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Properties of Type-2 Grammars

Theorem

Let G = (AN ,AT ,S ,P) be a context-free grammar. If

X0 · · ·Xk−1
n⇒
G
α,

where X0, . . . ,Xk−1 ∈ AN ∪ AT and α ∈ (AN ∪ AT )∗, then we can write

α = α0 · · ·αk−1, where Xi

ni⇒
G
αi for 0 ≤ i ≤ k − 1 and

∑
0≤i≤k−1 ni = n.

Proof.

We use an argument by induction on n, n ≥ 0. For n = 0, we have
αi = Xi for 0 ≤ i ≤ k − 1, and the statement is obviously true; in this
case, n0 = · · · = nk−1 = 0.
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Properties of Type-2 Grammars

Proof cont’d

Assume that the statement is true for derivations of length n, and let

X0 · · ·Xk−1
n+1⇒
G

α.

If X0 · · ·Xk−1
n⇒
G
γ ⇒

G
α, by the inductive hypothesis, we have

γ = γ0 · · · γk−1, where Xi

ni⇒
G
γi for 0 ≤ i ≤ k − 1 and∑

{ni | 0 ≤ i ≤ k − 1} = n.
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Properties of Type-2 Grammars

Proof cont’d

Let Y → β be the production applied in the last step γ ⇒
G
α. Y occurs in

one of the words γ0, . . . , γk−1, say, γj . In this case, we can write
γj = γ′jY γ

′′
j and α can be written as α = α0 · · ·αk−1, where αi = γi for

0 ≤ i ≤ j − 1, and j + 1 ≤ i ≤ k − 1, Xj

nj⇒
G
γj ⇒

G
γ′jβγ

′′
j = αj , which

proves the statement.
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Properties of Type-2 Grammars

Definition

A derivation γ0 ⇒
G
γ1 ⇒

G
· · · ⇒

G
γn in a context-free grammar

G = (AN ,AT , S ,P) is complete if γn ∈ A∗T .

Note that if X0 · · ·Xk−1 ⇒
G
· · · ⇒

G
α is a complete derivation in G , then

every derivation that results from “splitting” this derivation is also
complete.
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Properties of Type-2 Grammars

Example

Let G = (AN ,AT ,S0,P) be a context-free grammar, where
AN = {S0, S1,S2}, AT = {a, b}, and P contains the following productions:

S0 → aS2,S0 → bS1,S1 → a, S1 → aS0,
S1 → bS1S1, S2 → b, S2 → bS0,S2 → aS2S2.
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Properties of Type-2 Grammars

Example cont’d

We prove that L(G ) consists of all nonnull words over {a, b} that contain
an equal number of a’s and b’s. Recall that nX (α) is the number of
occurrences of symbol X in the word α.
We will show by strong induction on p, p ≥ 1, that

1 if na(u) = nb(u) = p, then S0

∗⇒
G

u;

2 if na(u) = nb(u) + 1 = p, then S1

∗⇒
G

u;

3 if nb(u) = na(u) + 1 = p, then S2

∗⇒
G

u.
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Properties of Type-2 Grammars

Example cont’d

In the first case, for p = 1, we have either u = ab or u = ba; hence, we
have either S0 ⇒

G
aS2 ⇒

G
ab or S0 ⇒

G
bS1 ⇒

G
ba.

For the second case, u = a, and we have S1 ⇒
G

a; the third case, for

u = b, is similar.
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Properties of Type-2 Grammars

Example cont’d

Suppose that the statement holds for p ≤ n. Again, we consider three
cases for the word u:

1 na(u) = nb(u) = n + 1;

2 if na(u) = nb(u) + 1 = n + 1;

3 if nb(u) = na(u) + 1 = n + 1.

