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Brief Remainder of Linear Algebra

Let A ∈ Rm×n be a matrix. The null space of A is the subspace of Rn

defined by
Nullsp(A) = {x ∈ Rn | Ax = 0m}.

The range of A is the subspace of Rm defined as

Ran(A) = {y ∈ Rm | y = Ax}.

The rank of A is the number rank(A) that is dimension of Ran(A), that is,
the size of the largest linearly independent set in Ran(A).
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Brief Remainder of Linear Algebra

If A ∈ Rm×n, the transposed matrix is A′ ∈ Rn×m.
The inner product of two vectors x, y in Rp is the number (x, y) = x′y.
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Brief Remainder of Linear Algebra

Theorem

Let A ∈ Rm×n, and x ∈ Rn, and y ∈ Rm. We have (Ax, y) = (x,A′y).

Proof: We have (Ax, y) = (Ax)′y = x′A′y and (x,A′y) = x′(A′y) and
these numbers are equal by the associativity.
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Brief Remainder of Linear Algebra

If a ∈ Rm×n and A = BC , where B ∈ Rm×r and C ∈ Rr×n, then

the i th row of A is a linear combination of the r rows of C with
coefficients from the i th row of B;

the j th column of A is a linear combination of the r columns of B
with coefficients from the j th row of C ;

6 / 24



Brief Remainder of Linear Algebra

If any collection of rows c̄1, . . . , c̄r spans the row space of A an r × n
matrix C can be formed by taking these vectors as its rows; then, the
i th row of A is a linear combination of the rows of C , say
āi = bi1c̄1 + · · ·+ bir c̄r . This means that A = BC , where B = (bij) is
the m × r matrix, where the i th row is b̄i = (bi1, . . . , bir );

similarly, if any r column vectors span the column space of A and B is
the m × r matrix formed by these columns, then the r × n matrix C
formed from appropriate coefficients satisfies A = BC .
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Brief Remainder of Linear Algebra

Theorem

If A ∈ Rm×n, then the row rank of A is equal to the column rank of A.

Proof: If A = Om×n, then the row rank and the column rank are 0;
otherwise, let r be the smallest positive integer such that there exists
B ∈ Rm×r and C ∈ Rr×n such that A = BC . Since the r rows of C form a
minimal spanning set of the row space of A and the r columns of B form a
minimal spanning set of the column space of A, row and column ranks are
both r .
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Brief Remainder of Linear Algebra

Theorem

Let A ∈ Rm×n. We have

dim(Nullsp(A)) + dim(Ran(A)) = n.

Suppose that {e1, . . . , em} is a basis for Nullsp(A) ⊆ Rn. Extend this base
to a base for Rn: {e1, . . . , em, em+1, . . . , en}. Any v ∈ Rn can be written
as v = v1e1 + · · ·+ vmem + vm+1em+1 + · · ·+ vnen, hence
Av = vm+1Aem+1 + · · ·+ vnAen.
Therefore, {Aem+1, . . . ,Aen} spans Ran(A). This set is linearly
independent, so it is a base for Ran(A) and thus, dim(Ran(A)) = n −m.
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Brief Remainder of Linear Algebra

Definition

A matrix A is invertible if there exists a matrix A−1 such that
AA−1 = A−1A = In.

Theorem

If A ∈ Rn×n is invertible, than rank(A) = n.
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Brief Remainder of Linear Algebra

B ∈ Rm×n is a full-rank matrix if rank(B) = min{m, n}.
Let B ∈ Rm×n be a full-rank matrix such that m > n, so rank(B) = n.
The symmetric square matrix B ′B ∈ Rn×n has the same rank n as the
matrix B because Nullsp(B ′B) = Nullsp(B). This makes B ′B an invertible
matrix, that is, there exists (B ′B)−1.

11 / 24



Linear Regression

Experimental Setting

Suppose that the results of a series of m experiments are the components
of a vector y ∈ Rm. For the i th experiment, the values of the n input
variables x1, . . . , xn are placed in the i th row of a matrix B ∈ Rm×n known
as the design matrix, and we assume that the outcome of the i th

experiment yi is a linear function of the values bi1, . . . , bin of x1, . . . , xn,
that is

yi = bi1r1 + · · ·+ binrn.

The variables x1, . . . , xn are referred to as the regressors. Note that the
values assummed by the variable xj in the series of m experiments,
b1j , . . . , bmj have been placed in the j th column bj of the matrix B.
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Linear Regression

Linear regression assumes the existence of a linear relationship between the
outcome of an experiment and values of variables that are measured
during the experiment.
In general there are more experiments than variables, that is, we have
n < m. In matrix form we have y = Br, where B ∈ Rm×n and r ∈ Rn. The
problem is to determine r, when B and y are known. Since n < m, this
linear system is inconsistent, but is is possible to obtain an approximative
solution by determining r such that ‖ y− Br ‖ is minimal. This amounts
to approximating y by a vector in the subspace Ran(B) generated by the
columns of the matrix B.
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Linear Regression

