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Lemma

Let p,q € R —{0,1} such that % + %, = 1. Then we have p > 1 if and
only if g > 1. Furthermore, one of the numbers p, q belongs to the
interval (0, 1) if and only if the other number is negative.
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Lemma

Let p,g € R —{0,1} be two numbers such that ,1) + %’ =1andp>1.
Then, for every a,b € R>g, we have

where the equality holds if and only if a = b~ 15,
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Proof

We have g > 1. Consider the function f(x) = % + % —x for x > 0. We

have f/(x) = xP~1 — 1, so the minimum is achieved when x = 1 and
f(1) = 0. Thus,

f(ab™5) > F(1) =0,

which amounts to

p

By multiplying both sides of this inequality by bp%l, we obtain the desired
inequality.
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Observe that if ,1) + (1’ =1and p <1, then g < 0. In this case, we have
the reverse inequality
aP b9

ab> — + 1
P q ()

which can be shown by observing that the function £ has a maximum in
x = 1. The same inequality holds when g < 1 and therefore p < 0.
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Theorem

(The Hdolder Inequality) Let a;,...,a, and by, ..., b, be 2n nonnegative
numbers, and let p and q be two numbers such that ,l) (l, =1landp>1.

We have .
n n r n
() (59
i=1 i=1 i=1
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Proof

Ifag=---=a,=0orif by =--- = b, =0, then the inequality is clearly

satisfied. Therefore, we may assume that at least one of a,
least one of by, ..., b, is non-zero. Define the numbers

aj b;
x;zin Plandyizin o1
(X af)e (i bf)e
for 1 <7 < n. Lemma on Slide 3 applied to x;, y; yields
a,-b,- 1 a’-’ 1 bp

i

..,an and at

X ! + - .
(i )7 (S bf)e PRz aXL b

Adding these inequalities, we obtain

1 1
i=1 i=1 i=1

because % + % =1. umass
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The nonnegativity of the numbers as, ..., an, b1,..., b, can be relaxed by

using absolute values.

Theorem

Let a1,...,a, and by, ..., b, be 2n numbers and let p and q be two
numbers such that %, =+ % =1and p > 1. We have

1
q

n n % n
doabil < (Y lail? ) - DIl
i=1 i—1 i=1
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Proof

By a previous theorem, we have:

1

3" lallbi < (iw); - (iw)q

i=1 i=1 i=1

The needed equality follows from the fact that

n n
> aibi| <> aillbil.
i=1 i=1
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Corollary
(The Cauchy-Schwarz Inequality for R") Let a1,...,a, and by, ..., b, be
2n real numbers. We have
n n n
Sab|< Yo o8
i=1 i=1 i=1
Proof.
The inequality follows immediately by taking p = g = 2. [
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Theorem

(Minkowski's Inequality) Let a1,...,a, and by, ..., b, be 2n nonnegative

real numbers. If p > 1, we have

(Do) < (32) + (552

If p < 1, the inequality sign is reversed.
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Proof

For p =1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n n

Z(ai + bj)P = Z aj(aj + bi)p_l + z": bi(a; + bi)P_1

i=1 i=1 i=1

By Holder's inequality for p, g such that p > 1 and % + % =1, we have

zn:a,(a,+b <Za)

(57)

T I

(zn:(ai + bi)(p_l)q> E

i=1

o)
7
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Proof cont'd

Similarly, we can write

Zb a; + b;)P (Zb”)p(ia,m,-)")q.
i=1

Adding the last two inequalities yields

zn:(a,-er,-)P < (iaﬁ’)p + (ibf’)p (Zn:(a, + b;)P )q,
i=1 i=1 i=1 i=1

which is equivalent to inequality

(i(ai + bi)p> ’ < <Zn: af) E + (Zn: bf) E
i=1 i=1 i=1 m
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Definition

A function d : S — R>q is a metric if it has the following properties:
e d(x,y)=0ifand only if x =y for x,y € S;
e d(x,y) =d(y,x) for x,y € S;
e d(x,y) < d(x,z)+d(z,y) for x,y,z € S.

The pair (S, d) will be referred to as a metric space.
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If property (i) is replaced by the weaker requirement that d(x,x) = 0 for
x € S, then we refer to d as a semimetricon S. Thus, if d is a semimetric
d(x,y) = 0 does not necessarily imply x = y and we can have for two
distinct elements x, y of S, d(x,y) = 0. If d is a semimetric, then we refer

to the pair (S, d) as a semimetric space.
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Example

Let S be a nonempty set. Define the mapping d : S — R>¢ by

d(u,v) = {1 if us#v,

0 otherwise,

for x,y € S. It is easy to see that d satisfies the definiteness property. To
prove that d satisfies the triangular inequality, we need to show that

d(x,y) < d(x,z) + d(z,y)

for all x,y,z € S. This is clearly the case if x = y. Suppose that x # y,
so d(x,y) = 1. Then, for every z € S, we have at least one of the
inequalities x # z or z # y, so at least one of the numbers d(x, z) or
d(z,y) equals 1. Thus d satisfies the triangular inequality. The metric d
introduced here is the discrete metric on S.

