Context-Free languages
(part IV)

Prof. Dan A. Simovici

UMB
1. Type 3 Grammars and Finite Automata

2. The Case of One-Symbol Alphabet

3. Other Closure Properties of \mathcal{L}_2
The main result of this section is a proof that the class \mathcal{R} of regular languages coincides with \mathcal{L}_3.

Theorem

Let G be a type-3 grammar, and let L be the language generated by G. There is a transition system \mathcal{T} such that $L = L(\mathcal{T})$.
Proof

Suppose that \(G = (A_N, A_T, S, P) \) is a type-3 grammar. Define the transition system \(\mathcal{T} = (A_T, A_N \cup \{Z\}, \theta, S, \{Z\}) \), where \(Z \) is a new symbol, \(Z \notin A_N \cup A_T \), and

\[
\theta = \{(X, u, Y) \mid X \rightarrow uY \in P\} \\
\cup\{(X, u, Z) \mid X \rightarrow u \in P\}.
\]
Let $w \in L(G)$. There exists a derivation

\[
S \Rightarrow_G u_0X_i \Rightarrow_G u_0u_1X_i \Rightarrow_G \cdots \Rightarrow_G u_0u_1\cdots u_{n-1}X_i \Rightarrow_G u_0u_1\cdots u_{n-1}u_n,
\]

where $w = u_0\cdots u_{n-1}u_n$. The productions used in this derivation are $S \rightarrow u_0X_i, X_{i_{p-1}} \rightarrow u_pX_i$ for $1 \leq p \leq n-1$, and $X_{i_{n-1}} \rightarrow u_n$. Therefore, the triples

\[(S, u_0, X_i), (X_i, u_1, X_i), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)\]

must all be in θ, which implies that $(S, u_0\cdots u_n, Z) \in \theta^*$. Since Z is a final state of \mathcal{T}, we have $u \in L(\mathcal{T})$, so $L(G) \subseteq L(\mathcal{T})$.
Conversely, if $u \in L(\mathcal{J})$, then $(S, u, Z) \in \theta^*$. Taking into account the definition of θ, there are n intermediate states in \mathcal{J}, $X_{i_0}, \ldots, X_{i_{n-1}}$ such that $u = u_0 \cdots u_n$ and the triples

$$(S, u_0, X_{i_0}), (X_{i_0}, u_1, X_{i_1}), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)$$

exist in θ. This implies the existence in P of the productions

$$S \rightarrow u_0X_{i_0}, X_{i_0} \rightarrow u_1X_{i_1}, \ldots, X_{i_{n-2}} \rightarrow u_{n-1}X_{i_{n-1}}, X_{i_{n-1}} \rightarrow u_n$$

Using these productions we obtain the derivation

$$S \Rightarrow_G u_0X_{i_0} \Rightarrow_G u_0u_1X_{i_1} \cdots \Rightarrow_G u_0u_1 \cdots u_{n-1}X_{i_{n-1}} \Rightarrow_G u_0u_1 \cdots u_{n-1}u_n,$$

which implies that $x \in L(\mathcal{J})$. This proves the inclusion $L(\mathcal{J}) \subseteq L(G)$.

(Proof cont’d)
Theorem

For every regular language L there is a type-3 grammar G such that $L(G) = L$.

Proof.

Let $M = (A, Q, \delta, q_0, F)$ be a dfa such that $L = L(M)$. The type-3 grammar $G = (Q, A, q_0, P)$ whose productions are

$$q \rightarrow aq' \quad \text{for each } q, q', a \text{ with } q' = \delta(q, a)$$
$$q \rightarrow \lambda \quad \text{for each } q \in F.$$

generates $L(M)$.

\qed
Corollary

The class \mathcal{L}_3 coincides with the class \mathcal{R} of regular languages.
Recall the Pumping Lemma for context-free languages:

Theorem

Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geq n_L$, then we can write

$$w = xyzut$$

such that $|y| \geq 1$ or $|u| \geq 1$, $|yzu| \leq n_L$ and $xy^nzu^n \in L$ for all $n \in \mathbb{N}$.

This is a necessary condition for the “context-freeness” of a language.
Let $A = \{a\}$ be an one-symbol alphabet.

- Word concatenation in A^* is commutative.
- The formulation of the Pumping Lemma in this special case:
 Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geq n_L$, then we can write

 $$w = rs$$

 such that $1 \leq |s| \leq n_G$ and $rs^n \in L(G)$ for all $n \in \mathbb{N}$.

