Finite Automata and Regular Languages (part III)

Prof. Dan A. Simovici

UMB

1 Transition Systems

Nondeterministic finite automata can be further generalized by allowing transitions between states without reading any input symbol.

Definition

A transition system (ts) is a 5-tuple $\mathfrak{T}=(A,Q,\theta,Q_0,F)$, where A,Q, and F are as in a finite automaton, θ is a finite relation, $\theta\subseteq Q\times A^*\times Q$, called the transition relation of \mathfrak{T} , and Q_0 is a nonempty subset of Q called the set of initial states, and F is the set of final states. A transition in \mathfrak{T} is a triple $(q,x,q')\in\theta$. We refer to transitions of the form (q,λ,q') as null transitions.

Transition systems are conveniently represented by labeled directed multigraphs. Namely, if $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ is a transition system, then its graph is a labeled directed multigraph $G(\mathfrak{T})$.

- $G(\mathfrak{T})$ has Q as its set of vertices;
- each directed edge e from q to q' labelled x corresponds to a triple $(q, x, q') \in \theta$, and every such triple is represented by an edge in G.

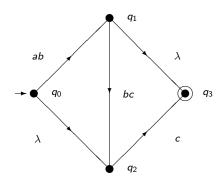
Unlike the graph of a dfa or an ndfa, the edges of the directed graph of a transition system can be labelled by words, including the null word.

Example

The graph of the transition system

$$\mathfrak{I}_1 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_3\}),$$

where θ is given by $\theta = \{(q_0, ab, q_1), (q_0, \lambda, q_2), (q_1, bc, q_2), (q_1, \lambda, q_3), (q_2, c, q_3)\}$ is shown below:



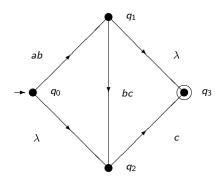
Extending the transition relation

As we did with the transition functions of dfas and ndfas, we wish to extend the transition relation θ of a transition system $\mathfrak T$ to the set $Q\times A^*\times Q$. The extension $\theta^*\subseteq Q\times A^*\times Q$ is given next.

- For every $q \in Q$ define $(q, \lambda, q) \in \theta^*$.
- 2 Every triple $(q, x, q') \in \theta$ belongs to θ^* .
- If $(q, x, q'), (q', y, q'') \in \theta^*$, then $(q, xy, q'') \in \theta^*$.

Note that $(q, w, q') \in \theta^*$ if and only if there is a path in $G(\mathfrak{T})$ that begins with q and ends with q' such that the concatenated labels of the directed edges of this path form the word w.

Example



If T is the above transition system, then $(q_0, abbcc, q_3) \in \theta^*$ because $(q_0, ab, q_1), (q_1, bc, q_2), (q_2, c, q_3) \in \theta$. Similarly, $(q_0, c, q_3) \in \theta$ because $(q_0, \lambda, q_2), (q_2, c, q_3) \in \theta$.

Definition

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system. The language accepted by \mathfrak{T} is

$$L(\mathfrak{T}) = \{x \in A^* \mid (q_0, x, q) \in \theta^* \text{ for some } q_0 \in Q_0, q \in F\}.$$

Thus, a word x belongs to $L(\mathfrak{T})$ if there is a path in $G(\mathfrak{T})$ that begins in an initial state $q_0 \in Q_0$, labeled by x, such that the path ends in one of the states of F, the set of final states.

Transition systems generalize ndfas

If $\mathcal{M}=(A,Q,\delta,q_0,F)$ is a nondeterministic automaton, define the transition system $\mathcal{T}_{\mathcal{M}}=(A,Q,\theta,\{q_0\},F)$, where

$$\theta = \{(q, a, q') \mid q, q' \in Q, a \in A \text{ and } q' \in \delta(q, a)\}.$$

It can be shown by induction on |x| that $(q,x,q') \in \theta^*$ if and only if $q' \in \delta^*(q,x)$. This implies that $L(\mathcal{T}_{\mathcal{M}}) = L(\mathcal{M})$. Therefore, every regular language can be accepted by a transition system. Furthermore, any language that can be accepted by a transition system is regular.

Lemma

For every transition system $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ there exists a transition system $\mathfrak{T}'=(A,Q',\theta',Q_0,F)$ such that $(q,x,q_1)\in\theta'$ implies $|x|\leq 1$ and $L(\mathfrak{T}')=L(\mathfrak{T})$.

Proof

Define the relation θ' and the set Q' as follows:

- Every state $q \in Q$ also belongs to Q'.
- ② Every triple $(q, x, q') \in \theta$ such that $|x| \le 1$ also belongs to θ' .
- If $t = (q, x, q') \in \theta$ such that $x = a_0 \dots a_{n-1}$ and $n \ge 2$, add n-1 new states q_0^t, \dots, q_{n-2}^t to Q' and the triples

$$(q, a_0, q_0^t), (q_0^t, a_1, q_1^t), \dots, (q_{n-2}^t, a_{n-1}, q')$$

to θ' .