7A
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Example
Consider the mapping d : (Seq,(S))?> — Rxq defined by

d(p,q) = [{i [ 0< i< n—1and p(i) # q(i)}|

for all sequences p, q of length n on the set S.

It is easy to see that d is a metric. We justify here only the triangular
inequality. Let p, q, r be three sequences of length n on the set S. If

p(i) # q(i), then r(i) must be distinct from at least one of p(i) and q(/).
Therefore,

{i]0<i<n—1andp(i)#q(i)}

C {ilo<isn—Tlandp(i)Zr(}U{i[0<i<n—1landr(i)#4g

which implies the triangular inequality.
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Example
For x € R" and y € R" the Euclidean metric is the mapping

d2(x,y) =

The first two conditions of Definition 7 are obviously satisfied.
To prove the third inequality, let x,y,z € R". Choosing a; = x; — y; and
b;j = y; — z; for 1 < i < n in Minkowski's inequality implies

n

Z(X" —z)? < Z(Xi -y + Z(Yi - z)?,
i=1 i=1

i=1

which amounts to d(x,z) < d(x,y) + d(y,z). Thus, we conclude that d

is indeed a metric on R". )
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We use frequently use the notions of closed sphere and open sphere.
Definition

Let (S, d) be a metric space. The closed sphere centered in x € S of
radius r is the set

Bulx,r] = {y € Sld(x,y) < r}.
The open sphere centered in x € S of radius r is the set

Ba(x,r) ={y € Sld(x,y) < r}.
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Definition

Let (S, d) be a metric space. The diameter of a subset U of S is the

number diams 4(U) = sup{d(x,y) | x,y € U}. The set U is bounded if

diams 4(U) is finite.
The diameter of the metric space (S, d) is the number

diams g = sup{d(x,y) | x,y € S}.

If the metric space is clear from the context, then we denote the diameter

of a subset U just by diam(U).

If (S,d) is a finite metric space, then diams 4 = max{d(x,y) | x,y € S}.
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A mapping d : S x S — R can be extended to the set of subsets of S
by defining d(U, V) as

d(U,V)=inf{d(u,v) | ue Uand v e V}

for U,V € P(S).

Observe that, even if d is a metric, then its extension is not, in general, a
metric on P(S) because it does not satisfy the triangular inequality.
Instead, we can show that for every U, V, W we have

d(U, W) < d(U, V) + diam(V) + d(V, W).
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Indeed, by the definition of d(U, V) and d(V, W), for every € > 0, there

exist ue U, v,v € V, and w € W such that

d(U, V) < d(u,v) < d(U, V) + &,
d(V, W) < d(v',w) < d(V, W)+ &.

By the triangular axiom, we have
d(u,w) < d(u,v)+d(v,V)+d(V, w).

Hence,
d(u,w) < d(U, V) +diam(V)+ d(V, W)+,

which implies
d(U,W) < d(U,V)+diam(V)+d(V,W)+e

for every € > 0. This yields the needed inequality. 7|
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Definition

Let (S, d) be a metric space. The sets U, V € P(S) are separate if
d(U,V)>o.

We denote the number d({u}, V) = inf{d(u,v) | v € V} by d(u, V). It
is clear that u € V implies d(u, V) = 0.
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The notion of dissimilarity is a generalization of the notion of metric.
Definition

A dissimilarity on a set S is a function d : $> — R satisfying the
following conditions:

e d(x,x)=0forall x € S;

e d(x,y)=d(y,x) for all x,y € S.
The pair (S, d) is a dissimilarity space.
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A related concept is the notion of similarity.
Definition

A similarity on a set S is a function s : S — Rq satisfying the following
conditions:

@ s(x,y) <s(x,x)=1forall x,y €S,

o s(x,y) =s(y,x) forall x,y € S.
The pair (S, s) is a similarity space.
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Example

Let d : S> — Rx( be a metric on the set S. Then s : S — R~q defined
by s(x,y) = 279 for x,y € S is a dissimilarity, such that s(x,x) = 1
for every x,y € S.
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Definition

A seminorm on an F-linear space V is a mapping v : V — R that
satisfies the following conditions:

e v(x+y) < v(x)+ v(y) (subadditivity), and

e v(ax) = |a|lv(x) (positive homogeneity),
for x,y € V and a € F.

v

By taking a = 0 in the second condition of the definition we have v(0) =0
for every seminorm on a real or complex space.
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Theorem

If V is a real or complex linear space and v : V. — R is a seminorm on V/,
then

v(x —y) = [v(x) —v(y)l,

forx,y € V. |
Proof.
We have v(x) < v(x —y) + v(y), so
v(x) —v(y) <v(x—y). (2)
Since v(x —y) = | — 1|u(y — x) > v(y) — v(x) we have
— (v(x) — v(y)) < v(x) — v(y). (3)
The Inequalities (2) and (3) give the desired inequality. O
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Corollary
If p: V — R is a seminorm on V/, then p(x) > 0 forx € V.

