Context-Free Grammars (part II.5)

Prof. Dan A. Simovici

UMB

Theorem

For every context-free grammar G, there is a context-free, λ -free grammar G' such that $L(G') = L(G) - \{\lambda\}$.

Proof.

Let $G = (A_N, A_T, S_0, P)$ be a context-free grammar. Consider the sequence U_0, \ldots, U_m, \ldots of subsets of A_N defined by

$$\begin{array}{rcl} U_0 & = & \{X \mid X \in A_N \text{ and } X \to \lambda \in P\}, \\ U_{m+1} & = & U_m \cup \{X \in A_N \mid X \to \alpha \in P \text{ for some } \alpha \in U_m^*\}, \end{array}$$

for $m \in \mathbb{N}$.

Since
$$U_0 \subseteq U_1 \subseteq \cdots \subseteq A_N$$
, there is $k \in \mathbb{N}$ such that $U_k = U_{k+1}$.

A simple argument (by induction on $h \ge 1$) shows that $U_k = U_{k+h}$ for every h > 1.

The base step is immediate.

Suppose that $U_k = U_{k+h}$ and let $X \in U_{k+h+1}$. If $X \in U_{k+h}$, then $X \in U_k$ by the inductive hypothesis. Otherwise, there is a production $X \to \alpha \in P$ such that $\alpha \in U_{k+h}^*$. By the inductive hypothesis, $\alpha \in U_k^*$, so $X \in U_{k+1} = U_k$. Therefore, $U_{k+h+1} = U_k$.

We claim that $X \stackrel{+}{\underset{G}{\Rightarrow}} \lambda$ if and only if $X \in U_k$.

We prove by strong induction on $p \ge 1$ that if $X \stackrel{p}{\rightleftharpoons} \lambda$, then $X \in U_k$.

For p=1, if $X\Rightarrow\limits_G\lambda$, then $X\in U_0$ and $U_0\subseteq U_k$.

Suppose that the statement is true for derivations $X \stackrel{+}{\Longrightarrow} \lambda$ of length no greater than p and let $X \stackrel{p+1}{\Longrightarrow} \lambda$. The first production applied in this derivation must have the form $X \to X_{i_1} \cdots X_{i_q}$; therefore, we have

$$X_{i_1}\cdots X_{i_q} \stackrel{p}{\underset{G}{\Longrightarrow}} \lambda.$$

Hence, $X_{i_\ell} \stackrel{p_\ell}{\xrightarrow{G}} \lambda$, where $p_\ell \leq p$ for $1 \leq \ell \leq q$. By the inductive hypothesis, we have $X_{i_\ell} \in U_k$, so $X_{i_1} \cdots X_{i_q} \in (U_k)^*$, which implies $X \in U_{k+1} = U_k$.

Conversely, it is easy to prove (by induction on n) that for every $X \in U_n$ we have $X \stackrel{+}{\underset{G}{\Rightarrow}} \lambda$. We leave this argument to the reader. From this it follows that if $\theta \in U_k^*$, then $\theta \stackrel{*}{\underset{G}{\Rightarrow}} \lambda$. Consider now the set of productions P', where

 $P' = \{X \to \alpha' \mid \alpha' \neq \lambda, \text{ there is } X \to \alpha \in P \text{ and } \alpha' \text{ is obtained from } \alpha \text{ by erasing 0 or more symbols from } U_k\}.$

If G' is the context-free grammar $G'=(A_N,A_T,S_0,P')$, then $L(G')=L(G)-\{\lambda\}$. Indeed, suppose that $X \stackrel{p}{\underset{G'}{\longrightarrow}} \gamma$. Clearly, $\gamma \neq \lambda$ since G' has no erasure productions. We prove, by strong induction on p, that we have $X \stackrel{*}{\underset{G}{\longrightarrow}} \gamma$.

For p = 0, the statement is trivially true.

