Context-Free languages (part I)

Prof. Dan A. Simovici

UMB

Leftmost Derivations and Ambiguity

Chomsky Normal Form

Oerivation Trees

Leftmost Derivations

Definition

Let $G = (A_N, A_T, S, P)$ be a context-free grammar.

A *leftmost derivation* is a derivation $\gamma_0 \Rightarrow \cdots \Rightarrow \gamma_n$ in G such that, if the production applied in deriving γ_{k+1} from γ_k is $X_k \to \beta_k$, then $\gamma_k = \gamma_k' X_k \gamma_k''$, $\gamma_{k+1} = \gamma_k' \beta_k \gamma_k''$ and $\gamma_k' \in A_T^*$.

- The words γ_k (for $0 \le k \le n$) are referred to as *left sentential forms*.
- If $\gamma_k = \gamma_k' X_k \gamma_k''$, where $\gamma_k' \in A_T^*$, then γ_k' is the *closed part* of γ_k , while $X_k \gamma_k''$ is the *open part* of γ_k .
- In a context-free grammar G,

$$\gamma_0 \Rightarrow \gamma_1 \Rightarrow \ldots \Rightarrow \gamma_n$$

is a leftmost derivation if, at every step of this derivation, we always rewrite the leftmost nonterminal symbol.

Notations

- The existence of a leftmost derivation of length n in the context-free grammar G, $\gamma_0 \Rightarrow \gamma_1 \Rightarrow \ldots \Rightarrow \gamma_n$, will be denoted by $\gamma_0 \stackrel{n}{\underset{G,\text{left}}{\Rightarrow}} \gamma_n$.
- The existence of a leftmost derivation of any length of γ' from γ in the same grammar will be denoted by $\gamma \stackrel{*}{\underset{\leftarrow}{\mapsto}} \gamma'$.
- The existence of a leftmost derivation of positive length of γ' from γ will be denoted by $\gamma \stackrel{+}{\underset{G,\text{left}}{\longleftrightarrow}} \gamma'$.

Example

Let $G = (A_N, A_T, S_0, P)$ be a context-free grammar, where $A_N = \{S_0, S_1, S_2\}$, $A_T = \{a, b\}$, and P contains the following productions:

$$S_0 \rightarrow aS_2, S_0 \rightarrow bS_1, S_1 \rightarrow a, S_1 \rightarrow aS_0, S_1 \rightarrow bS_1S_1, S_2 \rightarrow b, S_2 \rightarrow bS_0, S_2 \rightarrow aS_2S_2.$$

(Example cont'd)

The derivation

$$S_0 \Rightarrow bS_1 \Rightarrow bbS_1S_1 \Rightarrow bbS_1aS_0 \Rightarrow bbS_1aaS_2 \Rightarrow bbaaaS_2 \Rightarrow bbaaab$$

is not leftmost since in deriving bbS_1aaS_2 from bbS_1aS_0 we do not replace the leftmost nonterminal S_1 .

(Example cont'd)

We can transform this derivation into a leftmost derivation by changing the order in which nonterminals are replaced. Namely, in grammar G, we have the leftmost derivation

$$S_0 \Rightarrow bS_1 \Rightarrow bbS_1S_1 \Rightarrow bbaS_1$$

 $\Rightarrow bbaaS_0 \Rightarrow bbaaaS_2 \Rightarrow bbaaab.$

Theorem

Let $G=(A_N,A_T,S,P)$ be a context-free grammar. For every complete derivation d of length n in G, $X\Rightarrow \gamma_1\Rightarrow \cdots \Rightarrow \gamma_n$, where $\gamma_n=u\in A_T^*$, there is a complete leftmost derivation of length n, using the same productions as d, that allows us to derive γ_n from X.

Proof

The argument is by strong induction on $n \ge 1$ for leftmost derivations. For n = 1, the statement is trivially true, since any derivation $X \Rightarrow w_1$ is a

For n=1, the statement is trivially true, since any derivation $X \Rightarrow w_1$ is a leftmost derivation.

