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Outline

What is Machine Learning?

Machine learning (ML) studies the construction and analysis of algorithms
that learn from data.

ML algorithms construct models starting from samples of data and
use these models to make predictions or decisions.

ML and its applied counterpart, data mining, mostly deal with
problems that present difficulties in formulating algorithms that can
be readily translated into programs, due to their complexity.

ML techniques tend to avoid the difficulties of standard problem
solving techniques where a complete understanding of data is required
at the beginning of the problem solving process.
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Typical ML Activities

Example

finding diagnosis for patients starting with a series of their symptoms;

determining credit worthiness of customers based on their
demographics and credit history;

document classification based on their main topic;

speech recognition;

computational biology applications.
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Outline

Supervised Learning

Often ML aims to compute a label for each analyzed piece of data that
depends of the characteristics of data.
The general approach known as supervised learning is to begin with a
number of labelled examples (where answers are known or are provided by
a supervisor) known as training set.
The goal is to generate an algorithm that computes the function that gives
the the labels of remaining examples.
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Outline

Unsupervised Learning

In unsupervised learning the challenge is to identify structure that is
hidden in data, e.g. identifying groups of data such that strong similarity
exists between objects that belong to the same group and also, that
objects that belong to different groups are sufficiently distinct.
This activity is known as clustering and it is a typical example of
unsupervised learning.
The term “unsupervised” refers to the fact that this type of learning does
not require operator intervention. Other machine learning activities of this
type include outlier identification, density estimation, etc.
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Semi-supervised Learning

An intermediate type of activity, referred as semi-supervised learning
requires a limited involvement of the operator.
For example, in the case of clustering, this may allow the operator to
specify pairs of objects that must belong to the same group and pairs of
objects that may not belong to the same group.
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Outline

Quality of the Learning Process

The quality of the learning process is assessed through its capability for
generalization, that is, the capacity of the produced algorithm for
computing correct labels for yet unseen examples.

the correct behavior of an algorithm relative to the training data is no
guarantee, in general, for its generalization prowess;

sometimes in the pursuit of a perfect fit of the learning algorithm to
the training data leads to overfitting; this term describes the situation
when the algorithm acts correctly on the training data but is unable
to predict unseen data;

in an extreme case, a rote learner will memorize the labels of its
training data and nothing else. Such a learner will be perfectly
accurate on its training data but lack completely any generalization
capability.
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Active and Reinforcement Learning

A machine learning algorithm can achieve greater accuracy with fewer
training labels if it is allowed to choose the data from which it learns,
that is, to apply active learning.
An active learner may pose queries soliciting a human operator to
label a data instance. Since unlabelled data is abundant and, in many
cases, easily obtained there are good reasons to use this learning
paradigm.

Reinforcement learning is a machine-learning paradigm inspired by
psychology which emphasizes learning by an agent from its direct
interaction with the data in order to attain certain goals of learning
e.g. accuracy of label prediction.
The framework of this type of learning makes use of states and
actions of an agent, and the rewards and deals with uncertainty and
nondeterminism.
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A Formal Model

The Learner’s Input

The domain set X consists of the objects that we wish to label;
usually objects are represented by a vector of features. We refer to
these objects as instances.

The label set Y is generally a finite set, e.g. {0, 1} or {−1, 1}.
Training data S = {(x1, y1), . . . , (xm, ym)} is a finite sequence of
pairs in X × Y, that is, a sequence of labelled objects. Each pair
(xi , yi ) is a training example.
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A Formal Model

The Learner’s Output

The learner is required to produce a function f : X −→ Y starting from

f (x1) = y1, f (x2) = y2, . . . , f (xn) = yn,

as provided by the training data S .
This function is known as a

a predictor, or

a hypothesis, or

a classifier

The hypothesis provided by the learning algorithm A starting from S is
denoted as f = A(S).
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A Formal Model

A Data Generation Model

Assumptions:

data has a probability distribution function D;

the learner ignores the probability distribution function D;

there exists some correct labelling function f : X −→ Y which we
seek to determine knowing that f (xi ) = yi for 1 6 i 6 n.
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A Formal Model

Measures of Success

Definition

The error of a prediction rule h : X −→ Y is

L(D,f )(h) = D({x | h(x) 6= f (x)}).

The error is measured with respect to probability distribution D and the
correct labelling function f .
Term used for L(D,f )(h):

generalization error;

risk;

the true error of h.

The letter L suggest that L measures the loss to the learner.
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Empirical Risk Minimization

The Training Error

The true error of h is not known to the learner because D and f are
unknown.
Let S = {(x1, y1), . . . , (xm, ym)} be a sample. The training error of a
predictor h on S is the number

LS(h) =
|{i | 1 6 i 6 m, h(xi ) 6= yi}|

m
.