In the first case, we may have four situations:

11. u = abt, where t ∈ {a, b}∗ and na(t) = nb(t) = n,

12. u = bat, where t ∈ {a, b}∗ and na(t) = nb(t) = n,

13. u = aav with nb(v) = n + 1 and na(v) = n − 1, or

14. u = bbw with na(w) = n + 1 and nb(w) = n − 1.
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Properties of Type-2 Grammars

Example cont’d

By the inductive hypothesis, we have S0

∗⇒
G

t, and therefore, we obtain

one of the following derivations:

S0 ⇒
G

aS2 ⇒
G

abS0

∗⇒
G

abt = u,

S0 ⇒
G

bS1 ⇒
G

baS0

∗⇒
G

bat = u,

for the cases (11) and (12), respectively.
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Properties of Type-2 Grammars

Example cont’d

On the other hand, if u = aav , we can write v = v ′v ′′, where v ′ is the
shortest prefix of v , where the number of bs exceeds the number of as.
Clearly, we must have nb(v ′) = na(v ′) + 1 = n′, and therefore,
nb(v ′′) = na(v ′′) + 1 = n′′, where n′ + n′′ = n + 1. By the inductive

hypothesis, we have S2

∗⇒
G

v ′, S2

∗⇒
G

v ′′; hence,

S0 ⇒
G

aS2 ⇒
G

aaS2S2

∗⇒
G

aav ′v ′′ = u,

which concludes the argument for (13). We leave to the reader the similar
arguments for the remaining cases. This allows us to conclude that every
word that contains an equal number of a’s and b’s belongs to L(G ).
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Properties of Type-2 Grammars

Example cont’d

To prove the reverse inclusion, we justify the following implications:

1 If S0

n⇒
G
α, then na(α) + nS1(α) = nb(α) + nS2(α).

2 If S1

n⇒
G
α, then na(α) + nS1(α) = nb(α) + nS2(α) + 1.

3 If S2

n⇒
G
α, then na(α) + nS1(α) + 1 = nb(α) + nS2(α).

The proof is by strong induction on n, where n ≥ 1. For n = 1, the
verification is immediate. For instance, if S1 ⇒

G
α, we have α = a,

α = aS0, or α = bS1S1; in every case, the equality is satisfied.
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Properties of Type-2 Grammars

Example cont’d

Suppose that the implications hold for derivations no longer than n.

If S0
n+1⇒
G

α, the first production applied in the derivation is S0 → aS2 or

S0 → bS1. In the first case, we have α = aβ, where S2

n⇒
G
β, and by the

inductive hypothesis, we have na(β) + nS1(β) + 1 = nb(β) + nS2(β), so

na(α) + nS1(α) = na(β) + 1 + nS1(β)

= nb(β) + nS2(β)

= nb(α) + nS2(α).

The second case has a similar treatment.
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Properties of Type-2 Grammars

Example cont’d

If S1
n+1⇒
G

α, we have three possibilities.

(a) If the first production of the derivation is S1 → a, then α = a and the
equality corresponding to this case is obviously satisfied.
(b) If the first production is S1 → aS0, we can write α = aβ, where

S0

n⇒
G
β; hence, na(β) + nS1(β) = nb(β) + nS2(β), so

na(α) + nS1(α) = na(β) + 1 + nS1(β)

= nb(β) + nS2(β) + 1

= nb(α) + nS2(α) + 1.
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Properties of Type-2 Grammars

Example cont’d

(c) If the derivation begins with S1 → bS1S1 we can write α = bβγ, where

S1

p⇒
G
β and S1

q⇒
G
γ, where p, q ≤ n. By the inductive hypothesis,

na(β) + nS1(β) = nb(β) + nS2(β) + 1, and
na(γ) + nS1(γ) = nb(γ) + nS2(γ) + 1. Consequently,

na(α) + nS1(α) = na(β) + na(γ) + nS1(β) + nS1(γ)

= nb(β) + nS2(β) + 1 + nb(γ) + nS2(γ) + 1

= nb(α) + nS2(α) + 1.

The case of the derivation S2

∗⇒
G
α can be treated in a similar manner.
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Properties of Type-2 Grammars

Example cont’d

Let u ∈ L(G ). From the existence of the derivation S0

∗⇒
G

u we obtain

na(u) = nb(u), which shows that L(G ) ⊆ {x ∈ {a, b}∗ | na(x) = nb(x)}.
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Closure Properties of the class L2

Theorem

Each of the classes Li of Chomsky’s hierarchy contains the class of finite
languages, for i ∈ {0, 1, 2}.

Proof.

