Context-Free languages (part III)

Prof. Dan A. Simovici

UMB

1 The Pumping Lemma for Context-Free Languages

2 Closure Properties of \mathcal{L}_2

A preliminary result

Theorem

Let $G = (A_N, A_T, S, P)$ be a grammar in Chomsky normal form.

If T is a derivation tree for a derivation $X \stackrel{*}{\underset{G}{\rightleftharpoons}} x$, then for the height of the tree T, height T we have height(T) $\geqslant \log_2 |x|$.

Proof

The proof is by strong induction on the length n of the derivation $X \stackrel{*}{\underset{G}{\longrightarrow}} x$. Since G is a grammar in Chomsky normal form its productions have either the form $X \to YZ$ or $X \to a$.

For n=1 the derivation is $X\underset{G}{\Rightarrow} x$, so x=a and $1\geqslant 0=\log_2|x|$.

If the first production applied in the derivation is $X \to YZ$, then

$$X \underset{G}{\Rightarrow} YZ \stackrel{*}{\underset{G}{\Rightarrow}} x,$$

and x can be factored as x=yz, where $Y\overset{*}{\underset{G}{\rightleftharpoons}}y$ and $Z\overset{*}{\underset{G}{\rightleftharpoons}}z$ are shorter derivations. Let T_y and T_z be the derivation trees that correspond to these derivations.

Note that height $T = 1 + \max\{\text{height}(T_y), \text{height}(T_z)\}$. Derivation tree T

Note that for a, b > 0 we have

$$1 + \max\{\log_2 a, \log_2 b\} \geqslant \log_2(a+b).$$

The equality takes place when a = b.

The inequality is equivalent to $\max\{log_2a, log_2b\} \geqslant log_2\frac{a+b}{2}$, which is clearly true.

Therefore,

$$\begin{split} \mathsf{height}(T) &= 1 + \mathsf{max}\{\mathsf{height}(T_y), \mathsf{height}(T_z)\} \\ &\geqslant 1 + \mathsf{max}\{\mathsf{log}_2 \, |y|, \mathsf{log}_2 \, |z|\} \\ &\qquad \qquad (\mathsf{by inductive hypothesis}) \\ &\geqslant \ \mathsf{log}_2(|y| + |z|) = \mathsf{log}_2 \, |x|, \end{split}$$

which concludes the proof.

An important observation

Let T be a derivation tree for $X \stackrel{*}{\underset{G}{\Longrightarrow}} x$. If ϖ is a path of length ℓ in T that joins the root to a leaf, then there are ℓ nodes labeled by non-terminal symbols.

Theorem

Let G be a context-free grammar. There exists a number $n_G \in \mathbb{N}$ such that if $w \in L(G)$ and $|w| \geqslant n_G$, then we can write

$$w = xyzut$$

such that $|y| \geqslant 1$ or $|u| \geqslant 1$, $|yzu| \leqslant n_G$ and $xy^n zu^n t \in L(G)$ for all $n \in \mathbb{N}$.

Proof

Suppose initially that $\lambda \notin L(G)$ and that G is a grammar in Chomsky normal form.

If $x \in L(G)$ and $|x| \geqslant 2^{1+|A_N|}$, the tree T has height at least $1+|A_N|$. Let ϖ be a longest path in this tree; its length is at least $|A_N|+1$, so the labels of non-final nodes on this path (which are non-terminals) cannot all be distinct.

Let X be the last occurrence of a symbol that is repeated on the path ϖ of a derivation tree T for $S \overset{*}{\underset{G}{\Rightarrow}} w$.

Since there is only one repeated symbol on the path that originates in the first X in this tree the length of this path is at most $|A_N|+1$. Therefore, the word yzu for which $X \stackrel{*}{\Longrightarrow} yzu$ cannot be longer than $2^{|A_N|+1} = n_L$. The existence of the tree T implies the existence of the following derivations:

- $S \stackrel{*}{\underset{G}{\Rightarrow}} xXt$;
- $X \stackrel{*}{\underset{G}{\Rightarrow}} yXu;$
- $X \stackrel{*}{\underset{G}{\Rightarrow}} z$.

A repeated application of the second derivation yields:

$$S \underset{G}{\overset{*}{\Rightarrow}} xXt \quad \underset{G}{\overset{*}{\Rightarrow}} xyXut \underset{G}{\overset{*}{\Rightarrow}} xy^2Xu^2t$$

$$\cdots \qquad \qquad \underset{G}{\overset{*}{\Rightarrow}} xy^nXu^nt \underset{G}{\overset{*}{\Rightarrow}} xy^nzu^nt,$$

hence $xy^nzu^nt \in L$ for $n \in \mathbb{N}$, which completes the proof.

Example

Let $A = \{a, b, c\}$ and let $L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$. The language L is not context-free.