Assume that it holds for derivations of length less than or equal to p, and let $X \overset{p+1}{\underset{G'}{\Rightarrow}} \gamma$. If the first production applied in this derivation is

$$X \to X_{i_0} \cdots X_{i_{h-1}}$$
, then $\gamma = \gamma_0 \dots \gamma_{h-1}$, where $X_{i_j} \stackrel{p_j}{\rightleftharpoons} \gamma_j$, $p_j \le p$, for

$$0 \le j \le h-1$$
. By the inductive hypothesis we have $X_{i_j} \stackrel{*}{\underset{G}{\rightleftharpoons}} \gamma_j$ for

$$0 \le j \le h-1.$$

Furthermore, assume that the production $X \to X_{j_0} \cdots X_{j_{h-1}}$ was obtained from the production $X \to \theta_0 X_{j_0} \theta_1 \cdots X_{j_{h-1}} \theta_h$ from P, where $\theta_0, \ldots, \theta_h \in (U_k)^*$. Our previous discussion allows us to infer the existence of the derivations $\theta_q \stackrel{*}{\underset{G}{\longrightarrow}} \lambda$ for $0 \le q \le h$. By combining the derivations obtained above, we have

$$X \quad \underset{G}{\Rightarrow} \quad \theta_0 X_{j_0} \theta_1 \cdots X_{i_{h-1}} \theta_h$$

$$\stackrel{*}{\Rightarrow} \quad X_{j_0} \cdots X_{j_{h-1}}$$

$$\stackrel{*}{\Rightarrow} \quad \gamma_0 \cdots \gamma_{h-1} = \gamma.$$

This implies $L(G') \subseteq L(G) - \{\lambda\}$.

that is, $X \Rightarrow \beta \stackrel{p}{\rightleftharpoons} \gamma$.

 $\gamma
eq \lambda$. We claim that $X \stackrel{*}{\Rightarrow} \gamma$. The argument is by strong induction on $p \geq 0$. The case p=0 is trivially true. Assume that the statement holds for derivations of length of no more than p, and let $X \stackrel{p+1}{\rightleftharpoons} \gamma$, where $\gamma \neq \lambda$.

Let $\beta = X_{j_0} \cdots X_{j_{l-1}}$ be the word that follows X in the previous derivation,

To prove the converse inclusion, consider a derivation $X \stackrel{P}{\rightleftharpoons} \gamma$, where

We can write:

$$\gamma = \gamma_0 \cdots \gamma_{l-1},$$

where $X_{j_m} \stackrel{p_m}{\underset{G}{\rightleftharpoons}} \gamma_m$ and $p_m \leq p$ for $0 \leq m \leq l-1$.

If $\gamma_m \neq \lambda$, by the inductive hypothesis, we have $X_{j_m} \stackrel{*}{\underset{G'}{\longrightarrow}} \gamma_m$. On the other hand, if $\gamma_m = \lambda$, we have $X_{j_m} \in U_k$. Let

$$\{h_0,\ldots,h_{q-1}\}=\{h\ |\ 0\le h\le l-1\ {\rm and}\ \gamma_h\ne\lambda\}.$$

The definition of P' implies that we have the production $X \to X_{j_{h_0}} \cdots X_{j_{h_{q-1}}}$ in P'. Therefore,

$$X \underset{G'}{\Rightarrow} X_{j_{h_0}} \cdots X_{j_{h_{q-1}}} \overset{*}{\underset{G'}{\Rightarrow}} \gamma_{h_0} \cdots \gamma_{h_{q-1}} = \gamma.$$

This implies $L(G) - \{\lambda\} \subseteq L(G')$.

Theorem

If G is a context-free grammar, then there is an equivalent context-free grammar G' such that one of the following two cases occurs:

- if $\lambda \notin L(G)$, then G' is λ -free;
- ② if $\lambda \in L(G)$, then G' contains a unique erasure production $S' \to \lambda$, where S' is the start symbol of G', and S' does not occur in any right member of any production of G'.

Proof

We have shown that for every context-free grammar G there is a context-free, λ -free grammar G_1 such that $L(G_1) = L(G) - \{\lambda\}$. If $\lambda \not\in L(G)$, then the grammars G and G_1 are equivalent, and we can define G' as G_1 . This proves the first case of this theorem. If $\lambda \in L(G)$, by the same theorem, we have the context-free, λ -free grammar $G_1 = (A_N, A_T, S_1, P)$ such that $L(G_1) = L(G) - \{\lambda\}$. Define the grammar G' by

$$G' = (A_N \cup \{S'\}, A_T, S', \{S' \to S_1, S' \to \lambda\} \cup P),$$

where S' is a new nonterminal symbol (i.e., that $S' \not\in A_N$). It is immediate that G' satisfies the conditions of the second case of this Theorem and that $L(G') = L(G_1) \cup \{\lambda\} = L(G)$.

