CS724: Topics in Algorithms Singular Values Slide Set 8

Prof. Dan A. Simovici

Introduction

2 Singular Values and Singular Vectors

The singular value decomposition has been described as the "Swiss Army knife of matrix decompositions" due to its many applications in the study of matrices; from our point of view, singular value decomposition is relevant for dimensionality reduction techniques in data mining.

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix which is unitarily diagonalizable. There exists a diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n}$ and a unitary matrix $X \in \mathbb{C}^{n \times n}$ such that $A = XDX^H$; equivalently, we have AX = XD. If we denote the columns of X by $\mathbf{x}_1, \ldots, \mathbf{x}_n$, then $A\mathbf{x}_i = d_i\mathbf{x}_i$, which shows that \mathbf{x}_i is a unit eigenvector that corresponds to the eigenvalue d_i for $1 \leqslant i \leqslant n$. Also, we have

$$A = (\mathbf{x}_{1} \cdots \mathbf{x}_{n}) \operatorname{diag}(d_{1}, \dots, d_{n}) \begin{pmatrix} \mathbf{x}_{1}^{H} \\ \vdots \\ \mathbf{x}_{n}^{H} \end{pmatrix}$$
$$= d_{1}\mathbf{x}_{1}\mathbf{x}_{1}^{H} + \dots + d_{n}\mathbf{x}_{n}\mathbf{x}_{n}^{H}.$$

This is the *spectral decomposition of A*. Note that $rank(\mathbf{x}_i\mathbf{x}_i^H) = 1$ for $1 \leq i \leq n$.

The SVD theorem extends this decomposition to rectangular matrices.

Theorem

(SVD Theorem) If $A \in \mathbb{C}^{m \times n}$ is a matrix and rank(A) = r, then A can be factored as $A = UDV^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices,

$$D = \begin{pmatrix} \sigma_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2 & 0 & & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_r & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \in \mathbb{C}^{m \times n},$$

and $\sigma_1 \geqslant \ldots \geqslant \sigma_r$ are real positive numbers.

Proof

The square matrix $A^{\mathsf{H}}A \in \mathbb{C}^{n \times n}$ has the same rank as the matrix A and is positive semidefinite. Therefore, there are r positive eigenvalues of this matrix, denoted by $\sigma_1^2, \ldots, \sigma_r^2$, where $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be the corresponding pairwise orthogonal, unit eigenvectors in \mathbb{C}^n and let

$$V_1=(\mathbf{v}_1 \cdots \mathbf{v}_r),$$

 $V = (\mathbf{v}_1 \cdots \mathbf{v}_r \mathbf{v}_{r+1} \cdots \mathbf{v}_n)$ be the matrix obtained by completing the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ to an orthogonal basis for \mathbb{C}^n , and let $V_2 = (\mathbf{v}_{r+1} \cdots \mathbf{v}_n)$. We can write $V = (V_1 \ V_2)$.

Note that we have $A^{\mathsf{H}}A\mathbf{v}_i = \sigma_i^2\mathbf{v}_i$ for $1 \leqslant i \leqslant r$.

Proof cont'd

The equalities $A^{\mathsf{H}}A\mathbf{v}_i = \sigma_i^2\mathbf{v}_i$ for $1 \leqslant i \leqslant r$ involving the eigenvectors can now be written as

$$A^{\mathsf{H}}AV_1=V_1E^2,$$

where $E = diag(\sigma_1, \ldots, \sigma_r)$.

Define $U_1=AV_1E^{-1}\in\mathbb{C}^{m imes r}.$ We have $U_1^{ extsf{H}}=E^{-1}V_1^{ extsf{H}}A^{ extsf{H}},$ so

$$U_1^{\mathsf{H}}U_1 = E^{-1}V_1^{\mathsf{H}}A^{\mathsf{H}}AV_1E^{-1} = E^{-1}V_1^{\mathsf{H}}V_1E^2E^{-1} = I_r,$$

which shows that the columns of U_1 are pairwise orthogonal unit vectors. Consequently, $U_1^{\rm H}AV_1E^{-1}=I_r$, so $U_1^{\rm H}AV_1=E$.

Proof cont'd

If $U_1=(\boldsymbol{u}_1 \cdots, \boldsymbol{u}_r)$, let $U_2=(\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_m)$ be the matrix whose columns constitute the extension of the set $\{\boldsymbol{u}_1 \cdots, \boldsymbol{u}_r\}$ to an orthogonal basis of \mathbb{C}^m . Define $U\in\mathbb{C}^{m\times m}$ as $U=(U_1\ U_2)$. Note that

which is the desired decomposition.