Suppose that L were a context-free language. Then, there is $n_G \in \mathbb{N}$ satisfying the properties stated in the Pumping Lemma.

Let $w=a^{n_G}b^{n_G}c^{n_G}$. Clearly, $|w|=3n_G>n_G$, so w=xyzut for some x,y,z,u,t such that $|y|\geqslant 1$ or $|u|\geqslant 1$, $|yzu|\leqslant n_G$ and $xy^nzu^nt\in L(G)$ for all $n\in\mathbb{N}$.

(Example cont'd)

Neither y nor u may contain more than one type of symbol; indeed, if y contained both as and bs, then we could write $y = y'a \cdots ab \cdots by''$. Since

$$xy^2zu^2t = xy'a\cdots ab\cdots by''y'a\cdots ab\cdots by''zu^2t$$

we obtain a contradiction, since no b symbol may precede an a symbol in any word of L(G).

(Example cont'd)

A similar argument works for u. Thus, each y and u may contain only one kind of symbol.

Consequently, pumping y and u would violate the condition $n_a(w) = n_b(w) = n_c(w)$ satisfied by all words $w \in L(G)$. This shows that L(G) does not satisfy the conditions of Pumping Lemma, hence L(G) is not context-free.

We know that the class of context-free languages is closed with respect to union, product and Kleene closure.

Next we examine closure (and non-closure) properties of this class of languages with respect to other operations.

Theorem

The class \mathcal{L}_2 is not closed with respect to intersection.

Proof

Consider the context-free grammars

$$\begin{array}{ll} \textit{G}_{0} & = & (\{\textit{S},\textit{X},\textit{Y}\},\{\textit{a},\textit{b},\textit{c}\},\textit{S},\{\textit{S}\rightarrow\textit{XY},\textit{X}\rightarrow\textit{aXb},\textit{X}\rightarrow\lambda,\\ & \textit{Y}\rightarrow\textit{cY},\textit{Y}\rightarrow\lambda\})\\ \textit{G}_{1} & = & (\{\textit{S},\textit{X},\textit{Y}\},\{\textit{a},\textit{b},\textit{c}\},\textit{S},\{\textit{S}\rightarrow\textit{XY},\textit{X}\rightarrow\textit{aX},\textit{X}\rightarrow\lambda,\\ & \textit{Y}\rightarrow\textit{bYc},\textit{Y}\rightarrow\lambda\}). \end{array}$$

It is easy to see that

$$L(G_0) = \{a^m b^m c^p \mid m, p \in \mathbb{N}\}\$$

$$L(G_1) = \{a^m b^p c^p \mid m, p \in \mathbb{N}\}.$$

Therefore, both $L_0=\{a^mb^mc^p\mid m,p\in\mathbb{N}\}$ and $L_1=\{a^mb^pc^p\mid m,p\in\mathbb{N}\}$ are context-free languages. On the other hand, since $L_0\cap L_1=\{a^nb^nc^n\mid n\in\mathbb{N}\}$, $L_0\cap L_1$ does not belong to \mathcal{L}_2 .

Corollary

The class \mathcal{L}_2 is not closed with respect to complement.

Proof.

Indeed, suppose that \mathcal{L}_2 were closed with respect to complement. Since \mathcal{L}_2 is closed with respect to union, and intersection can be expressed through union and complement (using De Morgan's equalities) this would imply that \mathcal{L}_2 is closed with respect to intersection.

Theorem

If L is a context-free language and R is a regular language, then $L \cap R$ is a context-free language.

Proof

Without loss of generality, we may assume that both L and R are languages over the same alphabet A_T . Initially, we also assume that neither L nor R contains the null word.

Suppose that L=L(G), where $G=(A_N,A_T,S_0,P)$ is a λ -free context-free grammar and $R=L(\mathcal{M})$, where \mathcal{M} is a deterministic finite automaton $\mathcal{M}=(A_T,Q,\delta,q_0,F)$.

Define the context-free grammar $G'=(A'_N,A_T,S',P')$ as follows. The nonterminal alphabet A'_N consists of the new initial symbol S' together with $(|A_N|+|A_T|)|Q|^2$ new symbols of the form $s^{qq'}$ for every symbol $s\in A_N\cup A_T$ and every pair of states (q,q') of the automaton $\mathfrak M$. The set P' consists of the following productions:

- $S' \to S^{q_0q}$ for every final state q of \mathfrak{M} ;
- $X^{qq'} \to s_0^{qq_1} s_1^{q_1q_2} \cdots s_{n-1}^{q_{n-1}q'}$ for every production $X \to s_0 \dots s_{n-1}$ in P and every sequence of states (q_1, \dots, q_{n-1}) ;
- $a^{qq'} \to a$ for every terminal symbol a of G such that $\delta(q,a) = q'$ in $\mathfrak{M}.$

We claim that if $s^{qq'} \stackrel{n}{\underset{G'}{\longrightarrow}} x$ for some $x \in A_T^*$, then $\delta^*(q,x) = q'$ in $\mathfrak M$ and that, if $s \in A_N \cup A_T$, then $s \stackrel{*}{\underset{G}{\longrightarrow}} x$. The argument is by induction on $n \geqslant 1$. If n = 1 we have s = x = a for some $a \in A_T$ and $\delta(q, a) = q'$ and the claim is clearly satisfied.

