Context-Free languages (part III)

Prof. Dan A. Simovici

UMB

1 Type 3 Grammars and Finite Automata

The Case of One-Symbol Alphabet

 \bigcirc Other Closure Properties of \mathcal{L}_2

The main result of this section is a proof that the class \mathcal{R} of regular languages coincides with \mathcal{L}_3 .

Theorem

Let G be a type-3 grammar, and let L be the language generated by G. There is a transition system T such that L = L(T).

Proof

Suppose that $G = (A_N, A_T, S, P)$ is a type-3 grammar. Define the transition system $\mathfrak{T} = (A_T, A_N \cup \{Z\}, \theta, S, \{Z\})$, where Z is a new symbol, $Z \notin A_N \cup A_T$, and

$$\theta = \{(X, u, Y) \mid X \to uY \in P\}$$

$$\cup \{(X, u, Z) \mid X \to u \in P\}.$$

Let $w \in L(G)$. There exists a derivation

$$S \underset{G}{\Rightarrow} u_0 X_{i_0} \underset{G}{\Rightarrow} u_0 u_1 X_{i_1} \cdots \underset{G}{\Rightarrow} u_0 u_1 \cdots u_{n-1} u_n,$$

where $w=u_0\cdots u_{n-1}u_n$. The productions used in this derivation are $S\to u_0X_{i_0},\ X_{i_{p-1}}\to u_pX_{i_p}$ for $1\le p\le n-1$, and $X_{i_{n-1}}\to u_n$. Therefore, the triples

$$(S, u_0, X_{i_0}), (X_{i_0}, u_1, X_{i_1}), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)$$

must all be in θ , which implies that $(S, u_0 \cdots u_n, Z) \in \theta^*$. Since Z is a final state of \mathfrak{T} , we have $u \in L(\mathfrak{T})$, so $L(G) \subseteq L(\mathfrak{T})$.

Conversely, if $u \in L(\mathfrak{T})$, then $(S, u, Z) \in \theta^*$. Taking into account the definition of θ , there are n intermediate states in $\mathfrak{T}, X_{i_0}, \ldots, X_{i_{n-1}}$ such that $u = u_0 \cdots u_n$ and the triples

$$(S, u_0, X_{i_0}), (X_{i_0}, u_1, X_{i_1}), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)$$

exist in θ . This implies the existence in P of the productions

$$S \to u_0 X_{i_0}, X_{i_0} \to u_1 X_{i_1}, \dots, X_{i_{n-2}} \to u_{n-1} X_{i_{n-1}}, X_{i_{n-1}} \to u_n$$

Using these productions we obtain the derivation

$$S \underset{G}{\Rightarrow} u_0 X_{i_0} \underset{G}{\Rightarrow} u_0 u_1 X_{i_1} \cdots \underset{G}{\Rightarrow} u_0 u_1 \cdots u_{n-1} u_n,$$

which implies that $x \in L(\mathfrak{T})$. This proves the inclusion $L(\mathfrak{T}) \subseteq L(G)$.

Theorem

For every regular language L there is a type-3 grammar G such that L(G) = L.

Proof.

Let $\mathcal{M} = (A, Q, \delta, q_0, F)$ be a dfa such that $L = L(\mathcal{M})$. The type-3 grammar $G = (Q, A, q_0, P)$ whose productions are

$$q o aq'$$
 for each q, q', a with $q' = \delta(q, a)$
 $q o \lambda$ for each $q \in F$.

generates $L(\mathfrak{M})$.

Corollary

The class \mathcal{L}_3 coincides with the class \mathcal{R} of regular languages.

Recall the Pumping Lemma for context-free languages:

Theorem

Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geqslant n_L$, then we can write

$$w = xyzut$$

such that $|y| \geqslant 1$ or $|u| \geqslant 1$, $|yzu| \leqslant n_L$ and $xy^n zu^n t \in L$ for all $n \in \mathbb{N}$.

This is a necessary condition for the "context-freeness" of a language.

The Special Case of One-symbol Alphabets

Let $A = \{a\}$ be an one-symbol alphabet.