Example

Let $G=(\{S,X,Y,Z\},\{a,b\},S,\{S\to XYZ,X\to YZ,X\to aYb,X\to a,Y\to\lambda,Y\to b,Z\to\lambda,Z\to c\})$ be a context-free grammar that contains erasure productions. The sequence of subsets of $\{S,X,Y,Z\}$ is

$$U_0 = \{Y, Z\}, U_1 = \{Y, Z, X\}, U_2 = \{Y, Z, X, S\}, U_3 = U_2.$$

Therefore, the set of productions P' is given by

$$P' = \{S \to XYZ, S \to YZ, S \to XZ, S \to XY, S \to X, S \to Y, S \to Z, X \to YZ, X \to Y, X \to Z, X \to aYb, X \to ab, X \to a, Y \to b, Z \to c\}$$

Observe that the productions of P' are obtained by erasing zero, one, or more of the symbols X, Y, Z from the rules of P.

The previous theorem shows that it is possible to limit the erasure productions in context-free grammars that generate a language L to a single production that has the start symbol as its left member, without restricting the generality.

Corollary

Every context-free language is a context-sensitive language; in other words, $\mathcal{L}_2 \subseteq \mathcal{L}_1$.

Proof.

This is an immediate consequence of a previous theorem and the definitions of \mathcal{L}_1 and \mathcal{L}_2 .

Definition

Let $G = (A_N, A_T, S, P)$ be a context-free grammar. A *chain production* is a production $X \to Y$, where $X, Y \in A_N$.

Theorem

Let $G = (A_N, A_T, S, P)$ be a context-free grammar. There is a context-free grammar G_1 such that G_1 is equivalent to G and G_1 does not contain chain productions.

Proof

We assume initially that G is λ -free. Let X be a nonterminal symbol. To eliminate productions of the form $X \to Y$ consider the following sequence of sets:

$$U_0^X = \{X\}$$

 $U_{n+1}^X = U_n^X \cup \{Z \in A_N \mid Y \to Z \in P \text{ for some } Y \in U_n^X\}$

It is clear that the sequence $U_0^X, \ldots, U_n^X, \ldots$ is an increasing sequence of subsets of A_N . The finiteness of A_N implies the existence of a number i such that $U_i^X = U_{i+1}^X$. Then, by induction on $\ell \geq 1$, we can easily prove that $U_i^X = U_{i+\ell}^X$ for $\ell \geq 1$.

We shall prove that $U_i^X = \{Z \in A_N \mid X \stackrel{*}{\underset{G}{\rightleftharpoons}} Z\}.$

A straightforward argument by induction on n shows that

$$U_n^X\subseteq \{Z\in A_N\mid X\stackrel{*}{\underset{G}{\hookrightarrow}}Z\}$$
 for $n\in\mathbb{N}.$ In particular,

$$U_i^X \subseteq \{Z \in A_N \mid X \stackrel{*}{\underset{G}{\Rightarrow}} Z\}.$$

To prove the converse inclusion, we prove that if a derivation $X \stackrel{k}{\underset{G}{\hookrightarrow}} Z$, then $Z \in U_i^X$. The argument is by induction on k. For k=0, Z=X, and $Z \in U_0^X \subseteq U_i^X$, so the conclusion follows. Suppose that the statement holds for derivations of length k, and let $X \stackrel{k+1}{\underset{G}{\hookrightarrow}} Z'$. Since the grammar has no erasure rules, we can write $X \stackrel{k}{\underset{G}{\hookrightarrow}} Z \xrightarrow{g} Z'$. By the inductive hypothesis, $Z \in U_i^X$; the existence of the production $Z \to Z'$ implies that $Z \in U_{i+1}^X = U_i^X$. Thus, $\{Z \in A_N \mid X \stackrel{*}{\underset{G}{\hookrightarrow}} Z\} \subseteq U_i^X$.