Proof.
By choosing y = 0 we have v(x) > |v(x)| > 0. O
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Definition
Let F=(F,{0,1,+,—,-}) be the real or the complex field. A norm on an
F-linear space V is a seminorm v : V — R such that v(x) = 0 implies

x=0forxe V.
The pair (V,v) is referred to as a normed linear space.
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Example

The set of real-valued continuous functions defined on the interval [—1,1]
is a real linear space. The addition of two such functions f, g, is defined
by (f + g)(x) = f(x) + g(x) for x € [-1, 1]; the multiplication of f by a
scalar a € R is (af )(x) = af(x) for x € [-1,1].

Define v(f) = sup{|f(x)| | x € [-1,1]}. Since |f(x)| < v(f) and

lg(x)| < v(g) for x € [-1,1]}, it follows that

|(f + )| < |F(X)] + [g()] < w(f) +v(g). Thus,

v(f +g) < v(f) +v(g).

We denote v(f) by || f ||.
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Theorem

For p > 1, the function vp : R" — R>q defined by

n
Vp(X1,.. ., Xn) = Z\x;]” ,
i=1

where x = (x1,...,xn) € R", is a norm on R".
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Proof

We must prove that v, satisfies the conditions of the definition of norms
and that v,(x) = 0 implies x = 0.

Let x = (x1,...,%n), ¥ = (¥1,.--,¥n) € R". Minkowski's inequality
applied to the nonnegative numbers a; = |x;| and b; = |y;| amounts to

(Z(w ¥ |y,-|>P>p < (Z |x,-|P> p+ (Z |y,-|P> y
i=1 i=1 i=1

Since |x; + yi| < |xi| + |yi| for every i, we have

(Zux,- +y,-|)P)p < (Z |x,-|P> 4 (Z |y,-|P> y
i=1 i=1 =1

that is, vp(x +y) < vp(x) + vp(y). Thus, v, is a norm on
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Example

for x = (xq,. ..

The mapping v; : R” — R given by

vi(x) = x| + [xo| + - + [xal,

,Xn) € R™. vy is a norm on R".

Prof. Dan A. Simovici
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Example
A special norm on R” is the function v, : R” — R given by

Voo(x) = max{|x;| | 1 < i< n}

for x = (x1,...,x,) € R™.
We start from the inequality

i + yil < x|+ |yil < Voo(X) + veo(y)
for every i, 1 < i < n. This implies

Voo(Xx +y) = max{|x;i + yi| | 1 <7< n} < voo(X)+ vooly),

which gives the desired inequality.
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Example

This norm can be regarded as a limit case of the norms v,. Indeed, let

x € R" and let M = max{|xj| | 1 <i< n}=|xy|="--=]|xg| for some
l1,..., 0k, where 1 < 0y,..., 0, < n. Here x;,,...,x, are the components
of x that have the maximal absolute value and k > 1. We can write

lim vy(x) = lim M an(my %: lim M(k)? = M,

p—00 p—00 — M
=

which justifies the notation v.

%
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We use the alternative notation || x ||, for vp(x). We refer || x ||2 as the
Euclidean norm of x and we denote this norm simply by || x || when there
is no risk of confusion.

%
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Example

For p > 1, let £, be the set that consists of sequences of real numbers

x = (xo, X1, - ..) such that the series > °/ |xj|P is convergent. We can
show that £, is a linear space.

Let x,y € ¢, be two sequences in /,. Using Minkowski's inequality we have

Z\X,er,lp Z(IXIIH}/, Z!XII”JrZ\yI )

i=0

which shows that x +y € /. It is immediate that x € ¢, implies ax € ¢,
for every a€ R and x € /.
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The following statement shows that any norm defined on a linear space
generates a metric on the space.

Theorem

Each norm v : V. — R>q on a real linear space V' generates a metric on
the set V defined by d,(x,y) =v(x —y) forx,y € V.

Proof.

Note that if d,(x,y) = v(x —y) = 0, it follows that x —y = 0; that is,
x=y.

The symmetry of d, is obvious and so we need to verify only the triangular
axiom. Let x,y,z € L. Applying the subaditivity of norms we have we have

vix—2)=vix—y+y—2z)<vix—y)+viy—2z)

or, equivalently, d,(x,2z) < d,(x,y) + d,(y, z), for every x,y,z € L, which
concludes the argument. O

v
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Observe that the norm v can be expressed using d,, as
v(x) = d,(x,0)

for x € V.

