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Matrices are natural tools for organizing data sets.
Let such a data set consist of a sequence E of m vectors of Rn,
(uuu1, . . . ,uuum). The j th components (uuui )j of these vectors correspond to the
values of a random variable Vj , where 1 ≤ j ≤ n.
This data series will be represented as a matrix having m rows uuu′1, . . . ,uuu

′
m

and n columns vvv1, . . . ,vvvn. We refer to matrices obtained in this manner as
sample matrices. The number m is the size of the sample.
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Each row vector uuu′i corresponds to an experiment Ei in the series of
experiments E = (E1, . . . ,Em); the experiment Ei consists of measuring
the n components of uuu′i = (xi1, . . . , xin), as shown below.

vvv1 · · · vvvn
uuu′1 x11 · · · x1n
uuu′2 x21 · · · x2n
...

...
...

...
uuu′m xm1 · · · xmn

The column vector

vvv j =


x1j
x2j
...

xmj


represents the measurements of the j th variable Vj of the experiment, for
1 ≤ j ≤ n, as shown below. These variables are usually referred to as
attributes or features of the series E.
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Definition

The sample matrix of E is the matrix X ∈ Cm×n given by

X =

uuu′1
...

uuu′m

 = (vvv1 · · · vvvn).

Clearly, we have (vvv j)i = (uuu′i )j = xij for 1 ≤ i ≤ m and 1 ≤ j ≤ n. If E is
clear from context, the subscript E is omitted. We will use both
representations of the sample matrix and will write

X =

uuu′1
...

uuu′m

 = (vvv1 · · · vvvn),

when we are interested in the vectors that represent results of experiments
and

X = (vvv1, . . . ,vvvn),

when we need to work with vectors that represent the values of variables.
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Pairwise distances between the row vectors of the sample matrix
X ∈ Rm×n can be computed with the MATLAB function pdist(X). This

form of the function returns a vector DDD having m(m−1)
2 components

corresponding to
(m
2

)
pairs of observations arranged in the order

d2(uuu
′
2,uuu

′
1), d2(uuu

′
3,uuu

′
1), d2(uuu

′
3,uuu

′
2), . . ., that is the order of the lower triangle

of the distance matrix.

Example

Let X be the data matrix

X =


1 4 5
2 3 7
5 1 4
6 2 4


The function call D = pdist(X) returns

D =

2.4495 6.0000 5.4772 7.3485 5.0990 5.0990
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Example

Equivalently, a distance matrix can be obtained using the auxiliary
function squareform, by writing E = squareform(D), which yields

E =

0 2.4495 6.0000 5.4772

2.4495 0 7.3485 5.0990

6.0000 7.3485 0 5.0990

5.4772 5.0990 5.0990 0
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There are versions of pdist that can return other distances by using a
second string parameter. For instance, pdist(X,’cityblock’) computes
d1(xxx i ,xxx j) and pdist(X,’cebyshev’) computes d∞(xxx i ,xxx j). In general,
the Minkowski’s distance dp can be computed using
D = pdist(X,’minkowski’,p).
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A linear data mapping for a data sequence (uuu1, . . . ,uuum) ∈ Seqm(Rn) is the
morphism r : Rn −→ Rq. If R ∈ Rn×q is the matrix that represents this
mapping, then r(uuui ) = Ruuui for 1 ≤ i ≤ m.
If q < n, we refer to r as a linear dimensionality-reduction mapping. The
reduced data matrix is given by

r(XE) =

 r(uuu1)
′

...
r(uuum)

′

 =

 (Ruuu1)
′

...
(Ruuum)

′

 = XER ∈ Rm×q
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The reduced data set r(XE) has new variables Y1, . . . ,Yq. We denote this
by writing

(Y1, . . . ,Yq) = r(V1, . . . ,Vn).

The mapping r is a linear feature selection mapping if R ∈ {0, 1}q×n is a
0/1-matrix having exactly one unit in every row and at most one unit in
every column.
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Definition

Let (uuu1, . . . ,uuum) be a series of observations in Rn. The sample mean of
this sequence is the vector

ũuu =
1

m

m∑
i=1

uuui ∈ Rn.