Observe that in the SVD described above known as the *full SVD* of A, the diagonal matrix D has the same format as A, while both U and V are square unitary matrices.

Definition

Let $A \in \mathbb{C}^{m \times n}$ be a matrix. A number $\sigma \in \mathbb{R}_{>0}$ is a *singular value* of A if there exists a pair of vectors $(\boldsymbol{u}, \boldsymbol{v}) \in \mathbb{C}^m \times \mathbb{C}^n$ such that

$$A\mathbf{v} = \sigma \mathbf{u} \text{ and } A^{\mathsf{H}}\mathbf{u} = \sigma \mathbf{v}.$$
 (1)

The vector \mathbf{u} is the *left singular vector* and \mathbf{v} is the *right singular vector* associated to the singular value σ .

Note that if $(\boldsymbol{u}, \boldsymbol{v})$ is a pair of vectors associated to σ , then $(a\boldsymbol{u}, a\boldsymbol{v})$ is also a pair of vectors associated with σ for every $a \in \mathbb{C}$.

Let $A \in \mathbb{C}^{m \times n}$ and let $A = UDV^{\mathsf{H}}$, where $U \in \mathbb{C}^{m \times m}$, $D = \mathrm{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathbb{C}^{m \times n}$ and $V \in \mathbb{C}^{n \times n}$. Note that

$$A\mathbf{v}_{j} = UDV^{\mathsf{H}}\mathbf{v}_{j} = UD\mathbf{e}_{j}$$

(because V is a unitary matrix)
 $= \sigma_{j}U\mathbf{e}_{j} = \sigma_{j}\mathbf{u}_{j}$

and

$$A^{\mathsf{H}} oldsymbol{u}_j = VD^{\mathsf{H}} U^{\mathsf{H}} oldsymbol{u}_j = VDU^{\mathsf{H}} oldsymbol{u}_j$$
 $VD oldsymbol{e}_j$
(because U is a unitary matrix)
 $V oldsymbol{e}_i = \sigma_i oldsymbol{v}_i$.

Thus, the j^{th} column of the matrix U, \mathbf{u}_j and the j^{th} column of the matrix V, \mathbf{v}_j are left and right singular vectors, respectively, associated to the singular value σ_j .

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix and let $A = UDV^H$ be the singular value decomposition of A. If $\|\cdot\|$ is a unitarily invariant norm, then

$$||A|| = ||D|| = ||diag(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)||$$
.

Proof.

This statement follows from the fact that the matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.

In other words, the value of a unitarily invariant norm of a matrix depends only on its singular values. As we saw, $\|\cdot\|_2$ and $\|\cdot\|_F$ are unitarily invariant. Therefore, the Frobenius norm can be written as

$$\parallel A \parallel_F = \sqrt{\sum_{i=1}^r \sigma_r^2}.$$

Definition

Two matrices $A, B \in \mathbb{C}^{m \times n}$ are unitarily equivalent (denoted by $A \equiv_u B$) if there exist two unitary matrices W_1 and W_2 such that $A = W_1^H B W_2$. Clearly, if $A \sim_u B$, then $A \equiv_u B$.

Theorem

Let A and B be two matrices in $\mathbb{C}^{m \times n}$. If A and B are unitarily equivalent, then they have the same singular values.

Proof

Suppose that $A \equiv_u B$, that is, $A = W_1^H B W_2$ for some unitary matrices W_1 and W_2 . If A has the SVD $A = U^H \mathrm{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) V$, then

$$B = W_1 A W_2^H = (W_1 U^H) \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)(V W_2^H).$$

Since W_1U^H and VW_2^H are both unitary matrices, it follows that the singular values of B are the same as the singular values of A.

Let $\mathbf{v} \in \mathbb{C}^n$ be an eigenvector of the matrix A^HA that corresponds to a non-zero, positive eigenvalue σ^2 , that is, $A^HA\mathbf{v} = \sigma^2\mathbf{v}$. Define $\mathbf{u} = \frac{1}{2}A\mathbf{v}$. We have $A\mathbf{v} = \sigma \mathbf{u}$. Also,

$$A^{\mathsf{H}}\boldsymbol{u} = A^{\mathsf{H}}\left(\frac{1}{\sigma}A\boldsymbol{v}\right) = \sigma\boldsymbol{v}.$$

This implies $AA^{H}\mathbf{u} = \sigma^{2}\mathbf{u}$, so \mathbf{u} is an eigenvector of AA^{H} that corresponds to the same eigenvalue σ^{2} .