For p > 1, then d,, denotes the metric d,, induced by the norm v, on the
linear space R” known as the Minkowski metric.

If p =2, we have the Euclidean metric on R" given by

n

d(x,y) = | Y I —yilP = | D (x5 — i)
i=1

i=1

%
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For p =1, we have

d(xy) = xi —yil.
i=1

This metric is known also as the city-block metric.
The norm v, generates the metric dy, given by

doo(X,y) = max{lx; —yi| | 1<i<

also known as the Chebyshev metric.

Prof. Dan A. Simovici CS724: Topics in Algorithms Norms and Ini
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A representation of these metrics can be seen below for the special case of
R?. If x = (xp,x1) and y = (yo, y1), then da(x,y) is the length of the
hypotenuse of the right triangle and di(x,y) is the sum of the lengths of
the two legs of the triangle.

A

y = (vo,¥1)

x = (xp, x1) (v, x1)

%
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Theorem

(Projections on Closed Sets Theorem) Let U be a closed subset of R"
such that U # () and let xq € R" — U. Then, there exists x; € U such that
|| x —xo [|2=] x1 — x0 ||2 for every x € U.

%
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Proof

Let d = inf{|| x —xo [|l2| x € U} and let U, = UN B (xo,d + %). Note
that the sets form a descending sequence of bounded and closed sets
Uy2U22---2U, 2. Since U is compact, (1,51 Un # 0. Let

X1 € ﬂ@l U,. Since U, C U for every n, it follows that x; € U.

Note that || x; — Xq |[2< d + % for every n because

x1eU,=UNB (Xo,d+ %) This implies ” X1 — Xo H2< d QH X — X ”2
for every x € U.

%
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Lemma

Let a1,...,a, be n positive numbers. If p and q are two positive numbers
such that p < q, then

1 1
(af +- - +af)r > (af +-- +a7)7.
Proof: Let f : R*® — R be the function defined by
1
f(r)=(al+ - +ap)"
Since | ,
Inf(r) = n(aj + -—i—a,,),
r
it follows that
f'try 1 1 ajlnai+---+ajlna
= _ r . r -.a n r.
f(r) r? (a1 + +a")+r aj+---
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Proof cont'd

To prove that f'(r) < 0, it suffices to show that

ajlna; +---+aplna, < In(af +---+ a})
aj+---+ap = r

This last inequality is easily seen to be equivalent to

n

aI éal
E - ~In — - <0,
i:1al+...+an al+...+an

which holds because

forl <i<n.

%
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Theorem

Let p and q be two positive numbers such that p < q. For every u € R”,
we have || u [lo>I| u |

Proof.

This statement follows immediately from previous Lemma. [

%
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Corollary

Let p, g be two positive numbers such that p < q. For every x,y € R", we
have dy(x,y) = dg(x,y).

Proof.

This statement follows immediately from the previous Theorem. O
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Example

For p =1 and g = 2 the inequality of the Theorem becomes

which is equivalent to

X
n n

%
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Theorem

Let p > 1. For every x € R" we have

X floo<ll X [lp< 7 [} X [loo -

Proof.

Starting from the definition of v, we have

“ z 1 1
Ix o= (D 1xilP ] <np max |xi| =n || x oo -
i=1

1<i<n

The first inequality is immediate. Ol
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Corollary

Let p and q be two numbers such that p,q > 1. There exist two constants
c,d € Ryq such that

cIxllg<l x llp< d [l x llq

for x € R".

Proof.

Since || X ||oo<|| X ||p and || x ||g< 1 || X ||oo, it follows that
|| x lg< n || x ||p. Exchanging the roles of p and g, we have
[ x flp< nllx |lq, so

1
—xlla<llx flo<n [l x llq

for every x € R". Ol
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Corollary

For every x,y € R" and p > 1, we have dx(x,y) < dp(x,y) < ndx(x,y).
Further, for p,q > 1, there exist c,d € R~ such that

cdg(x,y) < dp(x,y) < cdg(x,y)

for x,y € R".
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If p < g, then the closed sphere de(x, r) is included in the closed sphere
Bq,(x,r). For example, we have

Bd1(07 1) - de(ov 1) - Bdoo(()? 1)'

In (a) - (c) we represent the closed spheres By, (0, 1), By, (0,1), and
B, (0,1).
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Theorem

Let x1,...,Xm and y1,...,ym be 2m nonnegative numbers such that
Smixi=>.",yi=1and let p and q be two positive numbers such that
I, 1
E a = 1. We have
mo11
P.,q
SR/
j=1
Proof.
1 1 1 1
The Holder inequality applied to x{", ..., x5 and y;', ..., yn yields the
needed inequality
DY <D %) y=1
j=1 j=1 j=1

(4 |
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