .

A special norm on \mathbb{R}^n is the function $\nu_\infty:\mathbb{R}^n\longrightarrow\mathbb{R}_{\geqslant 0}$ given by

$$\nu_{\infty}(\mathbf{x}) = \max\{|x_i| \mid 1 \leqslant i \leqslant n\}$$

for
$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$$
.

We start from the inequality

$$|x_i + y_i| \leq |x_i| + |y_i| \leq \nu_{\infty}(\mathbf{x}) + \nu_{\infty}(\mathbf{y})$$

for every i, $1 \le i \le n$. This implies

$$\nu_{\infty}(\mathbf{x}+\mathbf{y}) = \max\{|x_i+y_i| \mid 1 \leqslant i \leqslant n\} \leqslant \nu_{\infty}(\mathbf{x}) + \nu_{\infty}(\mathbf{y}),$$

which gives the desired inequality.

Example

This norm can be regarded as a limit case of the norms ν_p . Indeed, let $\mathbf{x} \in \mathbb{R}^n$ and let $M = \max\{|x_i| \mid 1 \leqslant i \leqslant n\} = |x_{\ell_1}| = \cdots = |x_{\ell_k}|$ for some ℓ_1, \ldots, ℓ_k , where $1 \leqslant \ell_1, \ldots, \ell_k \leqslant n$. Here $x_{\ell_1}, \ldots, x_{\ell_k}$ are the components of \mathbf{x} that have the maximal absolute value and $k \geqslant 1$. We can write

$$\lim_{p\to\infty}\nu_p(\mathbf{x})=\lim_{p\to\infty}M\left(\sum_{i=1}^n\left(\frac{|x_i|}{M}\right)^p\right)^{\frac{1}{p}}=\lim_{p\to\infty}M(k)^{\frac{1}{p}}=M,$$

which justifies the notation ν_{∞} .

We use the alternative notation $\|\mathbf{x}\|_p$ for $\nu_p(\mathbf{x})$. We refer $\|\mathbf{x}\|_2$ as the *Euclidean norm* of \mathbf{x} and we denote this norm simply by $\|\mathbf{x}\|$ when there is no risk of confusion.

Example

For $p \geqslant 1$, let ℓ_p be the set that consists of sequences of real numbers $\mathbf{x} = (x_0, x_1, \ldots)$ such that the series $\sum_{i=0}^{\infty} |x_i|^p$ is convergent. We can show that ℓ_p is a linear space.

Let $\pmb{x},\pmb{y}\in\ell_{p}$ be two sequences in ℓ_{p} . Using Minkowski's inequality we have

$$\sum_{i=0}^{n} |x_i + y_i|^p \leqslant \sum_{i=0}^{n} (|x_i| + |y_i|)^p \leqslant \sum_{i=0}^{n} |x_i|^p + \sum_{i=0}^{n} |y_i|^p,$$

which shows that $\mathbf{x} + \mathbf{y} \in \ell_p$. It is immediate that $\mathbf{x} \in \ell_p$ implies $a\mathbf{x} \in \ell_p$ for every $a \in \mathbb{R}$ and $\mathbf{x} \in \ell_p$.

The following statement shows that any norm defined on a linear space generates a metric on the space.

Theorem

Each norm $\nu: V \longrightarrow \mathbb{R}_{\geqslant 0}$ on a real linear space V generates a metric on the set V defined by $d_{\nu}(\mathbf{x}, \mathbf{y}) = \nu(\mathbf{x} - \mathbf{y})$ for $\mathbf{x}, \mathbf{y} \in V$.

Proof.

Note that if $d_{\nu}(\mathbf{x}, \mathbf{y}) = \nu(\mathbf{x} - \mathbf{y}) = 0$, it follows that $\mathbf{x} - \mathbf{y} = \mathbf{0}$; that is, $\mathbf{x} = \mathbf{y}$.

The symmetry of d_{ν} is obvious and so we need to verify only the triangular axiom. Let $\mathbf{x}, \mathbf{y}, \mathbf{z} \in L$. Applying the subaditivity of norms we have we have

$$\nu(\mathbf{x} - \mathbf{z}) = \nu(\mathbf{x} - \mathbf{y} + \mathbf{y} - \mathbf{z}) \leqslant \nu(\mathbf{x} - \mathbf{y}) + \nu(\mathbf{y} - \mathbf{z})$$

or, equivalently, $d_{\nu}(\mathbf{x}, \mathbf{z}) \leq d_{\nu}(\mathbf{x}, \mathbf{y}) + d_{\nu}(\mathbf{y}, \mathbf{z})$, for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in L$, which concludes the argument.