Conversely, if $\boldsymbol{u} \in \mathbb{C}^m$ is an eigenvector of the matrix AA^{H} that corresponds to a non-zero, positive eigenvalue σ^2 , we have $AA^{\mathrm{H}}\boldsymbol{u} = \sigma^2\boldsymbol{u}$. Thus, if $\boldsymbol{v} = \frac{1}{\sigma}A\boldsymbol{u}$ we have $A\boldsymbol{v} = \sigma\boldsymbol{u}$ and \boldsymbol{v} is an eigenvector of $A^{\mathrm{H}}A$ for the eigenvalue σ^2 .

The Courant-Fisher Theorem for eigenvalues allows the formulation of a similar result for singular values.

Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_k \geqslant \cdots$ is the non-increasing sequence of singular values of A, then

$$\begin{array}{lll} \sigma_k & = & \min_{\dim(S)=n-k+1} \max\{\parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \in S \text{ and } \parallel \mathbf{x} \parallel_2 = 1\} \\ \sigma_k & = & \max_{\dim(T)=k} \min\{\parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \in T \text{ and } \parallel \mathbf{x} \parallel_2 = 1\}, \end{array}$$

where S and T range over subspaces of \mathbb{C}^n .

Proof

We give the argument only for the second equality of the theorem; the first can be shown in a similar manner.

We saw that σ_k equals the $k^{\rm th}$ largest absolute value of the eigenvalue $|\lambda_k|$ of the matrix $A^{\rm H}A$. By Courant-Fisher Theorem, we have

$$\begin{array}{lll} \lambda_k & = & \displaystyle \max_{\dim(T) = k} \min_{\mathbf{x}} \{\mathbf{x}^\mathsf{H} A^\mathsf{H} A \mathbf{x} \mid \mathbf{x} \in T \text{ and } \parallel \mathbf{x} \parallel_2 = 1\} \\ & = & \displaystyle \max_{\dim(T) = k} \min_{\mathbf{x}} \{ \parallel A \mathbf{x} \parallel_2^2 \mid \mathbf{x} \in T \text{ and } \parallel \mathbf{x} \parallel_2 = 1\}, \end{array}$$

which implies the second equality of the theorem.

Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_k \geqslant \cdots$ is the non-increasing sequence of singular values of A, then

$$\begin{split} \sigma_k &= & \min_{\boldsymbol{w}_1, \dots, \boldsymbol{w}_{k-1}} \max\{ \parallel A\boldsymbol{x} \parallel_2 \mid \boldsymbol{x} \perp \boldsymbol{w}_1, \dots, \boldsymbol{x} \perp \boldsymbol{w}_{k-1} \text{ and } \parallel \boldsymbol{x} \parallel_2 = 1 \} \\ &= & \max_{\boldsymbol{w}_1, \dots, \boldsymbol{w}_{n-k}} \min\{ \parallel A\boldsymbol{x} \parallel_2 \mid \boldsymbol{x} \perp \boldsymbol{w}_1, \dots, \boldsymbol{x} \perp \boldsymbol{w}_{n-k} \text{ and } \parallel \boldsymbol{x} \parallel_2 = 1 \}. \end{split}$$

Corollary

The smallest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\min\{\parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \in \mathbb{C}^n \text{ and } \parallel \mathbf{x} \parallel_2 = 1\}.$$

The largest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\max\{\parallel A\pmb{x}\parallel_2 \mid \pmb{x}\in\mathbb{C}^n \ and \ \parallel \pmb{x}\parallel_2=1\}.$$

The SVD theorem can also be proven by induction on $q=\min\{m,n\}$. In the base case, q=1, we have $A\in\mathbb{C}^{1\times 1}$, or $A\in\mathbb{C}^{m\times 1}$, or $A\in\mathbb{C}^{1\times n}$. Suppose, for example, that $A=\pmb{a}\in\mathbb{C}^{m\times 1}$, where

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$$

and let $a = \parallel \mathbf{a} \parallel_2$. We seek $U \in \mathbb{C}^{m \times m}$, $V = (v) \in \mathbb{C}^{1 \times 1}$ such that

$$\mathbf{a} = UD\mathbf{v},$$

where $D \in \mathbb{C}^{m \times 1}$ is

$$D = \begin{pmatrix} a \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{C}^{m \times 1}.$$

The role of the matrix U is played by any unitary matrix which has the first column equal to

$$\begin{pmatrix} \frac{\underline{a_1}}{a} \\ \frac{\underline{a_2}}{a} \\ \vdots \\ \frac{\underline{a_n}}{a} \end{pmatrix},$$

and we can adopt v = 1. The remaining base subcases can be treated in a similar manner.