Denote the set $\{Z \in A_N \mid X \stackrel{*}{\underset{G}{\rightleftharpoons}} Z\}$ by U_*^X . The context-free grammar $G_1 = (A_N, A_T, S, P_1)$ is defined by

$$P_1 = \{X \to \alpha \mid Z \to \alpha \in P \text{ for some } Z \in U_*^X \text{ and } \alpha \notin A_N\}.$$

It is clear that the grammar G_1 has no chain productions and is equivalent to G.

If G is not λ -free, then there exists an equivalent context-free grammar $G'=(A_N\cup\{S'\},A_T,S',P'\cup\{S'\to\lambda\})$ where $S'\to\lambda$ is the unique erasure production of G', and S' does not occur in any right member of any production of G'. The grammar $G''=(A_N\cup\{S'\},A_T,S',P')$ generates the language $L(G)-\{\lambda\}$. By applying the previous construction to G'' we obtain the grammar $G_1''=(A_N\cup\{S'\},A_T,S',P_1'')$ that has no chain rules and for which $L(G_1'')=L(G)-\{\lambda\}$. Then, the desired grammar G_1 is given by

$$G_1 = (A_N \cup \{S'\}, A_T, S', P_1'' \cup \{S' \rightarrow \lambda\}),$$

where S_1 is a new start symbol.

Example

The grammar

$$G = (\{S, X, Y\}, \{a, b, c\}, S, \{S \rightarrow X, S \rightarrow aX, X \rightarrow Y, X \rightarrow bY, S \rightarrow a, X \rightarrow b, Y \rightarrow c\})$$

is λ -free and contains some chain productions.

(Example cont'd)

We have $U_0^S=\{S\}$, $U_1^S=\{S,X\}$, $U_2^S=\{S,X,Y\}$, and $U_2^S=U_3^S=\cdots$, so $U_*^S=\{S,X,Y\}$. Similar computations give $U_*^X=\{X,Y\}$ and $U_*^Y=\{Y\}$. The grammar

$$G_1 = (\{S, X, Y\}, \{a, b, c\}, S, \{S \rightarrow aX, S \rightarrow bY, S \rightarrow a, S \rightarrow b, S \rightarrow c, X \rightarrow c, X \rightarrow bY, X \rightarrow b, Y \rightarrow c\}).$$

is equivalent to G and has no chain productions.

Let $G = (A_N, A_T, S, P)$ be a context-free grammar, and let X be a nonterminal symbol. Denote by L(G, X) the set of terminal words that can be generated from X in the grammar G,, that is,

$$L(G,X) = \{x \in A_T^* \mid X \stackrel{*}{\underset{G}{\Rightarrow}} x\}.$$

Clearly, we have L(G, S) = L(G).

Definition

Let $G = (A_N, A_T, S, P)$ be a context-free grammar. A symbol $s \in A_N \cup A_T$ is *accessible* if it occurs in a word $\alpha \in (A_N \cup A_T)^*$ such that $S \stackrel{*}{\underset{G}{\longrightarrow}} \alpha$.

A symbol $X \in A_N$ is *productive* if $L(G, X) \neq \emptyset$.

Theorem

Let $G=(A_N,A_T,S,P)$ be a context-free grammar. There is a construction of an equivalent grammar $G'=(A'_N,A_T,S,P')$ such that $P'=\emptyset$ if $L(G)=\emptyset$, and if $L(G)\neq\emptyset$, then every symbol in A'_N is productive.

Proof

Define the sequence U_0, \ldots, U_n, \ldots of subsets of A_N by

$$U_0 = \{X \in A_N \mid X \to u \in P \text{ for some } u \in A_T^*\}$$

$$U_{n+1} = U_n \cup \{X \in A_N \mid X \to \alpha \in P \text{ for some } \alpha \in (U_n \cup A_T)^*\}$$