Suppose that the statement holds for derivations whose length is no more than n, and let d

$$X \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_{n+1}$$

be a derivation of length n+1. If the first production used in this derivation is $X \to w_0 X_{i_1} w_1 \cdots X_{i_k} w_k$, where $w_i \in A_T^*$ for $0 \le i \le k$, then we can write $\gamma_{n+1} = w_0 u_1 w_1 \cdots u_k w_k$, where d_j is a complete derivation $X_{i_j} \overset{*}{\underset{G}{\longrightarrow}} u_j$ of length no greater than n, for $1 \le j \le k$.

(Proof cont'd)

By the inductive hypothesis, for each of these derivations d_j , we obtain the existence of the leftmost derivation d_j' : $X_{i_j} \overset{*}{\underset{G,\text{left}}{\Longrightarrow}} u_j$ for $1 \leq j \leq k$, which uses the same set of productions as d_j . Now, we obtain the existence of the leftmost derivation d':

$$\begin{array}{lll} X & \Rightarrow & w_0 X_{i_1} w_1 X_{i_2} \dots X_{i_k} w_k \\ & \stackrel{*}{\Rightarrow} & w_0 u_1 w_1 X_{i_2} \dots X_{i_k} w_k \text{ (using derivation } d_1') \\ & \stackrel{*}{\Rightarrow} & w_0 u_1 w_1 u_2 \dots X_{i_k} w_k \text{ (using derivation } d_2') \\ & \vdots & & \\ & \stackrel{*}{\Rightarrow} & w_0 u_1 w_1 u_2 \dots u_k w_k \text{ (using derivation } d_k'), \end{array}$$

which concludes our argument.

The Theorem may fail if the derivation is not complete, that is, the final word is not in A_T^* .

Example

Let

$$G = (\{S, X, Y, U, V\}, \{a, b\}, S, \{S \rightarrow XY, Y \rightarrow UV, X \rightarrow a, U \rightarrow b, V \rightarrow b\})$$

be a context-free grammar. Consider the derivation

$$S \Rightarrow XY \Rightarrow XUV$$

This derivation is not leftmost, and there is no leftmost derivation in G such that $S \stackrel{*}{\Rightarrow} XUV$.

Corollary

Let $G = (A_N, A_T, S, P)$ be a context-free grammar. For every complete derivation d of length n in G, $\gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n$, where $\gamma_0 \in (A_N \cup A_T)^+$ and $\gamma_n \in A_T^*$, there is a complete leftmost derivation of length n, using the same productions as d, that allows us to derive γ_n from γ_0 .

Proof

Suppose that $\gamma_0 = s_0 \dots s_{k-1}$, where $s_i \in A_N \cup A_T$ for $0 \le i \le k-1$. We can write $\gamma_n = u_0 \cdots u_{k-1}$ such that $s_i \stackrel{*}{\underset{G}{\rightleftharpoons}} u_i \in A_T^*$ for $0 \le i \le k-1$.

Thus, we obtain the existence of the leftmost derivations $s_i \underset{G,left}{\overset{*}{\Rightarrow}} u_i$ for $0 \le i \le k-1$ that use the same productions as the corresponding previous derivations. Starting from these derivations we obtain the leftmost derivation:

$$\begin{array}{ll} \gamma_0 = s_0 s_1 \cdots s_{k-1} \\ & \stackrel{*}{\underset{G,left}{\Rightarrow}} \quad u_0 s_1 \cdots s_{k-1} \\ & \stackrel{*}{\underset{G,left}{\Rightarrow}} \quad u_0 u_1 \cdots s_{k-1} \\ & \vdots \\ & \stackrel{*}{\underset{G,left}{\Rightarrow}} \quad u_0 u_1 \cdots u_{k-1} = \gamma_n. \end{array}$$

Definition

A context-free grammar $G = (A_N, A_T, S, P)$ is ambiguous if there exists a word $w \in A_T^*$ such that there are at least two leftmost derivations from S to w in G. Otherwise, G is unambiguous.

A context-free language can be generated by both ambiguous and unambiguous grammars.

Example

Consider the context-free grammars

$$G_1 = (\{S\}, \{a\}, S, \{S \rightarrow SS, S \rightarrow a\})$$

and

$$G_2 = (\{S\}, \{a\}, S, \{S \rightarrow aS, S \rightarrow a\}).$$

They both generate the language $\{a^n \mid n \geq 1\}$.

(Example cont'd)

They both generate the language $\{a^n \mid n \ge 1\}$. Note that in G_1 we have distinct leftmost derivations:

and

Thus, G_1 is an ambiguous grammar.

(Example cont'd)

On other hand, the equivalent grammar G_2 is unambiguous, since for every a^n , $n \le 1$, we have exactly one derivation:

$$S \Rightarrow_{G_2} aS \Rightarrow_{G_2} a^2S \cdots \Rightarrow_{G_2} a^n$$
.

Since a language may have both an ambiguous and an unambiguous grammar, it may not be sufficient to examine one grammar to determine whether or not a language is ambiguous.

Definition

Let L be a context-free language. L is unambiguous if there is an unambiguous context-free grammar G such that L = L(G). L is inherently ambiguous if every context-free grammar G such that L(G) = L is ambiguous.

The language $\{a^n \mid n \ge 1\}$ is unambiguous.

Definition

A context-free grammar $G = (A_N, A_T, S, P)$ is in *Chomsky normal form* if all productions are either of the form $X \to YZ$ or of the form $X \to a$, where $X, Y, Z \in A_N$ and $a \in A_T$.

If G is in Chomsky normal form, then G is λ -free, so $\lambda \notin L(G)$.

Theorem

For every context-free grammar G such that $\lambda \notin L(G)$ there is an equivalent grammar in Chomsky normal form.

Proof.

We can assume that G is a λ -free grammar, G has no chain productions and that every production that contains a terminal symbol is of the form $X \to a$.

Thus, the productions of G have either the form $X \to a$ or the form $X \to X_{i_0} \cdots X_{i_{k-1}}$ with $k \ge 2$.

(Proof cont'd)

Productions of the form $X \to a$ or $X \to X_{i_0} X_{i_1}$ already conform to Chomsky normal form. If $\pi: X \to X_{i_0} \cdots X_{i_{k-1}}$ is a production of P with $k \ge 3$, consider k-2 new nonterminals $Z_0^\pi, \ldots, Z_{k-3}^\pi$ and the productions

$$X \to X_{i_0} Z_0^{\pi}, Z_0^{\pi} \to X_{i_1} Z_1^{\pi}, \cdots, Z_{k-3}^{\pi} \to X_{i_{k-2}} X_{i_{k-1}}$$

Define the grammar $G'=(A_N\cup A',A_T,S,P')$, where A' consists of all symbols Z_ℓ^π , and P' consists of all productions of the form $X\to a$ or $X\to X_{i_0}X_{i_1}$, and of productions obtained from productions of P having the form $X\to X_{i_0}\cdots X_{i_{k-1}}$ with $k\ge 3$, by applying the method described above. It is easy to see that G' is equivalent to G and that G' is in Chomsky normal form.

Example

Let $G = (\{S_0, S_1, S_2\}, \{a, b\}, S_0, P)$ be the context-free grammar, where P contains the following productions:

$$S_0 o aS_2, S_0 o bS_1, S_1 o a, S_1 o aS_0, S_1 o bS_1S_1, S_2 o b, S_2 o bS_0, S_2 o aS_2S_2.$$

By introducing the new nonterminal symbols X_a, X_b we obtain the grammar $G_1 = (\{S_0, S_1, S_2, X_a, X_b\}, \{a, b\}, S_0, P_1)$, where P_1 consists of

$$S_0 \rightarrow X_a S_2, S_0 \rightarrow X_b S_1, S_1 \rightarrow a, S_1 \rightarrow X_a S_0, S_1 \rightarrow X_b S_1 S_1, S_2 \rightarrow b, S_2 \rightarrow X_b S_0, S_2 \rightarrow X_a S_2 S_2, X_a \rightarrow a, X_b \rightarrow b.$$

(Example cont'd)

 G_1 is equivalent to G, has no chain productions and every production that contains a terminal symbol is of the form $X \to a$. This grammar has two productions, $S_1 \to X_b S_1 S_1$ and $S_2 \to X_a S_2 S_2$, that violate Chomsky normal form, so we introduce the new nonterminals Z_0, Z_1 . Applying the technique introduced before to these productions results in the set of productions P' given by:

$$\begin{array}{l} S_0 \to X_a S_2, \ S_0 \to X_b S_1, \ S_1 \to a, \ S_1 \to X_a S_0, \\ S_1 \to X_b Z_0, \ Z_0 \to S_1 S_1, \ S_2 \to b, \ S_2 \to X_b S_0, \\ S_2 \to X_a Z_1, \ Z_1 \to S_2 S_2, \ X_a \to a, \ X_b \to b. \end{array}$$

The resulting grammar $G' = (\{S_0, S_1, S_2, X_a, X_b, Z_0, Z_1\}, \{a, b\}, S_0, P')$ is in Chomsky normal form and is equivalent to G.

Using Chomsky normal form we can prove an important decidability result for the class \mathcal{L}_2 . To this end, we need the following technical result relating the length of a word to the length of its derivation.

Lemma

Let $G = (A_N, A_T, S, P)$ be a context-free grammar in Chomsky normal form. Then, if $S \stackrel{*}{\Rightarrow} x$ we have $|\alpha| \le 2|x| - 1$.

Proof

We prove a slightly stronger statement, namely that if $X \stackrel{*}{\Rightarrow} x$ for some $X \in A_N$, then $|\alpha| \leq 2|x|-1$. The argument is by induction on $n=|x| \geq 1$. If n=1, we have x=a for $a \in A_T$ and the derivation $X \stackrel{*}{\Rightarrow} x$ consists in the application of the production $\pi: X \to a$. Therefore, $|\alpha|=1$ and the inequality is satisfied.

(Proof cont'd)

Suppose that the statement holds for words of length less than n, and let $x \in L(G)$ be a word such that |x| = n, where n > 1. Let the first production applied be $X \to YZ$; then we can write x = uv, there $Y \stackrel{*}{\Rightarrow} u$ and $Z \stackrel{*}{\Rightarrow} v$ and $|\alpha| = |\beta| + |\gamma| + 1$, because the productions used in the last two derivations are exactly the ones used in $X \stackrel{*}{\Rightarrow} x$. Applying the inductive hypothesis we obtain

$$|\alpha| = |\beta| + |\gamma| + 1 \le 2|u| - 1 + 2|v| - 1 + 1 = 2(|u| + |v|) - 1 = 2|x| - 1.$$

Theorem

There is an algorithm to determine for a context-free grammar $G = (A_N, A_T, S, P)$ and a word $x \in A_T^*$ whether or not $x \in L(G)$.

Proof.

Construct a grammar G' equivalent to G such that one of the following two cases occurs:

- if $\lambda \notin L(G)$ then G' is λ -free;
- ② if $\lambda \in L(G)$ then G' contains a unique erasure production $S' \to \lambda$, where S' is the start symbol of G' and S' does not occur in any right member of any production of G'.