Suppose now that the statement holds when at least one of the numbers m and n is less than q and let us prove the assertion when at least one of m and n is less than q+1.

Let \mathbf{u}_1 be a unit eigenvector of AA^{H} that corresponds to the eigenvalue σ_1^2 . We have:

$$AA^{\mathsf{H}}\boldsymbol{u}_{1}=\sigma_{1}^{2}\boldsymbol{u}.$$

Define $\mathbf{v}_1 = \frac{1}{\sigma_1} A^{\mathsf{H}} \mathbf{u}_1$. Note that:

$$\| \mathbf{v}_1 \|^2 = \mathbf{v}_1^{\mathsf{H}} \mathbf{v}_1 = \frac{1}{\sigma_1^2} \mathbf{u}_1^{\mathsf{H}} A A^{\mathsf{H}} \mathbf{u}_1$$

= $\mathbf{u}_1^{\mathsf{H}} \mathbf{u}_1 = \| \mathbf{u}_1 \|^2 = 1$.

Also, we have:

$$A\mathbf{v}_1 = \frac{1}{\sigma_1}AA^{\mathsf{H}}\mathbf{u}_1 = \sigma_1\mathbf{u}_1,$$

which shows that $(\mathbf{v}_1, \mathbf{u}_1)$ is a pair of singular vectors corresponding to the singular value σ_1 .

We have also

$$oldsymbol{u}_1^{\scriptscriptstyle\mathsf{H}} A^{\scriptscriptstyle\mathsf{H}} oldsymbol{v}_1 = rac{1}{\sigma_1} oldsymbol{u}_1^{\scriptscriptstyle\mathsf{H}} A A^{\scriptscriptstyle\mathsf{H}} oldsymbol{u}_1 = \sigma_1.$$

Define $U = (\mathbf{u}_1 \ U_1)$ and $V = (\mathbf{v}_1 \ V_1)$ as unitary matrices having \mathbf{u}_1 and \mathbf{v}_1 as their first columns, respectively. Then,

$$U^{\mathsf{H}}A^{\mathsf{H}}V = \begin{pmatrix} \mathbf{u}_{1}^{\mathsf{H}} \\ U_{1}^{\mathsf{H}} \end{pmatrix} A^{\mathsf{H}} \begin{pmatrix} \mathbf{v}_{1} & V_{1} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{u}_{1}^{\mathsf{H}}A^{\mathsf{H}} \\ U_{1}^{\mathsf{H}}A^{\mathsf{H}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} & V_{1} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{u}_{1}^{\mathsf{H}}A^{\mathsf{H}}\mathbf{v}_{1} & \mathbf{u}_{1}^{\mathsf{H}}AV_{1} \\ U_{1}^{\mathsf{H}}A\mathbf{v}_{1} & U_{1}^{\mathsf{H}}AV_{1} \end{pmatrix}$$

Since U is a unitary matrix every column of U_1 is orthogonal to \boldsymbol{u}_1 . Therefore,

$$U_1^{\mathsf{H}} A \mathbf{v}_1 = rac{1}{\sigma_1} U_1^{\mathsf{H}} A A^{\mathsf{H}} \mathbf{u}_1 = \sigma_1 U_1^{\mathsf{H}} \mathbf{u}_1 = \mathbf{0},$$

and, similarly,

$$\mathbf{u}_1^{\mathsf{H}} A^{\mathsf{H}} V_1 = \sigma_1 \mathbf{v}_1^{\mathsf{H}} V_1 = \mathbf{0}',$$

because v_1 is orthogonal on all columns of V_1 . Thus,

$$U^{\mathsf{H}}AV = \begin{pmatrix} \sigma_1 & \mathbf{0}' \\ \mathbf{0} & U_1^{\mathsf{H}}AV_1 \end{pmatrix}.$$

The matrix $U_1^{\mathsf{H}}AV_1$ has fewer rows and columns than $U^{\mathsf{H}}AV$, so we can apply the inductive hypothesis to $B=U_1^{\mathsf{H}}AV_1$. Therefore, by the inductive hypothesis, B can be written as $B=XDY^{\mathsf{H}}$, where X and Y are unitary matrices and D is a diagonal matrix.

This allows us to write

$$U^{\mathsf{H}} A V = \begin{pmatrix} \sigma_1 & \mathbf{0}' \\ \mathbf{0} & X D Y^{\mathsf{H}} \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{0}' \\ \mathbf{0} & X \end{pmatrix} \begin{pmatrix} \sigma_1 & \mathbf{0}' \\ \mathbf{0} & D \end{pmatrix} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Y^{\mathsf{H}} \end{pmatrix}.$$

Since the matrices

$$\begin{pmatrix} 1 & \mathbf{0}' \\ \mathbf{0} & X \end{pmatrix} \text{ and } \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & Y^{\mathrm{H}} \end{pmatrix}$$

are unitary, we obtain the desired conclusion.

