Homework 3

Posted: October 24, 2015
Due: November 9, 2015

1. Prove that the language \(\{ x \in \{0, 1\}^* \mid x = x^R \} \) is not regular.
 Hint: concentrate on the word 0\(^p\)10\(^p\).

2. Let \(A \) be an alphabet with \(n \) symbols and let \(Q \) be a set with \(m \) elements. How many deterministic automata of the form \((A, Q, \delta, q_0, F)\) exist?

3. Prove or disprove:

 (a) If \(L \) is a regular language and \(K \subseteq L \), then \(K \) is regular.

 (b) Every non-regular language is infinite.

 (c) If \(L_1 \) and \(L_2 \) are non-regular languages, then \(L_1 \cap L_2 \) is non-regular.

4. Let \(L \) be a regular language, \(L \subseteq \{0, 1\}^* \). Prove that the set of all words in \(L \) that begin with 01 is regular.

5. Compute the minimal dfa for the regular language \(\{a\}^*\{b\}^* \).