The series is centered if ũuu = 000n.

Note that the series (uuu1 − ũuu, . . . ,uuum − ũuu) is always centered.
If n = 1, the series of observation is reduced to a vector vvv ∈ Rm.
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Definition

The standard deviation of a vector vvv ∈ Rm is the number

svvv =

√√√√ 1

m − 1

m∑
i=1

(vi − v)2,

where v is the mean of the components of vvv .
The standard deviation of sample matrix X ∈ Rm×n, where
X = (vvv1 · · · vvvn) is the row sss = (svvv1 , . . . , svvvn).

If the measurement scale for the variables V1, . . . ,Vn involved in the
experiment are very different due to different measurement units, some
variables may inappropriately influence the analysis process. Therefore, the
columns of the data sample matrix need to be scaled in order to make. To
scale a matrix we need to replace each column vvv i by

1
svvvi
vvv i . This will yield

a matrix having the standard deviation of each column equal to 1.
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Next, we examine the effect of centering on a sample matrix.

Theorem

Let X ∈ Rm×n is a sample matrix

X =

uuu′1
...

uuu′m

 .

The sample matrix that corresponds to the centered sequence is

X̂ = (Im − 1

m
111m111

′
m)X .
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Proof

The matrix that corresponds to the centered sequence is

X̂ =

uuu′1 − ũuu′

...
uuu′m − ũuu′

 = X − 111mũuu
′.

It follows that

X̂ = X − 111mũuu
′ = X − 1

m
111m111

′
mX =

(
Im − 1

m
111m111

′
m

)
X ,

which yields the desired equality.
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By the theorem on Slide 12 to center a data matrix X ∈ Rm×n we need to
multiply it at the left by the centering matrix

Hm = Im − 1

m
111m111

′
m ∈ Rm×m,

that is, X̂ = HmX . Note that Hm = Im − 1
mJm. It is easy to see that Hm is

both symmetric and idempotent. Since

Hm111m = 111m − 1

m
111m111

′
m111m = 000,

it follows that Hm has the eigenvalue 0.
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If X ∈ Rm×n is a matrix the standard deviations are computed in
MATLAB using the function std(X), which returns an n-dimensional row sss
containing the square roots of the sample variances of the columns of U,
that is, their standard deviations. The means of the columns of X is
computed in MATLAB using the function mean(X).
The MATLAB function Z = zscore(X) computes a centered and scaled
version of a data sample matrix having the same format as X .
If X is a matrix, then z-scores are computed using the mean and standard
deviation along each column of X . The columns of Z have sample mean
zero and sample standard deviation one (unless a column of X is constant,
in which case that column of Z is constant at 0). If we use the format

[Z,mu,sigma] = zscore(X)

also returns the mean vector is returned to mu and the vector of standard
deviations to sigma.
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Example

Let X be the matrix

X =

1 12 77

3 15 80

2 15 75

5 18 98

The means and the standard deviations of the columns of X are obtained
as follows.

>> m = mean(X)

m =

2.7500 15.0000 82.5000

>> s=std(X)

s =

1.7078 2.4495 10.5357
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Example

Finally, to compute together the mean, the standard deviation, and the
matrix Z , we write

>> [Z,m,s]=zscore(A)

Z =

-1.0247 -1.2247 -0.5220

0.1464 0 -0.2373

-0.4392 0 -0.7119

1.3175 1.2247 1.4712

m =

2.7500 15.0000 82.5000

s =

1.7078 2.4495 10.5357
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Definition

Let uuu = (uuu1, . . . ,uuum) be a sequence of vectors in Rn. The inertia of this
sequence relative to a vector zzz ∈ Rn is the number

Izzz(uuu) =
m∑
j=1

∥ uuuj − zzz ∥22 .
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Theorem

(Huygens’ Inertia Theorem) Let uuu = (uuu1, . . . ,uuum) ∈ Seqm(Rn). We
have

Izzz(uuu)− Iũuu(uuu) = m ∥ ũuu − zzz ∥22,

for every zzz ∈ Rn.
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Proof
The inertia of uuu relative to ũuu is

Iũuu(uuu) =
m∑
j=1

∥ uuuj − ũuu ∥22

=
m∑
j=1

(uuuj − ũuu)′(uuuj − ũuu)

=
m∑
j=1

(uuu′juuuj − ũuu′uuuj − uuu′jũuu + ũuu′ũuu).