Suppose that the claim holds for derivations of length less than n, and let $s^{qq'} \stackrel{n}{\Longrightarrow} x$ be a derivation of length n. If we write the first step of this derivation explicitly, we obtain

$$s^{qq'} \underset{G'}{\Rightarrow} s_0^{qq_1} s_1^{q_1q_2} \cdots s_{n-1}^{q_{n-1}q'} \underset{G'}{\overset{*}{\Rightarrow}} x.$$

Therefore, we have the production $s \to s_0 \dots s_{n-1}$ in P, and we can write x as $x = x_0 \dots x_{n-1}$, such that we have the derivations

$$s_0^{qq_1} \stackrel{*}{\xrightarrow{G}} x_0 \qquad s_1^{q_1q_2} \stackrel{*}{\xrightarrow{G}} x_1$$

$$\vdots$$

$$s_{i-1}^{q_{i-1}q_i} \stackrel{*}{\xrightarrow{G}} x_{i-1} \cdots s_{n-1}^{q_{n-1}q'} \stackrel{*}{\xrightarrow{G}} x_{n-1}$$

that are all shorter than n.

By the inductive hypothesis we have

$$\delta^*(q, x_0) = q_1, \delta^*(q_1, x_1) = q_2, \dots, \delta^*(q_{n-1}, x_{n-1}) = q',$$

so $\delta^*(q, x_0 \cdots x_{n-1}) = \delta^*(q, x) = q'$. Also, if s_i is a nonterminal, then $s_i \overset{*}{\underset{G}{\Rightarrow}} x_i$; otherwise, that is, if $s_i \in A_T$, we have $s_i = x_i$, so $s_i \overset{*}{\underset{G}{\Rightarrow}} x_i$ for $0 \le i \le n-1$. This allows us to construct the derivation

$$s \Rightarrow s_0 \dots s_{n-1} \stackrel{*}{\Rightarrow} x_0 \dots x_{n-1},$$

which justifies our claim.

We prove the theorem by showing that $L(G')=L\cap R$. Suppose that $x\in L(G')$. We have the derivation $S'\overset{*}{\underset{G'}{\Rightarrow}}x$, that is, $S'\overset{*}{\underset{G'}{\Rightarrow}}S^{q_0q}\overset{*}{\underset{G'}{\Rightarrow}}x$. By the previous claim this implies both $S\overset{*}{\underset{G}{\Rightarrow}}x$ and $\delta^*(q_0,x)=q$. Thus, $x\in L\cap R$.

Conversely, suppose that $x=a_0\cdots a_{n-1}\in L\cap R$. We have the derivation $S\overset{*}{\underset{G}{\Rightarrow}}x$, so in G' we can write

$$S' \underset{G}{\Rightarrow} S^{q_0q} \overset{*}{\underset{G}{\Rightarrow}} a_0^{q_0q_1} a_1^{q_1q_2} \cdots a_{n-1}^{q_{n-1}q},$$

for some final state q and any states q_1,\ldots,q_{n-1} . We can select these intermediate states such that $\delta(q_i,a_i)=q_{i+1}$ for $0\leqslant i\leqslant n-2$ and $\delta(q_{n-1},a_{n-1})=q'$. Therefore, we have the productions in P':

$$a_0^{q_0q_1} o a_0, a_1^{q_1q_2} o a_1, \dots, a_{n-1}^{q_{n-1}q'} o a_{n-1}$$

This implies the existence of the derivation $S' \stackrel{*}{\underset{G}{\rightleftharpoons}} a_0 a_1 \cdots a_{n-1}$, so $x \in L(G')$.

If $\lambda \in R$ or $\lambda \in L$ we consider the regular language $R' = R - \{\lambda\}$ and the context-free language $L' = L - \{\lambda\}$. By the previous argument we can construct a λ -free context-free grammar G' such that $L(G') = L' \cap R'$. If $\lambda \not\in L \cap R$, then $L \cap R = L' \cap R'$ and this shows that $L \cap R$ is context-free. If $\lambda \in L \cap R$, we have $L \cap R = (L' \cap R') \cup \{\lambda\}$. Then, starting from $G' = (A'_N, A_T, S', P')$ we construct the context-free grammar

$$G'' = (A'_{N} \cup \{S''\}, A_{T}, S'', P' \cup \{S'' \to S', S'' \to \lambda\})$$

and we have $L \cap R = L(G'')$.