Let L = {u0, . . . , un−1} be a finite, nonempty language over an alphabet
A. The grammar G = ({S},A,S , {S → u0, . . . ,S → un−1}) is of type 3
and, therefore, of type 2, 1, and 0. If L = ∅, then L is generated by the
grammar G = ({S},A,S , {S → S}) that is, again, of type 3.
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Closure Properties of the class L2

Theorem

L2 is closed with respect to union.

Proof.

Suppose that L, L′ are two languages of type 2 that are generated by the
grammars G = (AN ,AT ,S ,P) and G ′ = (A′N ,AT ,S

′,P ′), respectively,
where AN ∩ A′N = ∅.
Consider the grammar
G∪ = (AN ∪ A′N ∪ {S0},AT ,S ,P ∪ P ′ ∪ {S0 → S , S0 → S ′}), where S0 is
a new nonterminal symbol such that S0 6∈ AN ∪ A′N . Note that the
grammar G∪ is of type 2 as the grammars G and G ′. To complete the
proof, we need to show that L ∪ L′ = L(G∪).
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Closure Properties of the class L2

Proof (cont’d)

Let x ∈ L ∪ L′. If x ∈ L, then S
∗⇒
G

x , so S0 ⇒
G∪

S
∗⇒
G∪

x which shows that

x ∈ L(G∪). The case when x ∈ L′ is entirely similar and is left to the
reader. Thus, L ∪ L′ ⊆ L(G∪).
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Closure Properties of the class L2

Proof (cont’d)

Conversely, suppose that x ∈ L(G∪). We have S0

∗⇒
G∪

x . If the first

production applied in this derivation is S0 → S , then the derivation can be

written as S0 ⇒
G∪

S
∗⇒
G∪

x . The last part of this derivation S
∗⇒
G∪

x uses

only productions from P since AN ∩ A′N = ∅ implies P ∩ P ′ = ∅.
Therefore, we have S

∗⇒
G

x , so x ∈ L(G ). Similarly, if the first production

applied is S0 → S ′, then x ∈ L(G ′). Therefore, L(G∪) ⊆ L(G ) ∪ L(G ′),
hence L(G∪) = L(G ) ∪ L(G ′).
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Closure Properties of the class L2

Lemma

The class L2 is closed with respect to the ∗ operation.

Proof.

Let L be a context-free language generated by the type-2 grammar
G = (AN ,AT , S ,P). Suppose that S0 is a new nonterminal symbol and
consider the type-2 grammar
G∗ = (AN ∪ {S0},AT ,S0,P ∪ {S0 → λ,S0 → S0S}). It is easy to verify
that L(G∗) = L∗, so L∗ ∈ L2.
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Closure Properties of the class L2

Lemma

The class L3 is closed with respect to the ∗ operation.

Proof.

Let L ∈ L3 such that L = L(G ), where G = (AN ,AT , S ,P) is a type-3
grammar. Define the set of productions P1 = {X → uS | X → u ∈ P}.
Consider the type-3 grammar

G∗ = (AN ∪ {S0},AT ,S0,P ∪ P1 ∪ {S0 → λ,S0 → S}),

where S0 be a new nonterminal symbol, S0 6∈ AN . It is easy to verify that
L(G∗) = L∗, so L∗ ∈ L3.
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Closure Properties of the class L2

Lemma

The class L2 is closed with respect to the product operation.

Proof.

Let L, L′ be two languages of type 2, and let G = (AN ,AT , S ,P),
G ′ = (A′N ,AT , S

′,P ′) be two grammars of type 2 such that L(G ) = L and
L(G ′) = L′. Without loss of generality, we can assume that AN ∩ A′N = ∅.
If S0 is a new symbol, S0 6∈ AN ∪ A′N , then the grammar
Gp = (AN ∪A′N ∪ {S0},AT , S0,P ∪P ′ ∪ {S0 → SS ′}) is also of type i . We
claim that L(Gp) = LL′.
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Closure Properties of the class L2

Proof (cont’d)

Let x ∈ LL′. We can write x = uv for some u ∈ L and v ∈ L′. By

hypothesis, S
∗⇒
G

u and S ′
∗⇒
G ′ v , so

S0 ⇒
Gp

SS ′
∗⇒
Gp

uS ′
∗⇒
Gp

uv = x .

Thus, x ∈ L(Gp).
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Closure Properties of the class L2

Conversely, suppose that x ∈ Lp. There is a derivation

S0 ⇒
Gp

SS ′
∗⇒
Gp

x .