UMASS BOSTON Observe that the norm ν can be expressed using d_{ν} as

$$\nu(\mathbf{x}) = d_{\nu}(\mathbf{x}, \mathbf{0})$$

for $x \in V$.

For $p \geqslant 1$, then d_p denotes the metric d_{ν_p} induced by the norm ν_p on the linear space \mathbb{R}^n known as the *Minkowski metric*.

If p = 2, we have the *Euclidean metric* on \mathbb{R}^n given by

$$d_2(\mathbf{x},\mathbf{y}) = \sqrt{\sum_{i=1}^n |x_i - y_i|^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$$

For p = 1, we have

$$d_1(\boldsymbol{x},\boldsymbol{y}) = \sum_{i=1}^n |x_i - y_i|.$$

This metric is known also as the *city-block metric*. The norm ν_{∞} generates the metric d_{∞} given by

$$d_{\infty}(\boldsymbol{x},\boldsymbol{y}) = \max\{|x_i - y_i| \mid 1 \leqslant i \leqslant n\},\$$

also known as the Chebyshev metric.

A representation of these metrics can be seen below for the special case of \mathbb{R}^2 . If $\mathbf{x} = (x_0, x_1)$ and $\mathbf{y} = (y_0, y_1)$, then $d_2(\mathbf{x}, \mathbf{y})$ is the length of the hypotenuse of the right triangle and $d_1(\mathbf{x}, \mathbf{y})$ is the sum of the lengths of the two legs of the triangle.

(Projections on Closed Sets Theorem) Let U be a closed subset of \mathbb{R}^n such that $U \neq \emptyset$ and let $\mathbf{x}_0 \in \mathbb{R}^n - U$. Then, there exists $\mathbf{x}_1 \in U$ such that $\|\mathbf{x} - \mathbf{x}_0\|_2 \ge \|\mathbf{x}_1 - \mathbf{x}_0\|_2$ for every $\mathbf{x} \in U$.

Proof

Let $d=\inf\{\|\ x-x_0\ \|_2\ |\ x\in U\}$ and let $U_n=U\cap B\ (x_0,d+\frac{1}{n})$. Note that the sets form a descending sequence of bounded and closed sets $U_1\supseteq U_2\supseteq\cdots\supseteq U_n\supseteq\cdots$. Since U_1 is compact, $\bigcap_{n\geqslant 1}U_n\neq\emptyset$. Let $x_1\in\bigcap_{n\geqslant 1}U_n$. Since $U_n\subseteq U$ for every n, it follows that $x_1\in U$. Note that $\|\ x_1-x_0\ \|_2\leqslant d+\frac{1}{n}$ for every n because $x_1\in U_n=U\cap B\ (x_0,d+\frac{1}{n})$. This implies $\|\ x_1-x_0\ \|_2\leqslant d\leqslant \|\ x-x_0\ \|_2$ for every $x\in U$.

Lemma

Let a_1, \ldots, a_n be n positive numbers. If p and q are two positive numbers such that $p \leqslant q$, then

$$\left(a_1^p+\cdots+a_n^p\right)^{\frac{1}{p}}\geqslant \left(a_1^q+\cdots+a_n^q\right)^{\frac{1}{q}}.$$

Proof: Let $f: \mathbb{R}^{>0} \longrightarrow \mathbb{R}$ be the function defined by

$$f(r)=\left(a_1^r+\cdots+a_n^r\right)^{\frac{1}{r}}.$$

Since

$$\ln f(r) = \frac{\ln \left(a_1^r + \cdots + a_n^r\right)}{r},$$

it follows that

$$\frac{f'(r)}{f(r)} = -\frac{1}{r^2} \ln \left(a_1^r + \dots + a_n^r \right) + \frac{1}{r} \cdot \frac{a_1^r \ln a_1 + \dots + a_n^r \ln a_r}{a_1^r + \dots + a_n^r}.$$

Proof cont'd

To prove that f'(r) < 0, it suffices to show that

$$\frac{a_1^r \ln a_1 + \dots + a_n^r \ln a_r}{a_1^r + \dots + a_n^r} \leqslant \frac{\ln \left(a_1^r + \dots + a_n^r\right)}{r}.$$

This last inequality is easily seen to be equivalent to

$$\sum_{i=1}^n \frac{a_i^r}{a_1^r + \dots + a_n^r} \ln \frac{a_i^r}{a_1^r + \dots + a_n^r} \leqslant 0,$$

which holds because

$$\frac{a_i^r}{a_1^r + \dots + a_n^r} \leqslant 1$$

for $1 \leqslant i \leqslant n$.