Alternative terminology:

empirical error;

empirical risk.
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Empirical Risk Minimization

Empirical Risk Minimization (ERM)

ERM is an approach that seeks a predictor that minimizes LS(h).
Let h be the predictor defined as h(xi ) = yi for all xi ∈ S and h(xi ) = k ,
where k does not label any object in S . The empirical error will be 0 but h
will fail miserably on unseen data. This phenomenon is called overfitting:
designing a predictor to fit the sample.
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ERM with Inductive Bias

Inductive Bias

ERM can lead to overfitting. Therefore, we seek supplementary conditions
that ensure that ERM will not overfit (conditions under which a predictor
with good performance on the training data will have good performance
on unseen data).
Common solution:

Use a restricted hypothesis class H chosen in advance, that is
before seeing the data.

This approach is known as the inductive bias.
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ERM with Inductive Bias

For a given class H (known as hypothesis class) and a training sample
S the hypothesis

h = ERMH(S)

uses the ERM rule to chose a predictor h ∈ H with the lowest
possible error over S .

Both large LS(h) values and strong inductive bias are negative; the
question is achieve a balance between these factors.

Let argminh∈HLS(h) be the set of hypothesis in H that achieve the
minimum values of LS(h). This approach aims to have
ERMH(S) ∈ argminh∈HLS(h).

hS denotes the result of applying ERMH to S , namely

hS ∈ argminh∈HLS(h).
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ERM with Inductive Bias

Finite Hypothesis Classes

A simple inductive bias: class H is finite.
The Realizability Assumption: There exists h∗ ∈ H such that

L(D,f )(h∗) = 0.

This implies that with probability 1 over random samples S , where the
instances of S are sampled according to D and are labelled by f we have
LS(h∗) = 0.
Realizability assumption implies that for every ERM hypothesis we have
LS(hS) with probability 1.
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ERM with Inductive Bias

Samples are obtained by drawing values from a distribution D
independently of each other.

Since samples are drawn randomly from D, the risk L(D,f )(hS) is a
random variable.

We cannot predict with certainty that a sample S will suffice to direct
the learner towards a good classifier.
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ERM with Inductive Bias

Approximately Correct Predictors

The probability of getting a non-representative sample is denoted by δ.

1− δ is the confidence parameter.

The accuracy parameter ε: the event L(D,f )(h) > ε is a failure of the
learner.
If L(D,f )(h) 6 ε then the output of the learner is an approximately
correct predictor.
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ERM with Inductive Bias

Fix f and seek an upper bound for the probability of sampling m instances
that will lead to a failure of the learner.
Let Sx = (x1, . . . , xm). We would like to upper bound
Dm({Sx | L(D,f )(hS) > ε}).

The set Hb of bad hypothesis is

Hb = {h ∈ H | L(D,f )(h) > ε}.

Define the set of misleading examples:

M = {Sx | ∃h ∈ Hb, LS(h) = 0}.

Namely, for every Sx ∈ M there exists a bad hypothesis h ∈ Hb that
looks like a good hypothesis on Sx .
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ERM with Inductive Bias

The realizability assumption implies LS(hS) = 0. Therefore, the event
L(D,f )(hS) > ε can happen only if for some h ∈ Hb we have
LS(h) = 0, that is only if {Sx | L(D,f )(hS) > ε} ⊆ M.

M can be written as:

M =
⋃

h∈Hb

{Sx | LS(h) = 0},

hence

Dm({Sx | L(D,f )(hS) > ε}) 6 Dm(M) = Dm(
⋃

h∈Hb

{Sx | LS(h) = 0}.
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ERM with Inductive Bias

Elementary probability theory implies

Dm(
⋃

h∈Hb

{Sx | LS(h) = 0} 6
∑
h∈Hb

Dm({Sx | LS(h) = 0}).

Fix some bad hypothesis h ∈ Hb. The event LS(h) = 0 is equivalent to
h(xi ) = f (xi ) for 1 6 i 6 m. Since the examples in the training sets are
sampled independently and identically distributed (iid) we get

Dm({Sx | LS(h) = 0}) = Dm({Sx | h(xi ) = f (xi ) for 1 6 i 6 m})

=
m∏
i=1

D({xi | h(xi ) = f (xi )}).
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ERM with Inductive Bias

For each individual sampling we have

D({xi | h(xi ) = f (xi )}) = 1− L(D,f )(h) 6 1− ε,

where the last inequality follows from the fact that h ∈ Hb.
Note that 1− ε 6 e−ε.
Thus,

Dm({Sx | LS(h) = 0}) 6 (1− ε)m 6 e−εm.
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ERM with Inductive Bias

Since

Dm(
⋃

h∈Hb

{Sx | LS(h) = 0} 6
∑
h∈Hb

Dm({Sx | LS(h) = 0})

we conclude that

Dm(
⋃

h∈Hb

{Sx | LS(h) = 0} 6 |Hb|e−εm.
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ERM with Inductive Bias

Theorem

Let H be a finite hypothesis class, δ ∈ (0, 1), ε > 0 and let m be an
integer such that

m >
log(|H|/δ)

ε

Then, for any labelling function f and for any distribution D for which the
realizability distribution holds (that is, for some h ∈ H, L(D,f )(f ) = 0),
with probability at least 1− δ over the choice of an iid sample of size m,
we have that for every ERM hypothesis hS it holds that L(D,f )(h) 6 ε.
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