Note that $r \in L$ (since we can take $n = 0$).
If $|r| > n_L$ the same pumping lemma can be applied to r, and $r = r_1 w_1$ with $|w_1| \leq n_L$ such $r_1 w_1^{n_1} \in L$ for $n_1 \in \mathbb{N}$. Again $r_1 \in L$ (for $n = 0$), etc.

This leads to a stronger form of the Pumping Lemma for languages over one-symbol alphabets.

If L is a context-free language on an one-symbol alphabet, there exists a number n_L such that every word $w \in L$ with $|x| \geq n_L$ can be written as

$$w = rs_1 s_2 \cdots s_k,$$

where $|r|, |s_1|, \ldots, |s_k| \leq n_L$ and

$$rs_1^{n_1} \cdots s_k^{n_k} \in L$$

for $n_1, \ldots, n_k \in \mathbb{N}$.
Note that the set $K_n(L)$ of words in L shorter than n_L is finite, so it is regular. Since $L = (L \cap K_n(L)) \cup (L - K_n(L))$. The set $L - K_n(L)$ has the form $\{w_1, w_2, \ldots, w_n\}^*$, where w_1, \ldots, w_n are the words that can be “pumped”. Thus, L is a regular language.
Theorem

Let $s : A^* \rightarrow B^*$ be a substitution. If $s(a)$ is a context-free language for every $a \in A$ and $L \subseteq A^*$ is a context-free language, then $s(L)$ is a context-free language.
Proof

Suppose that $L = L(G)$, where $G = (A_N, A, S, P)$ is a context-free grammar and let $s(a)$ is generated by the context-free grammar $G_a = (A^a_N, B, S_a, P_a)$ for $a \in A$.
We may assume that the sets of nonterminal symbols A^a_N are pairwise disjoint. Let P' be the set of productions obtained from P as follows. In each production of P replace every letter $a \in A$ by the nonterminal S_a. We claim that the language $s(L)$ is generated by the grammar $G' = (A_N \cup \bigcup_{a \in A} A^a_N, B, S, P' \cup \bigcup_{a \in A} P_a)$.
Let $y \in s(L)$. There exists a word $x = a_{i_0} \ldots a_{i_{n-1}} \in L$ such that $y \in s(x)$. This means that $y = y_0 \ldots y_{n-1}$, where $y_k \in s(a_{i_k}) = L(G_{a_{i_k}})$ for $0 \leq k \leq n - 1$. Thus, we have the derivations $S_{a_{i_k}} \xrightarrow[*]{G_{a_{i_k}}} y_k$ for $0 \leq k \leq n - 1$, and the same derivations can be done in G'. Consequently, we obtain the derivation

$$S \xrightarrow[*]{G'} S_{a_{i_0}} \ldots S_{a_{i_{n-1}}} \xrightarrow[*]{G'} y_0 \ldots y_{n-1} = y,$$

which implies $y \in L(G')$, so $s(L) \subseteq L(G')$.

(Proof cont’d)
(Proof cont’d)

Conversely, if \(y \in L(G') \), then any derivation \(S \xrightarrow{G'}^* y \) is of the previous form.

The word \(y \) can be written as \(y = y_0 \ldots y_{n-1} \), where \(S_{a_{ik}} \xrightarrow{G'}^* y_k \) for \(0 \leq k \leq n-1 \), so \(y_k \in L(G_{a_{ik}}) = s(a_{ik}) \) for \(0 \leq k \leq n-1 \). This implies \(y = y_0 \cdots y_{n-1} \in s(a_{i_0} \cdots s(a_{i_{n-1}}) = s(x) \in s(L) \), so \(L(G') \subseteq s(L) \). Since \(s(L) = L(G') \), it follows that \(s(L) \) is a context-free language.
Corollary

If $h : A^* \rightarrow B^*$ is a morphism and $L \subseteq A^*$ is a context-free language, then $h(L)$ is a context-free language.
The class \mathcal{L}_2 is closed with respect to inverse morphic images. In other words, if $h : B^* \rightarrow A^*$ is a morphism, and $L \subseteq A^*$ is a context-free language, then $h^{-1}(L)$ is a context-free language.
Proof

Suppose that $B = \{b_0, \ldots, b_{m-1}\}$ and that $h(b_i) = x_i$ for $0 \leq i \leq m - 1$. Let $B' = \{b'_0, \ldots, b'_{m-1}\}$, and let s be the substitution given by $s(a) = B'^* a B'^*$ for $a \in A$.