Similarly, we have

Izzz(uuu) =
m∑
j=1

(uuu′juuuj − zzz ′uuuj − uuu′jzzz + zzz ′zzz).

This allows us to write

Izzz(uuu)− Iũuu(uuu) =
m∑
j=1

(ũuu − zzz)′uuuj +
m∑
j=1

uuu′j(ũuu − zzz) + zzz ′zzz − ũuu′ũuu

= (ũuu − zzz)′
m∑
i=1

uuuj +

 m∑
j=1

uuuj

′

(ũuu − zzz) +m(zzz ′zzz − ũuu′ũuu)

= m(ũuu − zzz)′ũuu +mũuu′(ũuu − zzz) +m(zzz ′zzz − ũuu′ũuu)

= m ∥ ũuu − zzz ∥22,
which is the equality of the theorem.
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Corollary

Let uuu = (uuu1, . . . ,uuum) ∈ Seqm(Rn). The minimal value of the inertia Izzz(uuu)
is achieved for zzz = ũuu.
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Let uuu and www be two vectors in Rm, where m > 1, having the means u and
w , and the standard deviations su and sv , respectively.

Definition

The covariance coefficient of uuu and www is the number

cov(uuu,www) =
1

m − 1

m−1∑
i=1

(ui − u)(wi − w)

The correlation coefficient of uuu and www is the number

ρ(uuu,www) =
cov(uuu,www)

susw
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By Cauchy-Schwarz Inequality, we have∣∣∣∣∣
m∑
i=1

(ui − u)(wi − w)

∣∣∣∣∣ ≤
√√√√ m∑

i=1

(ui − u)2 ·

√√√√ m∑
i=1

(wi − w)2,

which implies
−1 ≤ ρ(uuu,www) ≤ 1.
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Definition

Let X ∈ Rm×n be a sample matrix and let X̂ be the centered sample
matrix corresponding to X . The sample covariance matrix is the matrix

cov(X ) =
1

m − 1
X̂ ′X̂ ∈ Rn×n.

Note that if X is centered, cov(X ) = 1
m−1X

′X .
If n = 1 the matrix is reduced to one column X = (vvv) and

cov(vvv) =
1

m − 1
vvv ′vvv ∈ R.

In this case we refer to cov(vvv) as the variance of vvv ; this number is denoted
by var(vvv).
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If X = (vvv1 · · · vvvn), then (cov(X ))ij = cov(vvv i ,vvv j) for 1 ≤ i , j ≤ n. The
covariance matrix can be written also as

cov(X ) =
1

m − 1
X ′HmHmX =

1

m − 1
X ′HmX .

The sample correlation matrix is the matrix corr(X ) given by
(corr(X ))ij = ρ(vvv i ,vvv j) for 1 ≤ i , j ≤ n.
If X is centered, then cov(X ) = 1

m−1X
′X . Clearly, the covariance matrix is

a symmetric, positive semidefinite matrix. Furthermore, the rank of
cov(X ) is the same as the rank of X̂ and, since m, the size of the sample
is usually much larger than n we are often justified in assuming that
rank(cov(X )) = n.
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Let X = (vvv1 · · · vvvn) ∈ Rm×n be a sample matrix. Note that

Hmvvvp = (Im − 1

m
111m111

′
m)vvvp = vvvp −

1

m
111m111

′
mvvvp = vvvp − ap111m,

because 1
m111

′
mvvvp = ap for 1 ≤ p ≤ n, where ũuu′ = (a1, . . . , an).