The ts \mathfrak{T}' clearly satisfies the conditions of the lemma, since $(q, x, q') \in \theta^*$ if and only if $(q, x, q') \in \theta'^*$.

Theorem

For every transition system $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ there exists a deterministic finite automaton \mathfrak{M} such that $L(\mathfrak{T})=L(\mathfrak{M})$.

Proof.

By the previous Lemma we can assume that $(q, x, q') \in \theta$ implies $|x| \leq 1$. Define the deterministic finite automaton $\mathcal{M} = (A, \mathcal{P}(Q), \Delta, Q'_0, F')$, where the initial state of \mathcal{M} is

$$Q_0' = \{q \in Q \mid (q_0, \lambda, q) \in \theta^* \text{ for some } q_0 \in Q_0\},$$

the set of final states is $F' = \{S \mid S \subseteq Q, S \cap F \neq \emptyset\}$, and the function Δ is defined by

$$\Delta(S, a) = \{q' \in Q \mid (q, a, q') \in \theta^* \text{ for some } q \in S\},\$$

for every $S \subseteq Q$ and $a \in A$.

Proof (cont'd)

It is not difficult to verify, by induction on |x|, that

$$\Delta^*(Q_0',x) = \{q' \in Q \mid (q_0,x,q') \in \theta^* \text{ for some } q_0 \in Q_0\},$$

for $x \in A^*$. For the basis case, |x| = 0, so the above equality becomes

$$Q_0' = \{q' \in Q \ | \ (q_0, \lambda, q') \in \theta^* \text{ for some } q_0 \in Q_0\},$$

which holds by the definition of Q'_0 .

Proof (cont'd)

Suppose that the equality holds for words of length n, and let y be a word of length n+1. We can write y=xa, so

$$\begin{split} \Delta^*(Q_0',y) &= \Delta^*(Q_0',xa) \\ &= \Delta(\Delta^*(Q_0',x),a) \\ &= \Delta(\{q' \in Q \mid (q_0,x,q') \in \theta^* \text{ for some } q_0 \in Q_0\},a) \\ &\text{ (by the inductive hypothesis)} \\ &= \{r \in Q \mid (q',a,r) \in \theta^*, \text{ for some } q' \text{ such that} \\ &(q_0,x,q') \in \theta^* \text{ for some } q_0 \in Q_0\} \\ &\text{ (by the definition of } \Delta) \\ &= \{r \in Q \mid (q_0,xa,r) \in \theta^* \text{ for some } q_0 \in Q_0\} \\ &\text{ (by the definition of } \theta^*) \\ &= \{r \in Q \mid (q_0,y,r) \in \theta^* \text{ for some } q_0 \in Q_0\}, \end{split}$$

which concludes our inductive argument.

Proof (cont'd)

From this it follows that $L(\mathfrak{M})=L(\mathfrak{T})$. By definition, $x\in L(\mathfrak{M})$ if and only if $\Delta^*(Q_0',x)\in F'$. This is equivalent to $\Delta^*(Q_0',x)\cap F\neq\emptyset$. This is equivalent to the existence of a state $q'\in F'$ such that $(q_0,x,q')\in\theta^*$ for some $q_0\in Q_0$, and this is equivalent to $x\in L(\mathfrak{T})$.

Corollary

The class of languages that are accepted by transition systems is the class $\ensuremath{\mathfrak{R}}$ of regular languages.

Definition

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system. The λ -closure is the mapping $K_{\mathfrak{T}}: \mathfrak{P}(Q) \longrightarrow \mathfrak{P}(Q)$ given by

$$\mathcal{K}_{\mathbb{T}}(S) = \{q \in Q \mid (s, \lambda, q) \in \theta^* \text{ for some } s \in S\}.$$

The set $K_{\mathbb{T}}(S)$ comprises the states in S plus all the states that can be reached from a state in S using a series of λ -transitions.

Theorem

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system. The λ -closure of \mathfrak{T} has the following properties.

for every $S, S' \in \mathcal{P}(Q)$.

Proof

Since $(s, \lambda, s) \in \theta^*$ it is immediate that $S \subseteq K_{\mathbb{T}}(S)$ for every $S \in \mathbb{P}(Q)$. The second part of the theorem is a direct consequence of the definition of $K_{\mathbb{T}}$.

Note that Parts (i) and (ii) imply $K_{\mathbb{T}}(S) \subseteq K_{\mathbb{T}}(K_{\mathbb{T}}(S))$. Let $q \in K_{\mathbb{T}}(K_{\mathbb{T}}(S))$. There is a state $s \in S$ and a state $r \in K_{\mathbb{T}}(S)$ such that $(s, \lambda, r) \in \theta^*$ and $(r, \lambda, q) \in \theta^*$. By the definition of θ^* we obtain $(s, \lambda, q) \in \theta^*$, so $q \in K_{\mathbb{T}}(S)$. This implies $K_{\mathbb{T}}(K_{\mathbb{T}}(S)) \subseteq K_{\mathbb{T}}(S)$, which gives the last part of the theorem.