- Word concatenation in A* is commutative.
- The formulation of the Pumping Lemma in this special case: Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geqslant n_L$, then we can write

$$w = rs$$

such that $1 \leq |s| \leq n_G$ and $rs^n \in L(G)$ for all $n \in \mathbb{N}$.

Note that $r \in L$ (since we can take n = 0).

If $|r| > n_L$ the same pumping lemma can be applied to r, and $r = r_1 w_1$ with $|w_1| \leqslant n_L$ such $r_1 w_1^{n_1} \in L$ for $n_1 \in \mathbb{N}$. Again $r_1 \in L$ (for n = 0), etc. This leads to a stronger form of the Pumping Lemma for languages over one-symbol alphabets.

If L is a context-free language on an one-symbol alphabet, there exists a number n_L such that every word $w \in L$ with $|x| \ge n_L$ can be written as

$$w = rs_1s_2\cdots s_k,$$

where $|r|, |s_1|, \ldots, |s_k| \leqslant n_L$ and

$$rs_1^{n_1}\cdots s_k^{n_k}\in L$$

for $n_1, \ldots, n_k \in \mathbb{N}$.

Note that the set $K_n(L)$ of words in L shorter than n_L is finite, so it is regular. Since $L = (L \cap K_n(L)) \cup (L - K_n(L))$. The set $L - K_n(L)$ has the form $\{w_1, w_2, \ldots, w_n\}^*$, where w_1, \ldots, w_n are the words that can be "pumped". Thus, L is a regular language.

Theorem

Let $s: A^* \longrightarrow B^*$ be a substitution. If s(a) is a context-free language for every $a \in A$ and $L \subseteq A^*$ is a context-free language, then s(L) is a context-free language.

Proof

Suppose that L = L(G), where $G = (A_N, A, S, P)$ is a context-free grammar and let s(a) is generated by the context-free grammar $G_a = (A_N^a, B, S_a, P_a)$ for $a \in A$.

We may assume that the sets of nonterminal symbols A_N^a are pairwise disjoint.

Let P' be the set of productions obtained from P as follows. In each production of P replace every letter $a \in A$ by the nonterminal S_a . We claim that the language s(L) is generated by the grammar $G' = (A_N \cup \bigcup_{a \in A} A_N^a, B, S, P' \cup \bigcup_{a \in A} P_a)$.

Let $y \in s(L)$. There exists a word $x = a_{i_0} \dots a_{i_{n-1}} \in L$ such that $y \in s(x)$. This means that $y = y_0 \dots y_{n-1}$, where $y_k \in s(a_{i_k}) = L(G_{a_{i_k}})$ for $0 \le k \le n-1$. Thus, we have the derivations $S_{a_{i_k}} \overset{*}{\underset{G_{a_{i_k}}}{\hookrightarrow}} y_k$ for $0 \le k \le n-1$, and the same derivations can be done in G'. Consequently, we obtain the derivation

$$S \stackrel{*}{\underset{G'}{\Rightarrow}} S_{a_{i_0}} \dots S_{a_{i_{n-1}}} \stackrel{*}{\underset{G'}{\Rightarrow}} y_0 \dots y_{n-1} = y,$$

which implies $y \in L(G')$, so $s(L) \subseteq L(G')$.

Conversely, if $y \in L(G')$, then any derivation $S \stackrel{*}{\underset{G'}{\Rightarrow}} y$ is of the previous form.

The word y can be written as $y=y_0\dots y_{n-1}$, where $S_{a_{i_k}}\overset{*}{\underset{G'}{\Rightarrow}}y_k$ for $0\leq k\leq n-1$, so $y_k\in L(G_{a_{i_k}})=s(a_{i_k})$ for $0\leq k\leq n-1$. This implies $y=y_0\cdots y_{n-1}\in s(a_{i_0}\cdots s(a_{i_{n-1}})=s(x)\in s(L)$, so $L(G')\subseteq s(L)$. Since s(L)=L(G'), it follows that s(L) is a context-free language.