If $A \in \mathbb{C}^{n \times n}$ is an invertible matrix and σ is a singular value of A, then $\frac{1}{\sigma}$ is a singular value of the matrix A^{-1} .

Reminder

Let

$$m{a} = egin{pmatrix} a_1 \ dots \ a_n \end{pmatrix} \in \mathbb{C}^n - \{ m{0} \}.$$

Recall that the matrix $\mathbf{a}\mathbf{a}^H$ has the same non-zero eigenvalues as the matrix $\mathbf{a}^H\mathbf{a}$. Since

$$oldsymbol{a}^{\mathsf{H}}oldsymbol{a}=ar{a}_{1}a_{1}+\cdots+ar{a}_{n}a_{n}\in\mathbb{C}$$

is a scalar, its unique eigenvalue is $|a_1|^2 + \cdots + |a_n|^2 = ||\boldsymbol{a}||^2$, hence the matrix $\boldsymbol{a}\boldsymbol{a}^H$ has a unique eigenvalue is $||\boldsymbol{a}||^2$.

Let

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

be a non-zero vector is \mathbb{C}^n , which can also be regarded as a matrix in $\mathbb{C}^{n\times 1}$. The square of a singular value of A is an eigenvalue of the matrix

$$m{a}^{\mathsf{H}}m{a} = egin{pmatrix} ar{a}_1a_1 & \cdots & ar{a}_na_1 \ ar{a}_1a_2 & \cdots & ar{a}_na_2 \ dots & \cdots & dots \ ar{a}_1a_n & \cdots & ar{a}_na_n \end{pmatrix}$$

and we have seen that the unique non-zero eigenvalue of this matrix is $\|a\|_2^2$. Thus, the unique singular value of a is $\|a\|_2$.

Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

The matrices AA^H and A^HA are given by:

$$AA^{\mathsf{H}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \text{ and } A^{\mathsf{H}}A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

The eigenvalues of A^HA are the roots of the polynomial $\lambda^2-4\lambda+3$, and therefore, they are $\lambda_1=3$ and $\lambda_2=1$. The eigenvalues of AA^H are 3, 1 and 0.

Unit eigenvectors of A^HA that correspond to 3 and 1 are

$$\mathbf{v}_1 = \alpha_1 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}$$
 and $\mathbf{v}_2 = \alpha_2 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$,

respectively, where $\alpha_i \in \{-1, 1\}$ for i = 1, 2.

Unit eigenvectors of AA^H that correspond to 3, 1 and 0 are:

$$\mathbf{\textit{u}}_1 = \beta_1 \begin{pmatrix} \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \end{pmatrix}, \mathbf{\textit{u}}_2 = \beta_2 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, \mathbf{\textit{u}}_3 = \beta_3 \begin{pmatrix} \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix},$$

respectively, where $\beta_i \in \{-1, 1\}$ for i = 1, 2, 3.

The choice of the columns of the matrices U and V must be done such that for a pair of eigenvectors (u,v) that correspond to a singular values σ we have $\mathbf{v} = \frac{1}{\sigma}A^{\mathsf{H}}\mathbf{u}$ or, equivalently, $\mathbf{u} = \frac{1}{\sigma}A\mathbf{v}$. For instance, if we choose $\alpha_1 = \alpha_2 = 1$, then

$$\mathbf{v}_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix},$$

 $\boldsymbol{u}_1 = \frac{1}{\sqrt{3}} A \boldsymbol{v}_1$ and $\boldsymbol{u}_2 = A \boldsymbol{v}_2$, that is,

$$\mathbf{\textit{u}}_1 = \begin{pmatrix} \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \end{pmatrix}, \mathbf{\textit{u}}_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix},$$

which means that $\beta_1 = 1$ and $\beta_2 = -1$; the value of β_3 that corresponds to the eigenvalue of 0 can be chosen arbitrarily.

Thus, an SVD of A is:

$$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

A variant of the SVD Decomposition Theorem is given next.

Corollary

(The Thin SVD Decomposition Corollary) Let $A \in \mathbb{C}^{m \times n}$ be a matrix having non-zero singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$, where $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$ and $r \leqslant \min\{m, n\}$. Then, A can be factored as $A = UDV^H$, where $U \in \mathbb{C}^{m \times r}$ and $V \in \mathbb{C}^{n \times r}$ are matrices having orthonormal sets of columns and D is the diagonal matrix

$$D = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{pmatrix}.$$

Proof.