Let p and q be two positive numbers such that $p \leqslant q$. For every $\mathbf{u} \in \mathbb{R}^n$, we have $\|\mathbf{u}\|_p \geqslant \|\mathbf{u}\|_q$.

Proof.

This statement follows immediately from previous Lemma.

Corollary

Let p, q be two positive numbers such that $p \leq q$. For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we have $d_p(\mathbf{x}, \mathbf{y}) \geqslant d_q(\mathbf{x}, \mathbf{y})$.

Proof.

This statement follows immediately from the previous Theorem.

Example

For p = 1 and q = 2 the inequality of the Theorem becomes

$$\sum_{i=1}^n |u_i| \leqslant \sqrt{\sum_{i=1}^n |u_i|^2},$$

which is equivalent to

$$\frac{\sum_{i=1}^n |u_i|}{n} \leqslant \sqrt{\frac{\sum_{i=1}^n |u_i|^2}{n}}.$$

Let $p \geqslant 1$. For every $\mathbf{x} \in \mathbb{R}^n$ we have

$$\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{p} \leqslant n \|\mathbf{x}\|_{\infty}$$
.

Proof.

Starting from the definition of ν_p we have

$$\| \mathbf{x} \|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{\frac{1}{p}} \leqslant n^{\frac{1}{p}} \max_{1 \leqslant i \leqslant n} |x_{i}| = n^{\frac{1}{p}} \| \mathbf{x} \|_{\infty}.$$

The first inequality is immediate.

Corollary

Let p and q be two numbers such that $p, q \geqslant 1$. There exist two constants $c, d \in \mathbb{R}_{>0}$ such that

$$c \parallel \mathbf{x} \parallel_q \leqslant \parallel \mathbf{x} \parallel_p \leqslant d \parallel \mathbf{x} \parallel_q$$

for $\mathbf{x} \in \mathbb{R}^n$.

Proof.

Since $\|\mathbf{x}\|_{\infty} \leqslant \|\mathbf{x}\|_{p}$ and $\|\mathbf{x}\|_{q} \leqslant n \|\mathbf{x}\|_{\infty}$, it follows that $\|\mathbf{x}\|_{q} \leqslant n \|\mathbf{x}\|_{p}$. Exchanging the roles of p and q, we have $\|\mathbf{x}\|_{p} \leqslant n \|\mathbf{x}\|_{q}$, so

$$\frac{1}{n} \parallel \mathbf{x} \parallel_q \leqslant \parallel \mathbf{x} \parallel_p \leqslant n \parallel \mathbf{x} \parallel_q$$

for every $\mathbf{x} \in \mathbb{R}^n$.

Corollary

For every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $p \geqslant 1$, we have $d_{\infty}(\mathbf{x}, \mathbf{y}) \leqslant d_p(\mathbf{x}, \mathbf{y}) \leqslant nd_{\infty}(\mathbf{x}, \mathbf{y})$. Further, for p, q > 1, there exist $c, d \in \mathbb{R}_{>0}$ such that

$$cd_q(\boldsymbol{x}, \boldsymbol{y}) \leqslant d_p(\boldsymbol{x}, \boldsymbol{y}) \leqslant cd_q(\boldsymbol{x}, \boldsymbol{y})$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

If $p \leqslant q$, then the closed sphere $B_{d_p}(\mathbf{x}, r)$ is included in the closed sphere $B_{d_q}(\mathbf{x}, r)$. For example, we have

$$B_{d_1}(\mathbf{0},1) \subseteq B_{d_2}(\mathbf{0},1) \subseteq B_{d_{\infty}}(\mathbf{0},1).$$

In (a) - (c) we represent the closed spheres $B_{d_1}(\mathbf{0},1)$, $B_{d_2}(\mathbf{0},1)$, and $B_{d_{\infty}}(\mathbf{0},1)$.

Let x_1, \ldots, x_m and y_1, \ldots, y_m be 2m nonnegative numbers such that $\sum_{i=1}^m x_i = \sum_{i=1}^m y_i = 1$ and let p and q be two positive numbers such that $\frac{1}{p} + \frac{1}{q} = 1$. We have

$$\sum_{j=1}^m x_j^{\frac{1}{p}} y_j^{\frac{1}{q}} \leqslant 1.$$

Proof.

The Hölder inequality applied to $x_1^{\frac{1}{p}},\ldots,x_m^{\frac{1}{p}}$ and $y_1^{\frac{1}{q}},\ldots,y_m^{\frac{1}{q}}$ yields the needed inequality

$$\sum_{j=1}^{m} x_{j}^{\frac{1}{p}} y_{j}^{\frac{1}{q}} \leqslant \sum_{j=1}^{m} x_{j} \sum_{j=1}^{m} y_{j} = 1$$