The covariance matrix can be written as

cov(X ) =
1

m − 1
(vvv1 · · · vvvn)′H ′

mHm(vvv1 · · · vvvn)

=
1

m − 1
(Hmvvv1 · · · Hmvvvn)

′(Hmvvv1 · · · Hmvvvn),

which implies that the (p, q)-entry of this matrix is

cov(X )pq =
1

m − 1
(Hmvvvp)

′(Hmvvvq) =
1

m − 1
(vvvp − ap111m)

′(vvvq − aq111m).
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For a diagonal element we have

cov(X )pp =
1

m − 1

m∑
i=1

(vvvq − aq111m)
2
i ,

which shows that cov(X )pp measures the scattering of the values of the
pth variable around the corresponding component ai of the mean sample.
This quantity is known as the pth variance and is denoted by σ2

p for
1 ≤ p ≤ n. The total variance tvar(X ) of X is trace(cov(X )).
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For p ̸= q the element cpq of the matrix C = cov(X ) is referred to as the
(p, q)-covariance. We have:

(cov(X ))pq =
1

m − 1
(vvvp − ap111m)

′(vvvq − aq111m)

=
1

m

(
vvv ′pvvvq − ap111

′
mvvvq − aqvvv

′
p111m +mapaq

)
= vvv ′pvvvq − apaq.

If cov(X )pq = 0, then we say that the variables Vp and Vq are
uncorrelated.
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The behavior of the covariance matrix with respect to multiplication by
orthogonal matrices is discussed next.

Theorem

Let

X =

xxx1
...

xxxm


be a centered sample matrix and let R ∈ Rn×n be an orthogonal matrix. If
Z ∈ Rm×n is a matrix such that Z = XR, then Z is centered,
cov(Z ) = R ′cov(X )R and tvar(Z ) = tvar(X ).
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Proof

By writing explicitly the rows of the matrix Z ,

Z =

zzz1
...

zzzm

 ,

we have zzz i = xxx iR for 1 ≤ i ≤ m because Z = XR. Note that the sample
mean of Z is

Z̃ =
1

m
111′mZ =

1

m
111′mXR = X̃R,

where X̃ is the sample mean of X . Since X is centered, we have
Z̃ = X̃ = 000′n, so Z is centered as well.
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Proof cont’d

The covariance matrix of Z is

cov(Z ) =
1

m − 1
Z ′Z =

1

m − 1
R ′X ′XR = R ′cov(X )R.

Since the trace of two similar matrices are equal and cov(Z ) is similar to
cov(X ), the total variance of Z equals the total variance of X , that is,

tvar(Z ) = trace(cov(Z )) = trace(cov(X )) = tvar(X ).
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Since the covariance matrix of a centered matrix X ,
cov(X ) = 1

m−1X
′X ∈ Rn×n is symmetric, cov(X ) is orthonormally

diagonalizable, so there exists an orthogonal matrix R ∈ Rn×n such that
R ′cov(X )R = D, which corresponds to a sample matrix Z = XR. Let
cov(Z ) = D = diag(d1, . . . , dn). The number dp is the sample variance of
the pth variable of the data matrix, and the covariances of the form
cov(Z )pq with p ̸= q are 0. From a statistical point of view, this means
that the components p and q are uncorrelated. Without loss of generality
we can assume that d1 ≥ · · · ≥ dn.
The columns of the matrix Z correspond to the new variables Z1, . . . ,Zn.
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Often the variables of a data sample matrix are not expressed using
different units. In this case, the components of the covariance have no
meaning because variables that have large numerical values have a
disproportionate influence compared to variables that have small numerical
value. For example, if a spatial variable is measured in millimeters, its
values are three order of magnitude larger than the values of a variable
expressed in meters.
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Biplots offer a succinct and powerful way of representing graphically the
elements of a matrix using two sets of vectors (hence, the term biplot).
Let A ∈ Rm×n be a matrix that can be written as a product, A = LR,
where L ∈ Rm×r , R ∈ Rr×n are the left and the right factors, respectively.
Suppose that

