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Elimination of erasure productions in context-free grammars

Theorem

For every context-free grammar G, there is a context-free, λ-free grammar
G ′ such that L(G ′) = L(G )− {λ}.

Proof.

Let G = (AN ,AT ,S0,P) be a context-free grammar. Consider the
sequence U0, . . . ,Um, . . . of subsets of AN defined by

U0 = {X | X ∈ AN and X → λ ∈ P},
Um+1 = Um ∪ {X ∈ AN | X → α ∈ P for some α ∈ U∗m},

for m ∈ N.
Since U0 ⊆ U1 ⊆ · · · ⊆ AN , there is k ∈ N such that Uk = Uk+1.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

A simple argument (by induction on h ≥ 1) shows that Uk = Uk+h for
every h ≥ 1.
The base step is immediate.
Suppose that Uk = Uk+h and let X ∈ Uk+h+1. If X ∈ Uk+h, then X ∈ Uk

by the inductive hypothesis. Otherwise, there is a production X → α ∈ P
such that α ∈ U∗k+h. By the inductive hypothesis, α ∈ U∗k , so
X ∈ Uk+1 = Uk . Therefore, Uk+h+1 = Uk .
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Elimination of erasure productions in context-free grammars

We claim that X
+⇒
G
λ if and only if X ∈ Uk .

We prove by strong induction on p ≥ 1 that if X
p⇒
G
λ, then X ∈ Uk .

For p = 1, if X ⇒
G
λ, then X ∈ U0 and U0 ⊆ Uk .

5 / 34



Elimination of erasure productions in context-free grammars

(Proof cont’d)

Suppose that the statement is true for derivations X
+⇒
G
λ of length no

greater than p and let X
p+1⇒
G

λ. The first production applied in this

derivation must have the form X → Xi1 · · ·Xiq ; therefore, we have

Xi1 · · ·Xiq

p⇒
G
λ.

Hence, Xi`

p`⇒
G
λ, where p` ≤ p for 1 ≤ ` ≤ q. By the inductive hypothesis,

we have Xi` ∈ Uk , so Xi1 · · ·Xiq ∈ (Uk)∗, which implies X ∈ Uk+1 = Uk .
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

Conversely, it is easy to prove (by induction on n) that for every X ∈ Un

we have X
+⇒
G
λ. We leave this argument to the reader. From this it

follows that if θ ∈ U∗k , then θ
∗⇒
G
λ.

Consider now the set of productions P ′, where

P ′ = {X → α′ | α′ 6= λ, there is X → α ∈ P and α′ is obtained
from α by erasing 0 or more symbols from Uk}.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

If G ′ is the context-free grammar G ′ = (AN ,AT ,S0,P
′), then

L(G ′) = L(G )− {λ}. Indeed, suppose that X
p⇒
G ′

γ. Clearly, γ 6= λ since

G ′ has no erasure productions. We prove, by strong induction on p, that

we have X
∗⇒
G
γ.

For p = 0, the statement is trivially true.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

Assume that it holds for derivations of length less than or equal to p, and

let X
p+1⇒
G ′

γ. If the first production applied in this derivation is

X → Xi0 · · ·Xih−1
, then γ = γ0 . . . γh−1, where Xij

pj⇒
G ′

γj , pj ≤ p, for

0 ≤ j ≤ h − 1. By the inductive hypothesis we have Xij

∗⇒
G
γj for

0 ≤ j ≤ h − 1.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

Furthermore, assume that the production X → Xj0 · · ·Xjh−1
was obtained

from the production X → θ0Xj0θ1 · · ·Xjh−1
θh from P, where

θ0, . . . , θh ∈ (Uk)∗. Our previous discussion allows us to infer the existence

of the derivations θq
∗⇒
G
λ for 0 ≤ q ≤ h. By combining the derivations

obtained above, we have

X ⇒
G

θ0Xj0θ1 · · ·Xih−1
θh

∗⇒
G

Xj0 · · ·Xjh−1

∗⇒
G

γ0 · · · γh−1 = γ.

This implies L(G ′) ⊆ L(G )− {λ}.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

To prove the converse inclusion, consider a derivation X
p⇒
G
γ, where

γ 6= λ.

We claim that X
∗⇒
G ′

γ. The argument is by strong induction on p ≥ 0.

The case p = 0 is trivially true. Assume that the statement holds for

derivations of length of no more than p, and let X
p+1⇒
G

γ, where γ 6= λ.