The statement is an immediate consequence of the theorem.

The decomposition described above is known as a *thin SVD* decomposition of the matrix A.

Example

The thin SVD decomposition of the matrix A

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

is

$$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{3} & 0 \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

Since ${\it U}$ and ${\it V}$ in the thin SVD have orthonormal columns it is easy to see that

$$U^{\mathsf{H}}U = V^{\mathsf{H}}V = I_{p}. \tag{2}$$

Lemma

Let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix, where $D = \text{diag}(\sigma_1, \dots, \sigma_r)$ and $\sigma_1 \geqslant \dots \geqslant \sigma_r$. Then, we have $||D||_2 = \sigma_1$, and $||D||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$.

Proof.

By the definition of $||D||_2$ we have:

$$||D||_2 = \max\{||D\mathbf{x}||_2 | ||\mathbf{x}|| = 1\} = \max\left\{\sqrt{\sum_{i=1}^r \sigma_i^2 |x_i|^2} \left| \sum_{i=1}^n |x_i|^2 = 1\right\}.$$

Since $\sum_{i=1}^{n} |x_i|^2 = 1$, we have: $\sum_{i=1}^{r} \sigma_i^2 |x_i|^2 \leqslant \sigma_1^2 \left(\sum_{i=1}^{r} |x_i|^2\right) \leqslant \sigma_1^2$. It follows that

$$\max \left\{ \sqrt{\sum_{i=1}^{r} \sigma_i^2 |x_i|^2} \; \middle| \; \sum_{i=1}^{n} |x_i|^2 = 1 \right\} = \sigma_1.$$

The second part is immediate.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose singular values are $\sigma_1 \geqslant \cdots \geqslant \sigma_r$. Then $||A||_2 = \sigma_1$, and $||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$.

Proof.

Suppose that the SVD of A is $A = UDV^H$, where U and V are unitary matrices. Then, by previous results, we have:

$$|||A||_2 = |||UDV^H||_2 = |||D||_2 = \sigma_1,$$
 $|||A||_F = |||UDV^H||_F = ||D||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}.$

Corollary

If $A \in \mathbb{C}^{m \times n}$ is a matrix, then $||A||_2 \leqslant ||A||_F \leqslant \sqrt{n} ||A||_2$.

Proof.

Suppose that $\sigma_1(A)$ is the largest of the singular values of A. Then, since

$$||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$
, we have

$$\sigma_1(A) \leqslant \parallel A \parallel_F \leqslant \sqrt{n \max_i \sigma_j(A)^2} = \sigma_1(A)\sqrt{n},$$

which is desired double inequality.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. If the singular values of A are $\sigma_1 \geqslant \cdots \geqslant \sigma_n > 0$, then

$$cond(A) = \frac{\sigma_1}{\sigma_n}.$$

Proof.

We have shown that $||A||_2 = \sigma_1$. Since the singular values of A^{-1} are

$$\frac{1}{\sigma_n} \geqslant \cdots \geqslant \frac{1}{\sigma_1}$$

it follows that $||A^{-1}||_2 = \frac{1}{\sigma_n}$. The desired equality follows immediately.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be an invertible matrix. We have $cond(A^HA) = (cond(A))^2$.

Proof.

Let σ be a singular value of A and let u, v be two left and right singular vectors corresponding to σ , respectively. We have

$$A\mathbf{v} = \sigma \mathbf{u}$$
 and $A^{\mathsf{H}}\mathbf{u} = \sigma \mathbf{v}$.

This implies $A^{H}A\mathbf{v} = \sigma A^{H}\mathbf{u} = \sigma^{2}\mathbf{v}$, which shows that the singular values of the matrix $A^{H}A$ are the squares of the singular values of A, which produces the desired conclusion.

Let $A = UDV^{H}$ be an SVD of A. If we write U and V using their columns as $U = (\mathbf{u}_{1} \cdots \mathbf{u}_{m})$ and $V = (\mathbf{v}_{1} \cdots \mathbf{v}_{n})$, then A can be written as:

$$A = UDV^{H}$$

$$= (\mathbf{u}_{1} \cdots \mathbf{u}_{n}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_{r} & 0 \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1}^{H} \\ \vdots \\ \mathbf{v}_{m}^{H} \end{pmatrix}$$

$$= (\mathbf{u}_{1} \cdots \mathbf{u}_{m}) \begin{pmatrix} \sigma_{1} \mathbf{v}_{1}^{H} \\ \vdots \\ \sigma_{r} \mathbf{v}_{p}^{H} \end{pmatrix}$$

$$= \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{H} + \cdots + \sigma_{r} \mathbf{u}_{r} \mathbf{v}_{p}^{H}.$$

Since $\mathbf{u}_i \in \mathbb{C}^m$ and $\mathbf{v}_i \in \mathbb{C}^n$, each of the matrices $\mathbf{u}_i \mathbf{v}_i^H$ is a $m \times n$ matrix of rank 1. Thus, the SVD yields an expression of A as a sum of r matrices of rank 1, where r is the number of non-zero singular values of A.