Definition

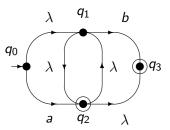
Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system. A $K_{\mathfrak{T}}$ -closed subset of Q is a set S such that $S\subseteq Q$ and $K_{\mathfrak{T}}(S)=S$.

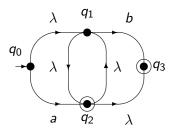
Example

Consider the transition system

$$\mathfrak{I} = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \theta, \{q_0\}, \{q_2, q_3\})$$

whose graph is shown





S	$K_{\mathfrak{T}}(S)$	S	$K_{\mathfrak{T}}(S)$
Ø	Ø	$\{q_1, q_2\}$	$\{q_1, q_2, q_3\}$
$\{q_0\}$	Q	$\{q_1, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_1\}$	$\{q_1, q_2, q_3\}$	$\{q_2, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_2\}$	$\{q_1, q_2, q_3\}$	$\{q_0, q_1, q_2\}$	Q
$\{q_3\}$	$\{q_3\}$	$\{q_0, q_1, q_3\}$	Q
$\{q_0, q_1\}$	Q	$\{q_0, q_2, q_3\}$	Q
$\{q_0, q_2\}$	Q	$\{q_1, q_2, q_3\}$	$\{q_1, q_2, q_3\}$
$\{q_0, q_3\}$	Q	$\{q_0, q_1, q_2, q_3\}$	Q

The closed subsets of Q are \emptyset , $\{q_3\}$, $\{q_1,q_2,q_3\}$, and Q itself.

Theorem

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system and let $\mathfrak{M}=(A,\mathcal{P}(Q),\Delta,Q_0',F')$ be the dfa constructed in earlier. The set $\Delta(S,a)$ is a $K_{\mathfrak{T}}$ -closed set of states for every subset S of Q and $a\in A$.

Proof

To prove the theorem it suffices to show that $K_T(\Delta(S,a)) \subseteq \Delta(S,a)$. Let $p \in K_T(\Delta(S,a))$. There is $p_1 \in \Delta(S,a)$ such that $(p_1,\lambda,p) \in \theta^*$. The definition of $\Delta(S,a)$ implies the existence of $q \in S$ such that $(q,a,p_1) \in \theta^*$. Thus, $(q,a,p) \in \theta^*$, so $p \in \Delta(q,a)$.

Corollary

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system, and let $\mathfrak{M}=(A,\mathfrak{P}(Q),\Delta,Q_0',F')$ be the constructed dfa. The accessible states of the dfa \mathfrak{M} are $K_{\mathfrak{T}}$ -closed subsets of Q.

Proof.

The initial state Q_0' of $\mathfrak M$ is obviously closed. If Q' is an accessible state of $\mathfrak M$, then $Q'=\Delta(S,a)$ for some $S\subseteq Q$. Therefore Q' is closed.

Theorem

Let $\mathfrak{T}=(A,Q,\theta,Q_0,F)$ be a transition system, and let $\mathfrak{M}=(A,\mathbb{P}(Q),\Delta,Q_0',F')$ be the dfa constructed earlier. Then, $\Delta(S,a)=K_{\mathfrak{T}}(\{q\in Q\mid (s,a,q)\in\theta \text{ for some }s\in S\})$, where S is an accessible state of \mathfrak{M} .

Proof

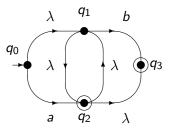
An Algorithm for Constructing a dfa corresponding to a ts

Input: A transition system $\mathfrak{T}=(A,Q,\theta,Q_0,F)$. **Output:** An accessible dfa \mathfrak{M}_1 such that $L(\mathfrak{M}_1)=L(\mathfrak{T})$. **Method:** Compute the increasing sequence of collections of subsets of Q, Q_0,\ldots,Q_i,\ldots , where

$$\begin{array}{rcl} \mathfrak{Q}_0 & = & \{Q_0'\} \\ \mathfrak{Q}_{i+1} & = & \mathfrak{Q}_i \cup \{U \in \mathfrak{P}(Q) \mid U = \Delta(S,a) \text{ for some } S \in \mathfrak{Q}_i \text{ and } a \in A\}. \end{array}$$

the computation of $U = \Delta(S, a)$ can be done by computing first the set $W = \{q \in Q \mid (s, a, q) \in \theta \text{ for some } s \in S\}$ and then $U = \mathcal{K}_{\mathcal{T}}(W)$. Stop when $\Omega_{i+1} = \Omega_i$. The set Ω_i is the set of accessible states of \mathcal{M} . Ouput $\mathcal{M}' = \mathsf{ACC}(\mathcal{M})$, the accessible component of \mathcal{M} .

For the transition system



the transition system is:

