1. Define the predicate \(P_k(x) \) as

\[
P_k(x) = \begin{cases}
1 & \text{if } \Phi_x(x) = k, \\
0 & \text{otherwise.}
\end{cases}
\]

Prove that \(P(x) \) is not computable.

2. Let \(A, B \) be two subsets of \(\mathbb{N} \). Define the sets \(A \oplus B \) and \(A \otimes B \) as

\[
A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\},
\]

\[
A \otimes B = \{(x, y) \mid x \in A \text{ and } y \in B\}.
\]

Prove that

(a) \(A \oplus B \) is recursive if and only if \(A \) and \(B \) are both recursive;

(b) if \(A \) and \(B \) are non-empty, then \(A \otimes B \) is recursive if and only if \(A \) and \(B \) are both recursive.

3. Let \(f : \mathbb{N} \to \mathbb{N} \) be a unary function. Prove that \(f \) is computable if and only if the set \(\{2^x3^y \mid x \in \text{Dom}(f)\} \) is recursively enumerable.

4. If \(A \leq_m B \), prove that \(\overline{A} \leq_m \overline{B} \). Here \(\overline{C} \) is the complement of the set \(A \).

5. Prove that the set \(A = \{x \mid \text{Dom}(\Phi_x) \neq \emptyset\} \) is recursively enumerable but not recursive.