Let β = Xj0 · · ·Xjl−1
be the word that follows X in the previous derivation,

that is, X ⇒
G
β

p⇒
G
γ.
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Elimination of erasure productions in context-free grammars

(Proof cont’d)

We can write:
γ = γ0 · · · γl−1,

where Xjm

pm⇒
G
γm and pm ≤ p for 0 ≤ m ≤ l − 1.

If γm 6= λ, by the inductive hypothesis, we have Xjm

∗⇒
G ′

γm. On the other

hand, if γm = λ, we have Xjm ∈ Uk . Let

{h0, . . . , hq−1} = {h | 0 ≤ h ≤ l − 1 and γh 6= λ}.

The definition of P ′ implies that we have the production
X → Xjh0

· · ·Xjhq−1
in P ′. Therefore,

X ⇒
G ′

Xjh0
· · ·Xjhq−1

∗⇒
G ′

γh0 · · · γhq−1 = γ.

This implies L(G )− {λ} ⊆ L(G ′).
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Elimination of erasure productions in context-free grammars

Theorem

If G is a context-free grammar, then there is an equivalent context-free
grammar G ′ such that one of the following two cases occurs:

1 if λ 6∈ L(G ), then G ′ is λ-free;

2 if λ ∈ L(G ), then G ′ contains a unique erasure production S ′ → λ,
where S ′ is the start symbol of G ′, and S ′ does not occur in any right
member of any production of G ′.
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Elimination of erasure productions in context-free grammars

Proof

We have shown that for every context-free grammar G there is a
context-free, λ-free grammar G1 such that L(G1) = L(G )− {λ}. If
λ 6∈ L(G ), then the grammars G and G1 are equivalent, and we can define
G ′ as G1. This proves the first case of this theorem.
If λ ∈ L(G ), by the same theorem, we have the context-free, λ-free
grammar G1 = (AN ,AT , S1,P) such that L(G1) = L(G )− {λ}. Define the
grammar G ′ by

G ′ = (AN ∪ {S ′},AT , S
′, {S ′ → S1, S

′ → λ} ∪ P),

where S ′ is a new nonterminal symbol (i.e., that S ′ 6∈ AN). It is immediate
that G ′ satisfies the conditions of the second case of this Theorem and
that L(G ′) = L(G1) ∪ {λ} = L(G ).
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Elimination of erasure productions in context-free grammars

Example

Let G = ({S ,X ,Y ,Z}, {a, b},S , {S → XYZ ,X → YZ ,X → aYb,X →
a,Y → λ,Y → b,Z → λ,Z → c}) be a context-free grammar that
contains erasure productions. The sequence of subsets of {S ,X ,Y ,Z} is

U0 = {Y ,Z},U1 = {Y ,Z ,X},U2 = {Y ,Z ,X ,S},U3 = U2.

Therefore, the set of productions P ′ is given by

P ′ = {S → XYZ ,S → YZ , S → XZ ,S → XY ,S → X , S → Y ,

S → Z ,X → YZ ,X → Y ,X → Z ,X → aYb,X → ab,

X → a,Y → b,Z → c}

Observe that the productions of P ′ are obtained by erasing zero, one, or
more of the symbols X ,Y ,Z from the rules of P.
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Elimination of erasure productions in context-free grammars

The previous theorem shows that it is possible to limit the erasure
productions in context-free grammars that generate a language L to a
single production that has the start symbol as its left member, without
restricting the generality.

Corollary

Every context-free language is a context-sensitive language; in other
words, L2 ⊆ L1.

Proof.

This is an immediate consequence of a previous theorem and the
definitions of L1 and L2.
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Elimination of Chain Productions

Definition

Let G = (AN ,AT ,S ,P) be a context-free grammar. A chain production is
a production X → Y , where X ,Y ∈ AN .
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Elimination of Chain Productions

Theorem

Let G = (AN ,AT ,S ,P) be a context-free grammar. There is a
context-free grammar G1 such that G1 is equivalent to G and G1 does not
contain chain productions.
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Elimination of Chain Productions

Proof

We assume initially that G is λ-free. Let X be a nonterminal symbol. To
eliminate productions of the form X → Y consider the following sequence
of sets:

UX
0 = {X}

UX
n+1 = UX

n ∪ {Z ∈ AN | Y → Z ∈ P for some Y ∈ UX
n }

It is clear that the sequence UX
0 , . . . ,U

X
n , . . . is an increasing sequence of

subsets of AN . The finiteness of AN implies the existence of a number i
such that UX

i = UX
i+1. Then, by induction on ` ≥ 1, we can easily prove

that UX
i = UX

i+` for ` ≥ 1.

We shall prove that UX
i = {Z ∈ AN | X

∗⇒
G

Z}.
A straightforward argument by induction on n shows that

UX
n ⊆ {Z ∈ AN | X

∗⇒
G

Z} for n ∈ N. In particular,

UX
i ⊆ {Z ∈ AN | X

∗⇒
G

Z}.
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Elimination of Chain Productions

(Proof cont’d)

To prove the converse inclusion, we prove that if a derivation X
k⇒
G

Z ,

then Z ∈ UX
i . The argument is by induction on k . For k = 0, Z = X , and

Z ∈ UX
0 ⊆ UX

i , so the conclusion follows. Suppose that the statement

holds for derivations of length k , and let X
k+1⇒
G

Z ′. Since the grammar

has no erasure rules, we can write X
k⇒
G

Z ⇒
G

Z ′. By the inductive

hypothesis, Z ∈ UX
i ; the existence of the production Z → Z ′ implies that

Z ∈ UX
i+1 = UX

i . Thus, {Z ∈ AN | X
∗⇒
G

Z} ⊆ UX
i .
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Elimination of Chain Productions

(Proof cont’d)

Denote the set {Z ∈ AN | X
∗⇒
G

Z} by UX
∗ . The context-free grammar

G1 = (AN ,AT , S ,P1) is defined by

P1 = {X → α | Z → α ∈ P for some Z ∈ UX
∗ and α 6∈ AN}.

It is clear that the grammar G1 has no chain productions and is equivalent
to G .
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Elimination of Chain Productions

If G is not λ-free, then there exists an equivalent context-free grammar
G ′ = (AN ∪ {S ′},AT ,S

′,P ′ ∪ {S ′ → λ}) where S ′ → λ is the unique
erasure production of G ′, and S ′ does not occur in any right member of
any production of G ′. The grammar G ′′ = (AN ∪ {S ′},AT , S

′,P ′)
generates the language L(G )− {λ}. By applying the previous construction
to G ′′ we obtain the grammar G ′′1 = (AN ∪ {S ′},AT , S

′,P ′′1 ) that has no
chain rules and for which L(G ′′1 ) = L(G )− {λ}. Then, the desired
grammar G1 is given by

G1 = (AN ∪ {S ′},AT ,S
′,P ′′1 ∪ {S ′ → λ}),

where S1 is a new start symbol.
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Elimination of Chain Productions

Example

The grammar

G = ({S ,X ,Y }, {a, b, c}, S , {S → X , S → aX ,X → Y ,

X → bY , S → a,X → b,Y → c})

is λ-free and contains some chain productions.
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Elimination of Chain Productions

(Example cont’d)

We have US
0 = {S}, US

1 = {S ,X}, US
2 = {S ,X ,Y }, and US

2 = US
3 = · · · ,

so US
∗ = {S ,X ,Y }. Similar computations give UX

∗ = {X ,Y } and
UY
∗ = {Y }. The grammar

G1 = ({S ,X ,Y }, {a, b, c},S , {S → aX , S → bY , S → a, S → b,

S → c ,X → c ,X → bY ,X → b,Y → c}).

is equivalent to G and has no chain productions.
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Elimination of Chain Productions

Let G = (AN ,AT ,S ,P) be a context-free grammar, and let X be a
nonterminal symbol. Denote by L(G ,X ) the set of terminal words that
can be generated from X in the grammar G ,, that is,

L(G ,X ) = {x ∈ A∗T | X
∗⇒
G

x}.

Clearly, we have L(G ,S) = L(G ).
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Elimination of Chain Productions

Definition

Let G = (AN ,AT ,S ,P) be a context-free grammar. A symbol
s ∈ AN ∪ AT is accessible if it occurs in a word α ∈ (AN ∪ AT )∗ such that

S
∗⇒
G
α.

A symbol X ∈ AN is productive if L(G ,X ) 6= ∅.
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Elimination of Chain Productions

Theorem

Let G = (AN ,AT ,S ,P) be a context-free grammar. There is a
construction of an equivalent grammar G ′ = (A′N ,AT ,S ,P

′) such that
P ′ = ∅ if L(G ) = ∅, and if L(G ) 6= ∅, then every symbol in A′N is
productive.
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Elimination of Chain Productions

Proof

Define the sequence U0, . . . ,Un, . . . of subsets of AN by

U0 = {X ∈ AN | X → u ∈ P for some u ∈ A∗T}
Un+1 = Un ∪ {X ∈ AN | X → α ∈ P for some α ∈ (Un ∪ AT )∗}

