Homework 3

Posted: October 21, 2019 Due: November 6, 2019

- 1. Let $A = \{a, b\}$ be an alphabet. Compute the minimal dfa capable of recognizing the language A^*abA^+ .
- 2. Prove that the language $\{a^nb^{n+10}c^{n+20}\mid n\in\mathbb{N}\}$ is not regular.
- 3. Let $G = (\{S, X, Y, Z\}, \{a, b\}, S, \{S \to XYZ, X \to SYZ, Y \to SXZ, X \to a, Y \to b, Z \to a\})$ be a context-free grammar. Prove that if $x \in L(G)$, the length of x has the form 3 + 2k, where $k \geq 0$.

Hint: Use induction on the length of the derivation $S \stackrel{*}{\underset{G}{\hookrightarrow}} x$.

- 4. Give an example of a non-regular language such that $\mathsf{PREF}(L)$, $\mathsf{SUFF}(L)$, and $\mathsf{INFIX}(L)$ are all regular languages.
- 5. Consider the context-free grammar $G = (\{S, X, Y\}, \{a, b\}, S, P)$, where the set of productions P is given by

$$P = \{S \rightarrow aXb, S \rightarrow Yb, X \rightarrow YaS, X \rightarrow b, Y \rightarrow bX, Y \rightarrow a\}.$$

- (a) Prove that the word x = abbaabb belongs to L(G) by constructing a derivation d for x. Construct the derivation tree T that corresponds to d.
- (b) Give the leftmost and the rightmost derivations that corresponds to T.