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The main objects of study of the theory of formal languages are languages,
which are defined as sets of certain sequences of symbols.

Definition
Let A be an alphabet. A language over A is a subset of A*. J

In other words, a language over A is any set of words over this alphabet.
For instance, {a, ab, abba} is a finite language over the alphabet {a, b}.
Similarly, L = {a" | n € N} is an infinite language over the same alphabet.



o By identifying words of length 1 with the symbols of A, the set A
itself is a language over A.
@ Other special languages over A:

o the empty language 0,
o the full language A*, and
o the null language {\}.

Since A* is a countably infinite set, the set of languages over A, P(A*) is
not countable.
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If L is a language over an alphabet A and A C A, then L is also a
language over the alphabet A’. Therefore, if {Lo,...,L,—1} is a finite
collection of languages over the alphabets {Ao, ..., A,—1}, respectively,
then for 0 < i < n—1, each L; is a language over A = J;;, Ai.

We denote by A; the alphabet that consists of those symbols that occur in
at least one word in L. If L is a language over A, then A, C A.



Definition
A language L is \-free if A & L.
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The set of all prefixes of the words of a language L is denoted by PREF(L).
Similarly, the sets of infixes and suffixes of the words of L are denoted by
INFIX(L) and SUFF(L), respectively.

Note that L C L’ implies Q(L) C Q(L'), where Q is any of PREF, SUFF, or

INFIX. Also, INFIX(L),PREF(L), SUFF(L) contain the null word and
include L.



The sets of proper prefixes, proper suffixes and proper infixes of a language
L are denoted by PREFpr(L), INFIXpr(L), and SUFFpr(L), respectively.
Since languages are sets of words, we can apply to them set-theoretical
operations such as union, intersection, difference, etc.

If L C A*, the complement of L with respect to the alphabet A is

Ly = A* — L. If Ais understood from the context, we may denote the
complement L4 simply by L.



Language Products

Definition

The product of two languages L and K over an alphabet A is the language
LK defined by

LK={xy | xelLand y € K}.




Definition
Let L C A* be a language over the alphabet A. The n'" power of L is the
language L" given by

L0 = {\}
[t = g

for every language L and natural number n.

v

Note that L1 = L. In general, L" is the set of all words that can be written
as products of n words of L. For n =0, we regard A as the product of zero
words of L.
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Example
Let L = {ab, a} be a language over the alphabet A = {a, b}. We have

L= {

[} = {ab,a}
[2 = {abab,aba, aab, aa}
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Definition
Let L be a language. The language L*, the star closure or Kleene closure

of L, is the set
= J{L" | nen}.

The language L™, the positive closure of L, is the set of words

L= J{t" | nepr}.
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@ L* is the set of all words that can be written as a product of zero or
more words of L.

o LT is the set of all words that can be written as a product of one or
more words of L.

@ Since L* includes the product of zero words of L, the null word X is a
member of L* for any language L.

o LC LT CL*and LL* = L*L = L™. Furthermore, if u,v € L*, then
uv € L*. Also, note that A € LT if and only if A € L.
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Example

Let L = {a, bab} be a language over the alphabet A = {a, b}. L*
comprises the words ), a, bab, abab, baba, babbab, aa, etc., and LT
consists of the same words except for .
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We have the following properties for any language L:
L¥L* = L*, (L*)* — L*,
L*L = LL* (L)t = LT,
LTL = LL*

Also, note that L C H implies L* C H*.
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Theorem

Let A be an alphabet. We have:
QO LhU(LiULy)=(LoULy) ULy,
@ Lo(L1l2) = (LoL1)Lo,
Q LyuUl; =L1UlL,,
O Lo(L1 U L) = (LoL1) U (LoLa),
Q (LoULy)ly = (LoL2) U(L1Lp),
Q LUL=1I,

for every L, Ly, L1, Ly € P(A*).
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Theorem

For every language L we have:
O {(\ML=L{\}=1L,
Q0L=LD=0,
Q@ LUD=0UL=1L,
Q L*={\}UL*L,
Q@ L*=({ Ul
Q 0" ={\},
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Theorem
Let A be an alphabet and let L be a language over A. We have

L*={\}ULUL?U---ULku Lkt

for every k € N.
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Proof

It is clear that
(MUuLUL?u--uLkuAr c o,

for every k € N.