The columns b1, . . . ,bn of the matrix B are referred to as the regressors;
the linear combination r1b1 + · · ·+ rnbn is the regression of y onto the
regressors b1, . . . ,bn.
A variant of the previous model is to asumme that y is affinely dependent
on b1, . . . ,bq, that is,

y = r0 + r1b1 + · · ·+ rnbn,

and we seek to determine the coefficients r0, r1, . . . , rn. The term r0 is the
bias of the model. The dependency of y on b1, . . . ,bn can be
homogenized by introducing a dummy vector b0 having all components
equal to 1, which gives

y = r0b0 + r1b1 + · · ·+ rnbn,

as the defining assumption of the model.
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Linear Regression

As we stated before, if the linear system Br = y has no solution r, the
“next best thing” is to find a vector r ∈ Rn such that

‖ Br− y ‖26‖ Bw− y ‖2

for every w ∈ Rn. This approach is known as the least square method. We
will refer to the triple (B, r, y) as an instance of the least square problem.
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Linear Regression

Note that Br ∈ range of ( is B) for any r ∈ Rn. Thus, solving this
problem amounts to finding a vector Br in the subspace
range of ( is B) such that Br is as close to y as possible.

Let B ∈ Rm×n be a full-rank matrix such that m > n, so
rank(B) = n. The symmetric square matrix B ′B ∈ Rn×n has the
same rank n as the matrix B. Therefore, the system (B ′B)r = B ′y a
unique solution r = (B ′B)−1B ′y. Moreover, B ′B is positive definite
because r′B ′Br = (Br)′Br =‖ Br ‖22> 0 for r 6= 0n.
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Linear Regression

Theorem

Let B ∈ Rm×n be a full-rank matrix such that m > n and let y ∈ Rm. The
unique solution r = (B ′B)−1B ′y of the system (B ′B)r = B ′y equals the
projection of the vector y on the subspace Ran(B).

17 / 24



Linear Regression

Proof

The n columns of the matrix B = (b1 · · · bn) constitute a basis of the
subspace range of ( is B). Therefore, we seek the projection c of y on
range of ( is B) as a linear combination of the columns of B, c = Bt,
which allows us to reduce this problem to a minimization of the function

f (t) = ‖ Bt− y ‖22
= (Bt− y)′(Bt− y) = (t′B ′ − y′)(Bt− y)

= t′B ′Bt− y′Bt− t′B ′y + y′y.

The necessary condition for the minimum is

(∇f )(t) = 2B ′Bt− 2B ′y = 0,

which implies B ′Bt = B ′y.
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Linear Regression

The linear system (B ′B)t = B ′y is known as the system of normal
equations of B and y.
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Linear Regression

The Case of non-full rank matrix B

Suppose now that B ∈ Rm×n has rank k, where k < min{m, n}, and
U ∈ Rm×m, V ∈ Rn×n are orthonormal matrices such that B can be
factored as B = UMV ′, where

M =

(
R Ok,n−k

Om−k,k Om−k,n−k

)
∈ Rm×n,

R ∈ Rk×k , and rank(R) = k.

For y ∈ Rm define c = U ′y ∈ Rm and let c =

(
c1
c2

)
, where c1 ∈ Rk and

c2 ∈ Rm−k . Since rank(R) = k, the linear system Rz = c1 has a unique
solution z1.
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Linear Regression

Theorem

All vectors r that minimize ‖ Br− y ‖2 have the form

r = V

(
z
w

)
,

for an arbitrary w.
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Linear Regression

Proof

We have

‖ Br− y ‖22 = ‖ UMV ′r− UU ′y ‖22
= ‖ U(MV ′r− U ′y) ‖22=‖ MV ′r− U ′y ‖22

(because multiplication by an orthonormal matrix

is norm-preserving)

= ‖ MV ′r− c ‖22=‖ My− c ‖22
= ‖ Rz− c1 ‖22 + ‖ c2 ‖22,

where z consists of the first r components of y. This shows that the
minimal value of ‖ Br− y ‖22 is achieved by the solution of the system
Rz = c1 and is equal to ‖ c2 ‖22. Therefore, the vectors r that minimize

‖ Br− y ‖22 have the form

(
z
w

)
for an arbitrary w ∈ Rn−r .
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Linear Regression

Instead of the Euclidean norm we can use the ‖ · ‖∞. Note that we have
t =‖ Br− y ‖∞ if and only if −t1 ≤ Br− y ≤ t1, so finding r that
minimizes ‖ · ‖∞ amounts to solving a linear programming problem:
minimize t subjected to the restrictions −t1 ≤ Br− y ≤ t1.
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Linear Regression

An Equivalent Formulation

An optimization approach to linear regression seeks r ∈ Rn that minimizes
the square loss function L : Rn −→ R>0 defined as

L(r) =
1

n

n∑
j=1

((bj , r)− yj)
2.

Since
∂L

∂rk
=

2

n

n∑
j=1

((bj , r)− yj)bk ,

it follows that the gradient of L is

(∇L)(r) =
2

n

n∑
j=1

((bj , r)− yj)bj .

The condition (∇L)(r) = 0 that is necessary for the optimum amounts now
to (B ′B)r = B ′y, that is to the system of normal equations of B and y.
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