Since AN and A′N are disjoint sets, the sets of productions P and P ′ are
disjoint. Therefore, the productions of Gp used to transform S into a word
over AT belong to P, while the ones used to rewrite S ′ belong to P ′. Thus,

we can write x = uv , where S
∗⇒
G

u and S ′
∗⇒
G ′ v , which implies x ∈ LL′.
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Leftmost Derivations and Ambiguity

Leftmost Derivations

Definition

Let G = (AN ,AT ,S ,P) be a context-free grammar.
A leftmost derivation is a derivation γ0 ⇒ · · · ⇒ γn in G such that, if the
production applied in deriving γk+1 from γk is Xk → βk , then
γk = γ′kXkγ

′′
k , γk+1 = γ′kβkγ

′′
k and γ′k ∈ A∗T .
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Leftmost Derivations and Ambiguity

The words γk (for 0 ≤ k ≤ n) are referred to as left sentential forms.

If γk = γ′kXkγ
′′
k , where γ′k ∈ A∗T , then γ′k is the closed part of γk ,

while Xkγ
′′
k is the open part of γk .

In a context-free grammar G ,

γ0 ⇒ γ1 ⇒ . . .⇒ γn

is a leftmost derivation if, at every step of this derivation, we always
rewrite the leftmost nonterminal symbol.
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Leftmost Derivations and Ambiguity

Notations

The existence of a leftmost derivation of length n in the context-free

grammar G , γ0 ⇒ γ1 ⇒ . . .⇒ γn, will be denoted by γ0
n⇒

G ,left
γn.

The existence of a leftmost derivation of any length of γ′ from γ in

the same grammar will be denoted by γ
∗⇒

G ,left
γ′.

The existence of a leftmost derivation of positive length of γ′ from γ

will be denoted by γ
+⇒

G ,left
γ′.
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Leftmost Derivations and Ambiguity

Example

Let G = (AN ,AT ,S0,P) be a context-free grammar, where
AN = {S0, S1,S2}, AT = {a, b}, and P contains the following productions:

S0 → aS2,S0 → bS1,S1 → a, S1 → aS0,
S1 → bS1S1, S2 → b, S2 → bS0,S2 → aS2S2.
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Leftmost Derivations and Ambiguity

(Example cont’d)

The derivation

S0 ⇒ bS1 ⇒ bbS1S1 ⇒ bbS1aS0

⇒ bbS1aaS2 ⇒ bbaaaS2 ⇒ bbaaab

is not leftmost since in deriving bbS1aaS2 from bbS1aS0 we do not replace
the leftmost nonterminal S1.
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Leftmost Derivations and Ambiguity

(Example cont’d)

We can transform this derivation into a leftmost derivation by changing
the order in which nonterminals are replaced. Namely, in grammar G , we
have the leftmost derivation

S0 ⇒ bS1 ⇒ bbS1S1 ⇒ bbaS1

⇒ bbaaS0 ⇒ bbaaaS2 ⇒ bbaaab.
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Leftmost Derivations and Ambiguity

Theorem

Let G = (AN ,AT ,S ,P) be a context-free grammar. For every complete
derivation d of length n in G , X ⇒ γ1 ⇒ · · · ⇒ γn, where γn = u ∈ A∗T ,
there is a complete leftmost derivation of length n, using the same
productions as d, that allows us to derive γn from X .
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Leftmost Derivations and Ambiguity

Proof

The argument is by strong induction on n ≥ 1 for leftmost derivations.
For n = 1, the statement is trivially true, since any derivation X ⇒ w1 is a
leftmost derivation.
Suppose that the statement holds for derivations whose length is no more
than n, and let d

X ⇒ γ1 ⇒ · · · ⇒ γn+1

be a derivation of length n + 1. If the first production used in this
derivation is X → w0Xi1w1 · · ·Xik wk , where wi ∈ A∗T for 0 ≤ i ≤ k , then
we can write γn+1 = w0u1w1 · · · ukwk , where dj is a complete derivation

Xij

∗⇒
G

uj of length no greater than n, for 1 ≤ j ≤ k.
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Leftmost Derivations and Ambiguity

(Proof cont’d)