Note that $U_0 \subseteq U_1 \subseteq \cdots \subseteq U_n \subseteq \cdots \subseteq A_N$. Therefore, there is i such that $U_i = U_{i+1}$. An easy argument by induction on k shows that $U_i = U_{i+k}$ for $k \ge 1$. This part of the proof is left to the reader. We claim that

$$\{X \in A_N \mid L(G,X) \neq \emptyset\} = U_i.$$

If n=0, the conclusion follows from the definition of U_0 . Suppose that the inclusion holds for U_n and let $Y\in U_{n+1}$. If $Y\in U_n$ the conclusion is immediate. Otherwise, there is a production $Y\to \alpha$, where $\alpha=w_0Z_0w_1Z_1\cdots w_{p-1}Z_{p-1}w_p$, where $w_i\in A_T^*$ for $0\le i\le p$ and $Z_j\in U_n$ for $0\le j\le p-1$. By the inductive hypothesis, we have the derivations $Z_j\stackrel{*}{\stackrel{*}{\hookrightarrow}} z_j$, where $z_j\in A_T^*$ for $0\le j\le p-1$. Thus, we obtain the derivation

$$Y \; \underset{G}{\Rightarrow} \; w_0 Z_0 w_1 Z_1 \cdots w_{p-1} Z_{p-1} w_p \; \overset{*}{\underset{G}{\Rightarrow}} \; w_0 z_0 w_1 z_1 \cdots w_{p-1} z_{p-1} w_p \in A_T^*,$$

which gives the desired conclusion. In particular,

$$U_i \subseteq \{X \in A_N \mid X \stackrel{*}{\underset{G}{\Rightarrow}} u \text{ for some } u \in A_T^*\}.$$

To prove the converse inclusion we prove by strong induction on $m \ge 1$ that $X \stackrel{m}{\Longrightarrow} u$ for $u \in A_T^*$ implies $X \in U_{m-1}$. The basis case, m = 1, is immediate.

Suppose that the statement holds for derivations of length less than or equal to m and consider a derivation $X \stackrel{m+1}{\underset{G}{\rightleftharpoons}} u$ for $u \in A_T^*$. If we write the first step of this derivation, we obtain

$$X \Rightarrow_G w_0 Z_0 w_1 Z_1 \cdots w_{p-1} Z_{p-1} w_p \stackrel{m}{\Rightarrow}_G u,$$

where $w_0, \ldots, w_{p-1}, u \in A_T^*$, and $Z_0, \ldots, Z_{p-1} \in A_N$.

The word u can be written as $u=w_0z_0w_1z_1\cdots w_{p-1}z_{p-1}w_p$, where $Z_j\stackrel{\ell_j}{=} z_j,\ \ell_j\leq m$ for $0\leq j\leq p-1$. By the inductive hypothesis, we have $Z_j\in U_{\ell_j-1}\subseteq U_{m-1}$, so $w_0Z_0w_1Z_1\cdots w_{p-1}Z_{p-1}w_p\in (U_{m-1}\cup A_T)^*$. Thus, $X\in U_m$.

Since $U_m \subseteq U_i$ for every $m \in \mathbb{N}$ and $m \ge 1$, we obtain the converse inclusion and, therefore, the desired equality.

Note that $S \in U_i$ if and only if $L(G) \neq \emptyset$. Define the set of productions P' by

$$P' = \begin{cases} \emptyset \text{ if } S \notin U_i \\ \{X \to \alpha \mid \alpha \in (U_i \cup A_T)^* \text{ and } X \to \alpha \in P\} \text{ otherwise.} \end{cases}$$

Since $P' \subseteq P$ it follows that $L(G') \subseteq L(G)$. Conversely, if $u \in L(G)$, then $S \stackrel{*}{\Rightarrow} u$. Let $X \to \alpha$ be a production that occurs in this derivation. We have

$$S \stackrel{*}{\underset{G}{\Rightarrow}} \beta X \gamma \stackrel{*}{\underset{G}{\Rightarrow}} \beta \alpha \gamma \stackrel{*}{\underset{G}{\Rightarrow}} u.$$

Therefore, every nonterminal symbol that occurs in α must be productive. This allows us to conclude that $\alpha \in (U_i \cup A_T)^*$, hence $X \to \alpha \in P'$. Since every production used in the derivation $S \stackrel{*}{\underset{G}{\rightleftharpoons}} u$ belongs to P', it follows that $u \in L(G')$, so $L(G) \subseteq L(G')$.

Corollary

The emptiness of the language L(G) generated by a context-free grammar $G = (A_N, A_T, S, P)$ is decidable.

Proof.

Note that the start symbol S of a context-free grammar G is productive if and only if $L(G) \neq \emptyset$. Therefore, in order to decide if $L(G) = \emptyset$, it suffices to compute the set U_i . Then, $L(G) = \emptyset$ if and only if $S \notin U_i$.