Note that U0 ⊆ U1 ⊆ · · · ⊆ Un ⊆ · · · ⊆ AN . Therefore, there is i such
that Ui = Ui+1. An easy argument by induction on k shows that
Ui = Ui+k for k ≥ 1. This part of the proof is left to the reader.
We claim that

{X ∈ AN | L(G ,X ) 6= ∅} = Ui .
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Elimination of Chain Productions

(Proof cont’d)

If n = 0, the conclusion follows from the definition of U0. Suppose that
the inclusion holds for Un and let Y ∈ Un+1. If Y ∈ Un the conclusion is
immediate. Otherwise, there is a production Y → α, where
α = w0Z0w1Z1 · · ·wp−1Zp−1wp, where wi ∈ A∗T for 0 ≤ i ≤ p and Zj ∈ Un

for 0 ≤ j ≤ p − 1. By the inductive hypothesis, we have the derivations

Zj

∗⇒
G

zj , where zj ∈ A∗T for 0 ≤ j ≤ p− 1. Thus, we obtain the derivation

Y ⇒
G

w0Z0w1Z1 · · ·wp−1Zp−1wp

∗⇒
G

w0z0w1z1 · · ·wp−1zp−1wp ∈ A∗T ,

which gives the desired conclusion. In particular,

Ui ⊆ {X ∈ AN | X
∗⇒
G

u for some u ∈ A∗T}.
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Elimination of Chain Productions

(Proof cont’d)

To prove the converse inclusion we prove by strong induction on m ≥ 1

that X
m⇒
G

u for u ∈ A∗T implies X ∈ Um−1. The basis case, m = 1, is

immediate.
Suppose that the statement holds for derivations of length less than or

equal to m and consider a derivation X
m+1⇒
G

u for u ∈ A∗T . If we write the

first step of this derivation, we obtain

X ⇒
G

w0Z0w1Z1 · · ·wp−1Zp−1wp

m⇒
G

u,

where w0, . . . ,wp−1, u ∈ A∗T , and Z0, . . . ,Zp−1 ∈ AN .
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Elimination of Chain Productions

(Proof cont’d)

The word u can be written as u = w0z0w1z1 · · ·wp−1zp−1wp, where

Zj

`j⇒
G

zj , `j ≤ m for 0 ≤ j ≤ p − 1. By the inductive hypothesis, we have

Zj ∈ U`j−1 ⊆ Um−1, so w0Z0w1Z1 · · ·wp−1Zp−1wp ∈ (Um−1 ∪ AT )∗.
Thus, X ∈ Um.
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Elimination of Chain Productions

(Proof cont’d)

Since Um ⊆ Ui for every m ∈ N and m ≥ 1, we obtain the converse
inclusion and, therefore, the desired equality.
Note that S ∈ Ui if and only if L(G ) 6= ∅. Define the set of productions P ′

by

P ′ =

{
∅ if S 6∈ Ui

{X → α | α ∈ (Ui ∪ AT )∗ and X → α ∈ P} otherwise.
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Elimination of Chain Productions

(Proof cont’d)

Since P ′ ⊆ P it follows that L(G ′) ⊆ L(G ). Conversely, if u ∈ L(G ), then

S
∗⇒
G

u. Let X → α be a production that occurs in this derivation. We

have
S
∗⇒
G
βXγ

∗⇒
G
βαγ

∗⇒
G

u.

Therefore, every nonterminal symbol that occurs in α must be productive.
This allows us to conclude that α ∈ (Ui ∪ AT )∗, hence X → α ∈ P ′. Since

every production used in the derivation S
∗⇒
G

u belongs to P ′, it follows

that u ∈ L(G ′), so L(G ) ⊆ L(G ′).
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Elimination of Chain Productions

Corollary

The emptiness of the language L(G ) generated by a context-free grammar
G = (AN ,AT , S ,P) is decidable.

Proof.

Note that the start symbol S of a context-free grammar G is productive if
and only if L(G ) 6= ∅. Therefore, in order to decide if L(G ) = ∅, it suffices
to compute the set Ui . Then, L(G ) = ∅ if and only if S 6∈ Ui .
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Elimination of Chain Productions

Example

Let G = ({S ,X ,Y ,Z}, {a, b},S , {S → YZ , S → XY ,S → XZ ,Z →
ab,Y → bc}) be a context-free grammar. The sequence U0,U1, . . . is
given by U0 = {Y ,Z}, U1 = {S ,Y ,Z}, U1 = U2 = · · · . Therefore, the
grammar G ′ = ({S ,Y ,Z}, {a, b}, S , {S → YZ ,Z → ab,Y → bc}) has
only productive symbols and is equivalent to G .
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