Conversely, let x € L*. We have either x = A or x € L" for some n > 1. If
n < k, then x € {)\}ULUL2U---ULkULk+1L*. If n > k, then

Ln = [k+1pn=(k+1) C [k+1][* 50 again

x€ {AJULUL2U---ULkU LKL Thus,
{AJULUL2U.---ULku Lk C -
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Corollary

For every language L we have:

L* = {\}ULL".

Proof.
The equality of the corollary follows from Theorem ?? by taking k =0. [J
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Definition

The reversal of a language L C A* is the language L® given by

LR={xF | xelL}.

It is easy to see that (LR)R = L for every language L.
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Definition
Let L, K be two languages over the alphabet A. The right quotient LK~!
and the left quotient K~1L are the languages:

LK™ = {xcA* | xycLforsomeyc K}
KL = {xcA* | yxeclforsomeyc K}

22 /32



Example

Let A= {a, b,c} be an alphabet and L = {), a, ab, abc} be a language

over A. Consider the languages Ko = {c}, K1 = {b,c}, and Ky = {b, c}*

over the same alphabet. Then,

LKy*
LK
LK;y?

we have
= {ab},

= {a,ab},
= {\, a,ab, abc}.
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The left quotient of two languages can be expressed through the right
quotient of related languages by the equality

KL= (LR(KR)—l)R

and
LK™l = ((K"’)—lLR)R.
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Proof

Consider the following equivalent statements.
QO xe KL,
Q yx € L forsome y € K;
Q xRz e LR for some z € KR,
o XR c LR(KR)_l;
@ x e (LR(kR) ¥,
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Example

Let L be a language over an alphabet A. It is easy to see that the set
PREF(L) of prefixes of a language L is L(A*)™!, while the set SUFF(L) of
suffixes of L is (A*)71L.
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Theorem

Let Ly, L1, K be languages over the alphabet A. We have

(LoU LK™t =
(LoU L) tK
(Lon LKt
(LoNL)7IK
LoK™ 1 — [1KT
K (LoU Ly)
K (Lo Ly)
K 'o— KL,

NN N

N 1N

LoK*Uu LKt
La'KULT'K
LoK *nLK?
L*KNLtK
(Lo — 1)Kt
KoUKt
K 'lonK 1L,
K=Y (Lo — Ly).
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Theorem

For the languages L, Ly, L1 C A* and a € A we have:

. [ (el AL
{a) Hboly) = { (5} o)Ly U {a} 'L ifAc Lg

{a}7' = ({a} 'Ly

Note that the first equality can also be written as:

{a} 7 (LoL1) = ({a} " Lo)Lr U ({A} N Lo){a} ' La.

The proof is a direct application of the definition.
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If K is a singleton, K = {u}, we denote the languages {u}~L and
L{u}~ by u='L and Lu~!, respectively. These languages are referred to
as the left derivative of L with respect to u and the right derivative of L
with respect to u, respectively.
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We have:
(Lo U Ll)u_l = Lou_l U Llu_l
(Lo N Ll)u_l = Lou_l N Llu_l
L()U_1 — Llu_l = (Lo — Ll)u_l
uil(Lo @] Ll) = UflLo U U71L1
uil(Lo N Ll) = UflLo N U71L1
vy —uty = uY Lo - Ly)

v v = (w)7lL
(LYt = L(w),

for all words u, v.
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Induction on Words

Theorem

(Induction Principle for Words) Let L C A* be a set of words such that
A€ L, and x € L implies xa € L for every a € A. Then, L = A*.
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Induction on Words

Example

Let A be an alphabet, x € A*, and a € A. We prove, by applying the
Induction Principle for Words, that for every x € A*, if xa = ax, then
x = a™ for some m € N. Let

L={x € A" | xa= ax implies x = a™ for some m € N}.

Since \a = a\ = a and A\ = a°, we have \ € L. Suppose that x € L and
consider the word y = xa. If ya # ay, then the implication in the definition
of L holds and y € L. Therefore, assume that ya = ay. This implies

Xxaa = axa, so xa = ax, which implies x = a™ because we assumed x € L.
Thus, y = xa = a™*!, so y € L. By the Induction Principle for Words we
have L = A*.
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