Theorem

The rank-1 matrices of the form $\mathbf{u}_i \mathbf{v}_i^H$, where $1 \leq i \leq r$ are pairwise orthogonal. Moreover, $\parallel \mathbf{u}_i \mathbf{v}_i^H \parallel_F = 1$ for $1 \leq i \leq r$.

Proof.

For $i \neq j$ and $1 \leqslant i, j \leqslant r$ we have:

$$\operatorname{trace}\left(\boldsymbol{u}_{i}\boldsymbol{v}_{i}^{\mathsf{H}}(\boldsymbol{u}_{j}\boldsymbol{v}_{j}^{\mathsf{H}})^{\mathsf{H}}\right)=\operatorname{trace}\left(\boldsymbol{u}_{i}\boldsymbol{v}_{i}^{\mathsf{H}}\boldsymbol{v}_{j}\boldsymbol{u}_{j}\right)=0,$$

because the vectors \mathbf{v}_i and \mathbf{v}_j are orthogonal. Thus, $(\mathbf{u}_i \mathbf{v}_i^{\mathrm{H}}, \mathbf{u}_j \mathbf{v}_j^{\mathrm{H}}) = 0$. We have

$$|| \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}} ||_{F}^{2} = \operatorname{trace}((\mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}})^{\mathsf{H}} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}})$$

$$= \operatorname{trace}(\mathbf{v}_{i} \mathbf{u}_{i}^{\mathsf{H}} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}}) = 1,$$

because the matrices U and V are unitary.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix that has the singular value decomposition $A = UDV^H$. If rank(A) = r, then the first r columns of U form an orthonormal basis for range(A), and the last n - r columns of V constitute an orthonormal basis for range(A).

Proof

Since both U and V are unitary matrices, it is clear that $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r\}$, the set of the first r columns of U, and $\{\boldsymbol{v}_{r+1},\ldots,\boldsymbol{v}_n\}$, the set of the last n-r columns of V, are linearly independent sets. Thus, we only need to show that $\langle \boldsymbol{u}_1,\ldots,\boldsymbol{u}_r\rangle=\mathrm{range}(A)$ and $\langle \boldsymbol{v}_{r+1},\ldots,\boldsymbol{v}_n\rangle=\mathrm{null}(A)$. We have

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{H}} + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\mathsf{H}}.$$

If $\boldsymbol{t} \in \operatorname{range}(A)$, then $\boldsymbol{t} = A\boldsymbol{s}$ for some $\boldsymbol{s} \in \mathbb{C}^n$. Therefore, $\boldsymbol{t} = \sigma_1 \boldsymbol{u}_1(\boldsymbol{v}_1^{\mathsf{H}}\boldsymbol{s}) + \dots + \sigma_r \boldsymbol{u}_r(\boldsymbol{v}_r^{\mathsf{H}}\boldsymbol{s})$, and, since the every product $\boldsymbol{v}_j^{\mathsf{H}}\boldsymbol{s}$ is a scalar for $1 \leqslant j \leqslant r$, it follows that $\boldsymbol{t} \in \langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_r \rangle$, so $\operatorname{range}(A) \subseteq \langle \boldsymbol{u}_1, \dots, \boldsymbol{u}_r \rangle$.

Proof cont'd

To prove the reverse inclusion note that

$$A\left(\frac{1}{\sigma_i}\mathbf{v}_i\right)=\mathbf{u}_i,$$

for $1 \le i \le r$, due to the orthogonality of the columns of V. Thus, $\langle u_1, \ldots, u_r \rangle = \text{range}(A)$.

