Regression - I

Prof. Dan A. Simovici

UMB

Let $A \in \mathbb{R}^{m \times n}$ be a matrix. The *null space of* A is the subspace of \mathbb{R}^n defined by

$$\mathsf{Nullsp}(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}_m \}.$$

The *range* of A is the subspace of \mathbb{R}^m defined as

$$\mathsf{Ran}(A) = \{\mathbf{y} \in \mathbb{R}^m \mid \mathbf{y} = A\mathbf{x}\}.$$

The rank of A is the number rank(A) that is dimension of Ran(A), that is, the size of the largest linearly independent set in Ran(A).

If $A \in \mathbb{R}^{m \times n}$, the transposed matrix is $A' \in \mathbb{R}^{n \times m}$. The *inner product* of two vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^{p} is the number $(\mathbf{x}, \mathbf{y}) = \mathbf{x}'\mathbf{y}$.

Let $A \in \mathbb{R}^{m \times n}$, and $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{y} \in \mathbb{R}^m$. We have $(A\mathbf{x}, \mathbf{y}) = (\mathbf{x}, A'\mathbf{y})$.

Proof: We have $(A\mathbf{x}, \mathbf{y}) = (A\mathbf{x})'\mathbf{y} = \mathbf{x}'A'\mathbf{y}$ and $(\mathbf{x}, A'\mathbf{y}) = \mathbf{x}'(A'\mathbf{y})$ and these numbers are equal by the associativity.

- If $a \in \mathbb{R}^{m \times n}$ and A = BC, where $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$, then
 - the *i*th row of *A* is a linear combination of the *r* rows of *C* with coefficients from the *i*th row of *B*;
 - the *j*th column of *A* is a linear combination of the *r* columns of *B* with coefficients from the *j*th row of *C*;

- If any collection of rows $\bar{c}_1, \ldots, \bar{c}_r$ spans the row space of A an $r \times n$ matrix C can be formed by taking these vectors as its rows; then, the i^{th} row of A is a linear combination of the rows of C, say $\bar{a}_i = b_{i1}\bar{c}_1 + \cdots + b_{ir}\bar{c}_r$. This means that A = BC, where $B = (b_{ij})$ is the $m \times r$ matrix, where the i^{th} row is $\bar{b}_i = (b_{i1}, \ldots, b_{ir})$;
- similarly, if any r column vectors span the column space of A and B is the $m \times r$ matrix formed by these columns, then the $r \times n$ matrix C formed from appropriate coefficients satisfies A = BC.

If $A \in \mathbb{R}^{m \times n}$, then the row rank of A is equal to the column rank of A.

Proof: If $A = O_{m \times n}$, then the row rank and the column rank are 0; otherwise, let r be the smallest positive integer such that there exists $B \in \mathbb{R}^{m \times r}$ and $C \in \mathbb{R}^{r \times n}$ such that A = BC. Since the r rows of C form a minimal spanning set of the row space of A and the r columns of B form a minimal spanning set of the column space of A, row and column ranks are both r.

Let $A \in \mathbb{R}^{m \times n}$. We have

 $\dim(Nullsp(A)) + \dim(Ran(A)) = n.$

Suppose that $\{\mathbf{e}_1, \ldots, \mathbf{e}_m\}$ is a basis for $\operatorname{Nullsp}(A) \subseteq \mathbb{R}^n$. Extend this base to a base for \mathbb{R}^n : $\{\mathbf{e}_1, \ldots, \mathbf{e}_m, \mathbf{e}_{m+1}, \ldots, \mathbf{e}_n\}$. Any $\mathbf{v} \in \mathbb{R}^n$ can be written as $\mathbf{v} = v_1 \mathbf{e}_1 + \cdots + v_m \mathbf{e}_m + v_{m+1} \mathbf{e}_{m+1} + \cdots + v_n \mathbf{e}_n$, hence $A\mathbf{v} = v_{m+1}A\mathbf{e}_{m+1} + \cdots + v_nA\mathbf{e}_n$. Therefore, $\{A\mathbf{e}_{m+1}, \ldots, A\mathbf{e}_n\}$ spans $\operatorname{Ran}(A)$. This set is linearly independent, so it is a base for $\operatorname{Ran}(A)$ and thus, $\dim(\operatorname{Ran}(A)) = n - m$.