Example

Let $G = (\{S, X, Y, Z\}, \{a, b\}, S, \{S \rightarrow YZ, S \rightarrow XY, S \rightarrow XZ, Z \rightarrow ab, Y \rightarrow bc\})$ be a context-free grammar. The sequence U_0, U_1, \ldots is given by $U_0 = \{Y, Z\}, \ U_1 = \{S, Y, Z\}, \ U_1 = U_2 = \cdots$. Therefore, the grammar $G' = (\{S, Y, Z\}, \{a, b\}, S, \{S \rightarrow YZ, Z \rightarrow ab, Y \rightarrow bc\})$ has only productive symbols and is equivalent to G.

Theorem

Let $G = (A_N, A_T, S, P)$ be a context-free grammar. There exists an equivalent context-free grammar $G' = (A'_N, A_T, S, P')$ such that every production of P' that contains a terminal symbol is of the form $X \to a$.

Proof

Consider the alphabet $A' = \{X_a \mid a \in A_T\}$ that contains a symbol X_a for every terminal symbol a, where $A_N \cap A' = \emptyset$, and define A'_N as $A'_N = A_N \cup A'$.

The productions of P' are obtained by replacing each terminal symbol a by the corresponding nonterminal X_a and by adding the productions $X_a \to a$ for $a \in A_T$. The set of productions P' satisfies the requirements of the theorem, and the resulting grammar is clearly of the same type as G.

Let $u=a_{i_0}\cdots a_{i_{n-1}}\in L(G)$. The definition of the grammar G' implies that $S\overset{*}{\underset{G'}{\Rightarrow}}X_{a_{i_0}}\cdots X_{a_{i_{n-1}}}$. By using the productions $X_a\to a$ we obtain

$$S \stackrel{*}{\underset{G'}{\Rightarrow}} a_{i_0} \cdots a_{i_{n-1}},$$

so
$$a_{i_0} \cdots a_{i_{n-1}} \in L(G')$$
. Thus, $L(G) \subseteq L(G')$.

To prove the converse inclusion, $L(G') \subseteq L(G)$, consider a morphism $h: (A'_N \cup A_T)^* \longrightarrow (A_N \cup A_T)^*$ defined by $h(X_a) = a$ for $a \in A_T$ and h(Y) = Y for every $Y \in A_N \cup A_T$. We claim that if $\alpha \underset{G'}{\Rightarrow} \beta$ for some $\alpha, \beta \in (A'_N \cup A_T)^*$, then $h(\alpha) \overset{*}{\underset{G}{\Rightarrow}} h(\beta)$. Indeed, if a production of the form $X \to a$ was used in $\alpha \underset{G'}{\Rightarrow} \beta$, then $h(\alpha) = h(\beta)$.

If another kind of production was used, then $h(\alpha) \underset{G}{\Rightarrow} h(\beta)$, so in any case, $h(\alpha) \underset{G'}{\stackrel{*}{\Rightarrow}} h(\beta)$. Let now $v \in L(G')$. We have $S \underset{G'}{\stackrel{*}{\Rightarrow}} v$, so $S = h(S) \underset{G}{\stackrel{*}{\Rightarrow}} h(v) = v$, which implies $v \in L(G)$. Therefore, L(G) = L(G').

Example

Recall the context-free grammar $G = (A_N, A_T, S_0, P)$, where $A_N = \{S_0, S_1, S_2\}$, $A_T = \{a, b\}$, and P contains the following productions:

$$S_0 \to aS_2, S_0 \to bS_1, S_1 \to a, S_1 \to aS_0, S_1 \to bS_1S_1, S_2 \to b, S_2 \to bS_0, S_2 \to aS_2S_2.$$

(Example cont'd)

To limit productions that contain terminal symbols to productions of the form $X_a \to a$ add the non-terminal symbols X_a and X_b . The set of productions becomes

$$S_0
ightarrow X_a S_2, S_0
ightarrow X_b S_1, S_1
ightarrow X_a, S_1
ightarrow X_a S_0, S_1
ightarrow X_b S_1 S_1, S_2
ightarrow X_b, S_2
ightarrow X_b S_0, S_2
ightarrow X_a S_2 S_2, X_a
ightarrow a, X_b
ightarrow b.$$