\[
B = \{b_0, \ldots, b_{m-1}\} \\
B'^* \rightarrow A^* \\
s(a) = B'^* a B'^* \\
B' = \{b'_0, \ldots, b'_{m-1}\}
\]
Consider the finite language $H = \{ b'_i x_i | 0 \leq i \leq m \}$ in $(B' \cup A)^*$ and the mapping $g : \mathcal{P}(A^*) \rightarrow \mathcal{P}((A \cup B')^*)$ given by $g(L) = s(L) \cap H^*$. Define $h_1 : (A \cup B')^* \rightarrow (\{c\} \cup B)^*$ and $h_2 : (\{c\} \cup B)^* \rightarrow B^*$ by $h_1(a) = c$ for $a \in A$, $h_1(b') = b$ for all $b' \in B'$, and $h_2(c) = \lambda$, $h_2(b) = b$ for $b \in B$.

\[
\begin{align*}
H &= \{ b'_i x_i | 0 \leq i \leq m \} \\
B &= \{ b_0, \ldots, b_{m-1} \} \\
B' &= \{ b'_0, \ldots, b'_{m-1} \} \\
B^* &= s(B') \\
A^* &= s(A) \\

\text{Consider the finite language } H = \{ b'_ix_i | 0 \leq i \leq m \} \text{ in } (B' \cup A)^* \text{ and the mapping } g : \mathcal{P}(A^*) \rightarrow \mathcal{P}((A \cup B')^*) \text{ given by } g(L) = s(L) \cap H^*. \text{ Define } h_1 : (A \cup B')^* \rightarrow (\{c\} \cup B)^* \text{ and } h_2 : (\{c\} \cup B)^* \rightarrow B^* \text{ by } h_1(a) = c \text{ for } a \in A, \ h_1(b') = b \text{ for all } b' \in B', \ 	ext{and } h_2(c) = \lambda, \ h_2(b) = b \text{ for } b \in B.}
\end{align*}
\]
We claim that for every language $L \in \mathcal{P}(A)$ such that $\lambda \not\in L$, $h^{-1}(L) = h_2(h_1(g(L)))$ and hence, $h^{-1}(L)$ is context-free. This follows from the following equivalent statements:

1. $u = b_{i_0} \cdots b_{i_{k-1}} \in h^{-1}(L)$;
2. $h(u) = x_{i_0} \cdots x_{i_{k-1}} \in L$;
3. $b_{i_0}' x_{i_0} \cdots b_{i_{k-1}}' x_{i_{k-1}} \in g(L)$;
4. $h_1(b_{i_0}' x_{i_0} \cdots b_{i_{k-1}}' x_{i_{k-1}}) = b_{i_0} c \cdots c \cdots b_{i_{k-1}} c \cdots c \in h_1(g(L))$;
5. $h_2(b_{i_0} c \cdots c \cdots b_{i_{k-1}} c \cdots c) = b_{i_0} \cdots b_{i_{k-1}} = u \in h_2(h_1(g(L)))$.
If $\lambda \in L$, the language $L - \{\lambda\}$ is context-free, so $h^{-1}(L - \{\lambda\})$ is also context-free. Note that $h^{-1}(L) = h^{-1}(L - \{\lambda\}) \cup h^{-1}(\{\lambda\})$ and that $h^{-1}(\{\lambda\}) = \{a \in A \mid h(a) = \lambda\}^*$. Since $h^{-1}(\{\lambda\})$ is regular it follows that $h^{-1}(L)$ is context-free.
We defined the shuffle of languages

Definition

Let A be an alphabet and let G, K be two languages over A. The *shuffle* of G and K is the language

$$\text{shuffle}(G, K) = \{x_0y_0x_1y_1 \cdots x_{n-1}y_{n-1} \mid x_0x_1 \cdots x_{n-1} \in G$$

and $y_0y_1 \cdots y_{n-1} \in K\}.$$
We proved

Theorem

There is an alphabet B and there exist three morphisms g, k, h from B^ to A^* such that h is a very fine morphism, g, k are fine morphisms and $\text{shuffle}(G, K) = h(g^{-1}(G) \cap k^{-1}(K))$.***
Corollary

Let $L \subseteq A^*$ be a context-free language and let $R \subseteq A^*$ be a regular language. Then, $\text{shuffle}(L, R)$ is a context-free language.