Definition

A matrix A is invertible if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$.

Theorem

If $A \in \mathbb{R}^{n \times n}$ is invertible, than rank(A) = n.

 $B \in \mathbb{R}^{m \times n}$ is a *full-rank matrix* if rank $(B) = \min\{m, n\}$. Let $B \in \mathbb{R}^{m \times n}$ be a full-rank matrix such that m > n, so rank(B) = n.

The symmetric square matrix $B'B \in \mathbb{R}^{n \times n}$ has the same rank n as the matrix B because Nullsp(B'B) = Nullsp(B). This makes B'B an invertible matrix, that is, there exists $(B'B)^{-1}$.

Experimental Setting

Suppose that the results of a series of *m* experiments are the components of a vector $\mathbf{y} \in \mathbb{R}^m$. For the *i*th experiment, the values of the *n* input variables x_1, \ldots, x_n are placed in the *i*th row of a matrix $B \in \mathbb{R}^{m \times n}$ known as the *design matrix*, and we assume that the outcome of the *i*th experiment y_i is a linear function of the values b_{i1}, \ldots, b_{in} of x_1, \ldots, x_n , that is

$$y_i = b_{i1}r_1 + \cdots + b_{in}r_n.$$

The variables x_1, \ldots, x_n are referred to as the *regressors*. Note that the values assummed by the variable x_j in the series of *m* experiments, b_{1j}, \ldots, b_{mj} have been placed in the *j*th column **b**_j of the matrix *B*.

Linear regression assumes the existence of a linear relationship between the outcome of an experiment and values of variables that are measured during the experiment.

In general there are more experiments than variables, that is, we have n < m. In matrix form we have $\mathbf{y} = B\mathbf{r}$, where $B \in \mathbb{R}^{m \times n}$ and $\mathbf{r} \in \mathbb{R}^n$. The problem is to determine \mathbf{r} , when B and \mathbf{y} are known. Since n < m, this linear system is inconsistent, but is is possible to obtain an approximative solution by determining \mathbf{r} such that $\| \mathbf{y} - B\mathbf{r} \|$ is minimal. This amounts to approximating \mathbf{y} by a vector in the subspace $\operatorname{Ran}(B)$ generated by the columns of the matrix B.

The columns $\mathbf{b}_1, \ldots, \mathbf{b}_n$ of the matrix B are referred to as the *regressors*; the linear combination $r_1\mathbf{b}_1 + \cdots + r_n\mathbf{b}_n$ is the *regression of* \mathbf{y} *onto the regressors* $\mathbf{b}_1, \ldots, \mathbf{b}_n$.

A variant of the previous model is to asumme that \mathbf{y} is affinely dependent on $\mathbf{b}_1, \ldots, \mathbf{b}_q$, that is,

$$\mathbf{y}=\mathbf{r}_0+\mathbf{r}_1\mathbf{b}_1+\cdots+\mathbf{r}_n\mathbf{b}_n,$$

and we seek to determine the coefficients r_0, r_1, \ldots, r_n . The term r_0 is the *bias* of the model. The dependency of **y** on $\mathbf{b}_1, \ldots, \mathbf{b}_n$ can be homogenized by introducing a dummy vector \mathbf{b}_0 having all components equal to 1, which gives

$$\mathbf{y}=r_0\mathbf{b}_0+r_1\mathbf{b}_1+\cdots+r_n\mathbf{b}_n,$$

as the defining assumption of the model.

As we stated before, if the linear system $B\mathbf{r} = \mathbf{y}$ has no solution \mathbf{r} , the "next best thing" is to find a vector $\mathbf{r} \in \mathbb{R}^n$ such that

$$\parallel B\mathbf{r} - \mathbf{y} \parallel_2 \leqslant \parallel B\mathbf{w} - \mathbf{y} \parallel_2$$

for every $\mathbf{w} \in \mathbb{R}^n$. This approach is known as *the least square method*. We will refer to the triple $(B, \mathbf{r}, \mathbf{y})$ as an *instance of the least square problem*.