By the inductive hypothesis, for each of these derivations dj , we obtain the

existence of the leftmost derivation d ′j : Xij

∗⇒
G ,left

uj for 1 ≤ j ≤ k , which

uses the same set of productions as dj . Now, we obtain the existence of
the leftmost derivation d ′:

X ⇒ w0Xi1w1Xi2 . . .Xik wk
∗⇒ w0u1w1Xi2 . . .Xik wk (using derivation d ′1)
∗⇒ w0u1w1u2 . . .Xik wk (using derivation d ′2)

...
∗⇒ w0u1w1u2 . . . ukwk (using derivation d ′k),

which concludes our argument.
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Leftmost Derivations and Ambiguity

The Theorem may fail if the derivation is not complete, that is, the final
word is not in A∗T .

Example

Let

G = ({S ,X ,Y ,U,V }, {a, b}, S , {S → XY ,Y → UV ,

X → a,U → b,V → b})

be a context-free grammar. Consider the derivation

S ⇒ XY ⇒ XUV

This derivation is not leftmost, and there is no leftmost derivation in G

such that S
∗⇒
G

XUV .
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Leftmost Derivations and Ambiguity

Corollary

Let G = (AN ,AT ,S ,P) be a context-free grammar. For every complete
derivation d of length n in G , γ0 ⇒ γ1 ⇒ · · · ⇒ γn, where
γ0 ∈ (AN ∪ AT )+ and γn ∈ A∗T , there is a complete leftmost derivation of
length n, using the same productions as d, that allows us to derive γn
from γ0.
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Leftmost Derivations and Ambiguity

Proof

Suppose that γ0 = s0 . . . sk−1, where si ∈ AN ∪ AT for 0 ≤ i ≤ k − 1. By

Theorem 1 we can write γn = u0 · · · uk−1 such that si
∗⇒
G

ui ∈ A∗T for

0 ≤ i ≤ k − 1. Thus, we obtain the existence of the leftmost derivations

si
∗⇒

G ,left
ui for 0 ≤ i ≤ k − 1 that use the same productions as the

corresponding previous derivations. Starting from these derivations we
obtain the leftmost derivation:

γ0 = s0s1 · · · sk−1
∗⇒

G ,left
u0s1 · · · sk−1

∗⇒
G ,left

u0u1 · · · sk−1
...
∗⇒

G ,left
u0u1 · · · uk−1 = γn.
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Leftmost Derivations and Ambiguity

Definition

A context-free grammar G = (AN ,AT , S ,P) is ambiguous if there exists a
word w ∈ A∗T such that there are at least two leftmost derivations from S
to w in G . Otherwise, G is unambiguous.
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Leftmost Derivations and Ambiguity

A context-free language can be generated by both ambiguous and
unambiguous grammars.

Example

Consider the context-free grammars

G1 = ({S}, {a},S , {S → SS ,S → a})

and
G2 = ({S}, {a},S , {S → aS , S → a}).

They both generate the language {an | n ≥ 1}.
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Leftmost Derivations and Ambiguity

(Example cont’d)

They both generate the language {an | n ≥ 1}. Note that in G1 we have
distinct leftmost derivations:

S ⇒
G1

SS ⇒
G1

SSS ⇒
G1

aSS

⇒
G1

aaS ⇒
G1

aaa

and
S ⇒

G1

SS ⇒
G1

aS ⇒
G1

aSS

⇒
G1

aaS ⇒
G1

aaa.

Thus, G1 is an ambiguous grammar.
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Leftmost Derivations and Ambiguity

(Example cont’d)

On other hand, the equivalent grammar G2 is unambiguous, since for every
an, n ≤ 1, we have exactly one derivation:

S ⇒
G2

aS ⇒
G2

a2S · · · ⇒
G2

an.
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Leftmost Derivations and Ambiguity

Since a language may have both an ambiguous and an unambiguous
grammar, it may not be sufficient to examine one grammar to determine
whether or not a language is ambiguous.

Definition

Let L be a context-free language. L is unambiguous if there is an
unambiguous context-free grammar G such that L = L(G ).
L is inherently ambiguous if every context-free grammar G such that
L(G ) = L is ambiguous.

The language {an | n ≥ 1} is unambiguous.
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