Thus, $A\mathbf{v}_j = 0$ for $r+1 \leqslant j \leqslant n$, so $\langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle \subseteq \text{null}(A)$. Conversely, suppose that $A\mathbf{r} = \mathbf{0}$. Since the columns of V form a basis of \mathbb{C}^n we have $\mathbf{r} = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$, so $A\mathbf{r} = a_1A\mathbf{v}_1 + \cdots + a_r\mathbf{v}_r = \mathbf{0}$. The linear independence of $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ implies $a_1 = \cdots = a_r = 0$, so $\mathbf{r} = a_{r+1}\mathbf{v}_{r+1} + \cdots + a_n\mathbf{v}_n$, which shows that $\text{null}(A) \subseteq \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle$. Thus, $\text{null}(A) = \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle$.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix that has the singular value decomposition $A = UDV^H$. If rank(A) = r, then the first r transposed columns of V form an orthonormal basis for the subspace of \mathbb{R}^n generated by the rows of A.

Proof.

This statement follows immediately from the previous theorem applied to A^{H} .

The singular value decomposition of a matrix can be computed in MATLAB using the function svd. To illustrate its use in the simplest form consider the matrix

$$A = \begin{pmatrix} \frac{1}{3} & \frac{4}{3} & \frac{5}{3} \\ \frac{11}{5} & \frac{4}{5} & \frac{5}{3} \\ \frac{1}{7} & \frac{4}{7} & \frac{5}{7} \\ \frac{1}{9} & \frac{4}{9} & \frac{5}{9} \end{pmatrix},$$

defined in MATLAB by

 $A = [1/3 \ 4/3 \ 5/3 \ ; \ 11/5 \ 4/5 \ 3 \ ; \ 1/7 \ 4/7 \ 5/7 \ ; \ 1/9 \ 4/9 \ 5/9]$

A call the svd(A) function yields a vector containing the singular values of A, as in

>> svd(A)

ans =

4.3674

1.2034

0.0000

It is interesting to note that rank(A) = 2 since the last column of A is the sum of the first two columns. Thus, we would expect to see two non-zero singular values.

To compute $||A||_2$, which equals the largest singular value of A we can use $\max(\text{svd}(A))$.

Another variant of the svd function, [U,S,V] = svd(A) yields a diagonal matrix S, of the same format as A and with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that $A = USV^H$. For the matrix A shown above we obtain:

Example

BOSTON

The "economical form" of the svd function is

If $A \in \mathbb{R}^{m \times n}$ and m > n, only the first n columns of U are computed and $S \in \mathbb{R}^{n \times n}$. If m < n only the first m columns of V are computed.

Example

Starting from the matrix

$$A = \begin{pmatrix} 18 & 8 & 20 \\ -4 & 20 & 1 \\ 25 & 8 & 27 \\ 9 & 4 & 10 \end{pmatrix} \in \mathbb{R}^{4 \times 3}$$

a call the economical variant of the svd function yields

Example

```
>> [U,D,V] = svd(A,'econ')
U =
  -0.5717 -0.0211
                       0.8095
  -0.0721 -0.9933 -0.0669
  -0.7656 0.1133 -0.4685
  -0.2859
            -0.0105 -0.3474
S =
  49.0923
                            0
        0
            20.2471
                            0
        0
                  0
                       0.0000
V =
  -0.6461
             0.3127
                       0.6963
  -0.2706
            -0.9468
                       0.1741
  -0.7137
             0.0760
                     -0.6963
```

BOSTON

The function svapprox given below computes the successive approximations $B(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}$ of a matrix $A \in \mathbb{R}^{m \times n}$ having the SVD $A = UDV^{\mathsf{H}}$ and produces a three-dimensional array $C \in \mathbb{R}^{m \times n \times r}$, where r is the numerical rank of A and C(:,:,k) = B(k) for $1 \leq k \leq r$.


```
function [C] = svapprox(A)
%SVAPPROX computes the successive approximations
%
      of A using the singular component decomposition.
     The number of approximations equals the
          numerical rank of A.
% determine the format of A and its numerical rank
[m. n] = size(A):
r = rank(A, 10^{-5});
% compute the SVD of A
[U.D.V] = svd(A):
C = zeros(m.n.r):
C(:,:,1) = D(1,1) * U(:,1) * (V(:,1))';
for k=2:r
   C(:,:,k) = D(k,k) * U(:,k) * (V(:,k))' + C(:,:,k-1);
end;
```


In the next figure we have an image of the digit 4 created from a pgm file that contains the representation of this digit.

The numerical rank of the matrix A introduced in the example mentioned above is 8. Therefore, the array C computed by C = svapprox(A) consists of 8 matrices. To represent these matrices in the pgm format we cast the components of C to integers of the type uint8 using $D = \min(16, \text{uint8}(C))$. Thus, D(:,:,j) contains the rounded j^{th} approximation of A.

The images for the first four approximations are represented next:

(a) (b) (c) (d)

Successive Approximations of A.

Note that the digit four is easily recognizable beginning with the second approximation.

