1. Prove that for every recursive enumerable set S there exists a computable function f such that $S = \text{Dom}(f) = \text{Ran}(f)$.

Hint: modify one of the S programs presented in class in relation with this topic.

2. Let $f(x_1, \ldots, x_n)$ be a function computed by program P. Suppose that for some primitive recursive function $g(x_1, \ldots, x_n)$

$$\text{STP}(x_1, \ldots, x_n, \#(P), g(x_1, \ldots, x_n))$$

is true for all x_1, \ldots, x_n. Show that f is primitive recursive.

3. Let A, B be sets. Prove or disprove:

 (a) if $A \cup B$ is r.e. then both A and B are r.e;

 (b) if $A \subseteq B$ and B is r.e., then A is r.e.

4. Given a partially computable function $f(x, y)$ prove that there exists a primitive recursive function $g(u, v)$ such that

$$\Phi_{g(u,v)}(x) = f(\Phi_u(x), \Phi_v(x)).$$

5. Let $K_0 = \{ \langle x, y \rangle \mid x \in W_y \}$. Show that K_0 is recursively enumerable.