L =

 lll ′1
...
lll ′m

 and R = (rrr1 · · · rrrn)

where lll1, . . . , lllm, rrr1, . . . , rrrn are m + n vectors in Rr . Then, each element
aij of A can be regarded as a inner product of two vectors in Rr :

aij = lll ′irrr j (1)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Such matrix factorizations are common in linear algebra and we have
already discussed a number of factorization techniques (full-rank
decompositions, QR decompositions, etc.) Starting from the factorization
A = LR new factorizations of A can be built as A = (LK ′)(R ′K−1)′ for
every invertible matrix K ∈ Rr×r . Therefore, the above representation for
A is not unique in general.
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Thus, to use a biplot for a representation of the relations between the rows
www1, . . . ,wwwn of A one could choose R such that RR ′ = Ir , which yields

AA′ = LRR ′L′ = LL′.

This implies www ′
iwww j = lll ′i lll j for 1 ≤ i , j ≤ n. Taking i = j we have

∥ www ′
i ∥=∥ lll ′i ∥, which, in turn, implies

∠(www ′
i ,www

′
j) = ∠(lll ′i , lll

′
j).

A similar choice can be made for the columns of A by imposing the
requirement L′L = Ir , which implies A′A = R ′R.
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The case when the rank r of the matrix A is 2 is especially interesting
because we can draw the vectors lll1, . . . , lllm, rrr1, . . . , rrrn to obtain an exact
two-dimensional representation of A, as we show in the next example.

Example

Let

A =


18 8 20
−4 20 1
25 8 27
9 4 10


be a matrix of rank 2 in R4×3 that can be written as A = LR, where

L =


2 4
−2 3
3 5
1 2

 and R =

(
5 −4 4
2 4 3

)
.

Each vector lll i corresponds to a row of A and each vector rrr j to a column
of A.
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Example

The vectors that help us with the representation of A are

lll1 =

(
2
4

)
, lll2 =

(
−2
3

)
, lll3 =

(
3
5

)
, lll4 =

(
1
2

)
and

rrr1 =

(
5
2

)
, rrr2 =

(
−4
4

)
, rrr3 =

(
4
3

)
.
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Representation of the vectors lll i and rrr j

1

�
�
�
��>

@
@

@
@

@I
+

+

+

+ rrr1

rrr2 rrr3
lll4

lll2

lll3

lll1

-

6

Each vector lll i corresponds to an observation and each vector rrr j to a
variable.
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When we can factor a sample data matrix X as X = LR a column of
the right factor rrr j is referred to as the biplot axis and corresponds to
a variable Vj .
Each vector lll ′i represents an observation in the sample matrix.
The magnitude of projection of lll i on the biplot axis rrr j is

∥ lll i ∥2 cos∠(lll i , rrr j) =
lll ′irrr j

∥ rrr j ∥2
=

aij
∥ rrr j ∥2

.

Therefore, if we choose the unit of measure on the axis rrr j the number
1

∥rrr j∥2 we can read the values of the entries aij directly on the axis rrr j .
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For instance, the unit along the biplot axis is 1
∥rrr3∥2 = 0.2. It is also clear

that if two axis of the biplot point roughly in the same direction, the
corresponding variables will show a strong correlation.

Prof. Dan A. Simovici CS724: Topics in Algorithms Data Sample Matrices Slide Set 9 41 / 51



In general, the rank of the data matrix A is larger than 2. In this case,
approximative representations of A can be obtained by using the thin
singular value decomposition of matrices.
Let A be a matrix of rank r and let

A = UDV ′ =
r∑

i=1

σiuuuivvv
′
i ,

be the thin SVD, where U ∈ Rm×r and V ∈ Rn×r are matrices of rank r
(and, therefore, full-rank matrices) having orthonormal sets of columns.
Here U = (uuu1 · · · uuur ) and V = (vvv1 · · · vvv r ).
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The matrix D containing singular values can be split between U and V by
defining L = U

√
D and R =

√
DV ′. The usefulness of the SVD for biplots

is based on the Eckhart-Young Theorem which stipulates that the best
approximation of A in the sense of the matrix norm ||| · |||2 in the class of
matrix of rank k is the matrix defined by

B(k) =
k∑

i=1

σiuuuivvv
′
i .

The same matrix B(k) is the best approximation of A in the sense of
Frobenius norm. The extent of the deficiency of this approximation is
measured by ∥ A− B(k) ∥2F= σ2

k+1 + · · ·+ σ2
r . Since

∥ A ∥2F= σ2
1 + · · ·+ σ2

r , an absolute measure of the quality of the
approximation of A by B(k) is

qk = 1−
∥ A− B(k) ∥2F

∥ A ∥2F
=

σ2
1 + · · ·+ σ2

k

σ2
1 + · · ·+ σ2

r
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In the special case, k = 2, the quality of the approximation is

q2 =
σ2
1 + σ2

2

σ2
1 + · · ·+ σ2

r

and it is desirable that this number is as close as one as possible. The
rank-2 approximation of A is useful because we can apply biplots to the
visualization of A.
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Example

Let A ∈ R5×3 be the matrix defined by

A =


1 0 0
0 1 0
1 1 1
1 1 0
0 0 1

 .

It is easy to see that the rank of this matrix is 3 and, using MATLAB , a
singular value decomposition can be obtained as shown on the next silde.
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Example cont’d

Example

U =

0.2787 -0.2176 -0.7071 -0.2996 -0.5341

0.2787 -0.2176 0.7071 -0.2996 -0.5341

0.7138 0.3398 -0.0000 -0.4037 0.4605

0.5573 -0.4352 -0.0000 0.7033 0.0736

0.1565 0.7749 0.0000 0.4037 -0.4605

S =

2.3583 0 0

0 1.1994 0

0 0 1.0000

0 0 0

0 0 0

V =

0.6572 -0.2610 -0.7071

0.6572 -0.2610 0.7071

0.3690 0.9294 0.0000
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The rank-2 approximation of this matrix is

B(2) = σ1uuu1vvv
H
1 + σ2uuu2vvv

H
2,

and is computed in MATLAB using

>> B2 = 2.3583* U(:,1) * V(:,1)’ + 1.1994 * U(:,2) * V(:,2)’

B2 =

0.5000 0.5000 -0.0000

0.5000 0.5000 -0.0000

1.0000 1.0000 1.0000

1.0000 1.0000 -0.0000

-0.0000 -0.0000 1.0000
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Since
B(2) = (

√
σ1uuu1)(

√
σ1vvv1)

H + (
√
σ2uuu2)(

√
σ2vvv2)

H,

B(2) can be written as

B(2) =


0.4280 −0.2383
0.4280 −0.2383
1.0962 0.3721
0.8559 −0.4766
0.2403 0.8487


(

1.0092 1.0092 0.5667
−0.2858 −0.2858 1.0179

)
.
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The biplot that represents matrix A is shown in next
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The quality of the approximation of A is

q2 =
2.35832 + 1.19942

2.35832 + 1.19942 + 1
= 0.875

The “allocation” of singular values among the columns of the matrices U
and V may lead to biplots that have distinct properties. For example, we
could write

B(2) = (σ1uuu1)vvv
H
1 + (σ2uuu2)vvv

H
2,

or
B(2) = uuu1(σ1vvv1)

H + uuu2(σ2vvv2)
H.

The first allocation leads to the factorization B(2) = LR, where

L =


0.6572 −0.2610
0.6572 −0.2610
1.6834 0.4075
1.3144 −0.5219
0.3690 0.9294



and
R =

(
0.65720.65720.3690 − 0.2610 − 0.26100.9294

)
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The second yields the factors

L =
(
0.2787 −0.21760.2787 −0.21760.7138 0.33980.5573 −0.43520.1565 0.7749

)
and

R =

(
1.5499 1.5499 0.8703
−0.3130 −0.3130 1.1147

)

The first variant leads to a representation, where the distances between
the vectors lll i approximate the Euclidean distances between rows, while for
the second variant, the cosine of angles between the vectors rrr j
approximate the correlations between variables.
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