1. Let \(f(x) = 2x \) if \(x \) is a perfect square; \(f(x) = 2x + 1 \) otherwise. Show that \(f \) is primitive recursive.

2. Let \(\pi(x) \) be the number of primes that are less or equal to \(x \). Show that \(\pi \) is primitive recursive.

3. Let \(\text{RP}(x, y) \) be true if \(x \) and \(y \) are relatively prime (that is, their greatest common divisor is 1). Show that \(\text{RP}(x, y) \) is primitive recursive.

4. Let \(\text{gcd}(x, y) \) be the greatest common divisor of \(x \) and \(y \). Prove that \(\text{gcd} \) is primitive recursive.

5. Let \(\text{lcm}(x, y) \) be the least common multiple of \(x \) and \(y \). Prove that \(\text{lcm} \) is primitive recursive.