(Proof cont'd)

If $x=\lambda$, then $x\in L(G)$ if and only if $S\to\lambda$ is a production in G'. Suppose that $x\neq\lambda$. Let G_1 be a context-free grammar in Chomsky normal form such that $L(G_1)=L(G')-\{\lambda\}=L(G)-\{\lambda\}$. We have $x\in L(G_1)$ if and only if $x\in L(G)$. By the previous Lemma, if $S\overset{*}{\underset{\alpha}{\longrightarrow}}x$, then $|\alpha|\leq 2|x|-1$, so we can decide if $x\in L(G)$ by listing all derivations of length at most 2|x|-1.

- As an alternative to writing a sequence of derivation steps, we consider describe context-free derivations using labeled ordered trees, so-called derivation trees.
- The labels of the leaves of an A-labeled ordered tree, when read from left-to-right, spell out a word in A^* .

Definition of Derivation Trees

Definition

Let $G = (A_N, A_T, S, P)$ be a λ -free context-free grammar, and let $d = (\gamma_0, \dots, \gamma_m)$ be a derivation in G, where $\gamma_0 = X \in A_N$ and $\gamma_i \in (A_N \cup A_T)^*$ for $0 \le i \le m$. Let $A = A_N \cup A_T$.

The *derivation tree of the derivation d* is an A-labeled, ordered tree T_d defined inductively as follows:

Def. cont'd

- If m = 0, then T_d consists of only one node labeled by (0, X).
- ② Suppose that $m \geq 1$ and that $\gamma_1 = X_0 \dots X_{n-1}$, where $X_0 \dots X_{n-1} \in (A_N \cup A_T)^*$. Let T_i be the A-labeled ordered tree that corresponds to the derivation (X_i, \dots, α_i) for $0 \leq i \leq n-1$, where $\alpha = \alpha_0 \cdots \alpha_{n-1}$. Then, T_d is $\langle T_0, \dots, T_{n-1}; X \rangle$.

The set of derivation trees of G is the set

TREES(
$$G$$
) = {T $_d$ | d is a derivation in G }.

A derivation tree $T_d \in \mathsf{TREES}(G)$ is *complete* if $\mathsf{word}(T_d) \in A_T^*$, i.e. if all its leaves are labeled by terminal symbols of the grammar. The set of complete derivation trees of G is denoted by $\mathsf{TREES}_C(G)$.

Example

Let

$$G = (\{S, X, Y\}, \{a, b\}, S, \{S \rightarrow XY, S \rightarrow a, X \rightarrow YS, Y \rightarrow XS, X \rightarrow b, Y \rightarrow b\})$$

be a context-free grammar in Chomsky normal form. The derivation tree of

$$S \Rightarrow XY \Rightarrow YSY \Rightarrow YSXS \Rightarrow bSXS \Rightarrow baXS \Rightarrow babS \Rightarrow baba$$

is given next:

$$S \Rightarrow XY \Rightarrow YSY \Rightarrow YSXS \Rightarrow bSXS \Rightarrow baXS \Rightarrow babS \Rightarrow baba$$

Every derivation in a context-free grammar $G = (A_N, A_T, S, P)$ is described by a derivation tree. Conversely, if T is a derivation tree such that $word(T) = x \in A_T^*$ then, in general, several distinct derivations exist for the word x.

Example

This derivation tree also describes the derivation: $S \Rightarrow XY \Rightarrow XXS \Rightarrow XXa \Rightarrow YSXa \Rightarrow bSXa \Rightarrow baXa \Rightarrow baba$ is the same grammar $G = (\{S, X, Y\}, \{a, b\}, S, \{S \rightarrow XY, S \rightarrow a, X \rightarrow YS, Y \rightarrow XS, X \rightarrow b, Y \rightarrow b\}).$

Theorem

Let $G = (A_N, A_T, S, P)$ be a context-free grammar, and let $T \in \mathsf{TREES}_c(G)$ be a complete derivation tree whose root is labeled by X, where the word spelled by T, word $(T) = u \in A_T^*$. There is a unique leftmost (rightmost) derivation $X \overset{*}{\Rightarrow} u$. Moreover, the lengths of the leftmost and the rightmost derivations equal the number of internal nodes of T.