Corollary

If $h: A^* \longrightarrow B^*$ is a morphism and $L \subseteq A^*$ is a context-free language, then h(L) is a context-free language.

The class \mathcal{L}_2 is closed with respect to inverse morphic images. In other words, if $h: B^* \longrightarrow A^*$ is a morphism, and $L \subseteq A^*$ is a context-free language, then $h^{-1}(L)$ is a context-free language.

Proof

Suppose that $B = \{b_0, \dots, b_{m-1}\}$ and that $h(b_i) = x_i$ for $0 \le i \le m-1$. Let $B' = \{b'_0, \dots, b'_{m-1}\}$, and let s be the substitution given by $s(a) = B'^* a B'^*$ for $a \in A$.

$$B = \{b_0, \dots, b_{m-1}\}$$

$$B^* \xrightarrow{h(b_i) = x_i} A^*$$

$$s(a) = B'^* a B'^*$$

$$B' = \{b'_0, \dots, b'_{m-1}\}$$

$$B = \{b_0, \dots, b_{m-1}\}$$

$$(c \cup B)'^* \xrightarrow{h_2} B^* \xrightarrow{h(b_i) = x_i} A^*$$

$$h_1 \qquad g \qquad s(a) = B'^* a B'^*$$

$$(A \cup B)'^* \qquad B'^*$$

$$B' = \{b_0, \dots, b_{m-1}'\}$$

Consider the finite language
$$H = \{b_i'x_i \mid 0 \le i \le m-1\}$$
 in $(B' \cup A)^*$ and the mapping $g: \mathcal{P}(A^*) \longrightarrow \mathcal{P}((A \cup B')^*)$ given by $g(L) = s(L) \cap H^*$. Define $h_1: (A \cup B')^* \longrightarrow (\{c\} \cup B)^*$ and $h_2: (\{c\} \cup B)^* \longrightarrow B^*$ by $h_1(a) = c$ for $a \in A$, $h_1(b') = b$ for all $b' \in B'$, and $h_2(c) = \lambda$, $h_2(b) = b$ for $b \in B$.

We claim that for every language $L \in \mathcal{P}(A)$ such that $\lambda \notin L$, $h^{-1}(L) = h_2(h_1(g(L)))$ and hence, $h^{-1}(L)$ is context-free. This follows from the following equivalent statements:

- $h(u) = x_{i_0} \cdots x_{i_{k-1}} \in L;$
- $b'_{i_0}x_{i_0}\cdots b'_{i_{k-1}}x_{i_{k-1}}\in g(L);$
- $b_2(b_{i_0}c\cdots c\cdots b_{i_{k-1}}c\cdots c) = b_{i_0}\cdots b_{i_{k-1}} = u \in h_2(h_1(g(L))).$

If $\lambda \in L$, the language $L - \{\lambda\}$ is context-free, so $h^{-1}(L - \{\lambda\})$ is also context-free. Note that $h^{-1}(L) = h^{-1}(L - \{\lambda\}) \cup h^{-1}(\{\lambda\})$ and that $h^{-1}(\{\lambda\}) = \{a \in A \mid h(a) = \lambda\}^*$. Since $h^{-1}(\{\lambda\})$ is regular it follows that $h^{-1}(L)$ is context-free.

Reminder

We defined the shuffle of languages

Definition

Let A be an alphabet and let G, K be two languages over A. The *shuffle* of G and K is the language

shuffle(
$$G, K$$
) = { $x_0y_0x_1y_1 \cdots x_{n-1}y_{n-1} \mid x_0x_1 \cdots x_{n-1} \in G$ and $y_0y_1 \cdots y_{n-1} \in K$ }.

We proved

Theorem

There is an alphabet B and there exist three morphisms g, k, h from B^* to A^* such that h is a very fine morphism, g, k are fine morphisms and shuffle(G, K) = $h(g^{-1}(G) \cap k^{-1}(K))$.

Corollary

Let $L \subseteq A^*$ be a context-free language and let $R \subseteq A^*$ be a regular language. Then, shuffle(L, R) is a context-free language.