Proof

The argument for leftmost derivations is by induction on the height of T. If height(T) = 1, then the derivation that corresponds to T is (X, u), which is an one-step leftmost derivation.

Suppose that the statement holds for complete derivation trees of height less than n, and let T be a complete derivation tree in G such that height(T) = n. Then, T = $\langle T_0, \ldots, T_{k-1}; X \rangle$, where height(T_i) < n for $0 \le i \le k-1$. Also, the root of T_i is labeled by the symbol $X_i \in A_N \cup A_T$ and its leaves are labeled by the terminal word u_i for $0 \le i \le k-1$, where $u_0 \cdots u_{k-1} = u$.

(Proof cont'd)

By the inductive hypothesis, for each of the trees T_i , there is a unique leftmost derivation d_i :

$$X_i \Rightarrow w_{i0} \Rightarrow \cdots \Rightarrow w_{i\ell_i-1} = u_i$$

and the length of d_i is equal to the number of internal nodes of T_i for $0 \le i \le k-1$.

Then, we obtain the following leftmost derivation that corresponds to T:

$$X \Rightarrow X_0 X_1 \cdots X_{k-1}$$

$$\Rightarrow w_{00} X_1 \cdots X_{k-1} \Rightarrow \cdots \Rightarrow u_0 X_1 \cdots X_{k-1}$$

$$\Rightarrow u_0 w_{10} \cdots X_{k-1} \Rightarrow \cdots \Rightarrow u_0 u_1 \cdots X_{k-1}$$

$$\vdots$$

$$\Rightarrow u_0 u_1 \cdots w_{k-1,0} \Rightarrow \cdots \Rightarrow u_0 u_1 \cdots u_{k-1}.$$

(Proof cont'd)

If d is a leftmost derivation for T, then it must expand the nonterminals symbol X_{i_0}, \ldots, X_{i_p} that occur in $X_0 \cdots X_{k-1}$. Thus, the derivation d must use the productions that occur in the leftmost derivations $d_{i_0}, \ldots, d_{i_{k-1}}$, respectively, in that order. This shows that the leftmost derivation is unique and the length of this derivation equals the number of internal nodes of T.

Example

For the derivation tree

$$S \Rightarrow XY \Rightarrow YSY \Rightarrow bSY \Rightarrow$$

 $baY \Rightarrow baXS \Rightarrow babS \Rightarrow baba$

is a leftmost derivation.

(Example cont'd)

The derivation

$$S \Rightarrow XY \Rightarrow XXS \Rightarrow XXa \Rightarrow Xba$$

 $\Rightarrow YSba \Rightarrow Yaba \Rightarrow baba$

is the rightmost derivations.

If G is a context-free grammar and $x \in L(G)$, several distinct derivation trees may exist for x. In some cases, a considerable number of such distinct trees may exist.

Example

Let $G=(\{S\},\{a\},S,\{S\to SS,S\to a\})$ be a context-free grammar. It is not difficult to see that the language generated by G is $L(G)=\{a^m\mid m\geq 1\}$. Denote by C(n) the number of derivation trees that describe derivations of the form $S\stackrel{*}{\underset{G}{\rightleftharpoons}} a^{n+1}$. We have C(0)=1, and

$$C(n) = \sum_{i=0}^{n-1} C(j)C(n-1-j),$$

It is possible to prove that $C(n) = \Theta\left(\frac{4^n}{n^{1.5}}\right)$.

Derivation trees for arithmetic expressions relect implicitely the priority order of arithmetic operations.

Consider the context-free grammar

$$G = (\{E, T, F\}, \{+, \times, (,)\}, E, \{E \rightarrow T, E \rightarrow E + T, T \rightarrow F, T \rightarrow F \times T, F \rightarrow a, F \rightarrow (E)\}).$$

Derivation Tree for $a \times a + a$