- Note that Br ∈ range of (is B) for any r ∈ ℝⁿ. Thus, solving this problem amounts to finding a vector Br in the subspace range of (is B) such that Br is as close to y as possible.
- Let B ∈ ℝ^{m×n} be a full-rank matrix such that m > n, so rank(B) = n. The symmetric square matrix B'B ∈ ℝ^{n×n} has the same rank n as the matrix B. Therefore, the system (B'B)r = B'y a unique solution r = (B'B)⁻¹B'y. Moreover, B'B is positive definite because r'B'Br = (Br)'Br = || Br ||₂² > 0 for r ≠ 0_n.

Let $B \in \mathbb{R}^{m \times n}$ be a full-rank matrix such that m > n and let $\mathbf{y} \in \mathbb{R}^m$. The unique solution $\mathbf{r} = (B'B)^{-1}B'\mathbf{y}$ of the system $(B'B)\mathbf{r} = B'\mathbf{y}$ equals the projection of the vector \mathbf{y} on the subspace $\operatorname{Ran}(B)$.

Proof

The *n* columns of the matrix $B = (\mathbf{b}_1 \cdots \mathbf{b}_n)$ constitute a basis of the subspace **range of** (**is** *B*). Therefore, we seek the projection **c** of **y** on **range of** (**is** *B*) as a linear combination of the columns of *B*, $\mathbf{c} = B\mathbf{t}$, which allows us to reduce this problem to a minimization of the function

$$f(\mathbf{t}) = || B\mathbf{t} - \mathbf{y} ||_2^2$$

= $(B\mathbf{t} - \mathbf{y})'(B\mathbf{t} - \mathbf{y}) = (\mathbf{t}'B' - \mathbf{y}')(B\mathbf{t} - \mathbf{y})$
= $\mathbf{t}'B'B\mathbf{t} - \mathbf{y}'B\mathbf{t} - \mathbf{t}'B'\mathbf{y} + \mathbf{y}'\mathbf{y}.$

The necessary condition for the minimum is

$$(\nabla f)(\mathbf{t}) = 2B'B\mathbf{t} - 2B'\mathbf{y} = 0,$$

which implies $B'B\mathbf{t} = B'\mathbf{y}$.

The linear system $(B'B)\mathbf{t} = B'\mathbf{y}$ is known as the system of normal equations of B and \mathbf{y} .

The Case of non-full rank matrix B

Suppose now that $B \in \mathbb{R}^{m \times n}$ has rank k, where $k < \min\{m, n\}$, and $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthonormal matrices such that B can be factored as B = UMV', where

$$M = \begin{pmatrix} R & O_{k,n-k} \\ O_{m-k,k} & O_{m-k,n-k} \end{pmatrix} \in \mathbb{R}^{m \times n},$$

 $R \in \mathbb{R}^{k \times k}$, and rank(R) = k. For $\mathbf{y} \in \mathbb{R}^m$ define $\mathbf{c} = U' \mathbf{y} \in \mathbb{R}^m$ and let $\mathbf{c} = \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \end{pmatrix}$, where $\mathbf{c}_1 \in \mathbb{R}^k$ and $\mathbf{c}_2 \in \mathbb{R}^{m-k}$. Since rank(R) = k, the linear system $R\mathbf{z} = \mathbf{c}_1$ has a unique solution \mathbf{z}_1 .

All vectors \boldsymbol{r} that minimize $\parallel B\boldsymbol{r}-\boldsymbol{y}\parallel_2$ have the form

$$\mathbf{r} = V \begin{pmatrix} \mathbf{z} \\ \mathbf{w} \end{pmatrix},$$

for an arbitrary w.

Proof

We have

$$\| B\mathbf{r} - \mathbf{y} \|_{2}^{2} = \| UMV'\mathbf{r} - UU'\mathbf{y} \|_{2}^{2}$$

= $\| U(MV'\mathbf{r} - U'\mathbf{y}) \|_{2}^{2} = \| MV'\mathbf{r} - U'\mathbf{y} \|_{2}^{2}$
(because multiplication by an orthonormal matrix
is norm-preserving)
= $\| MV'\mathbf{r} - \mathbf{c} \|_{2}^{2} = \| M\mathbf{y} - \mathbf{c} \|_{2}^{2}$
= $\| R\mathbf{z} - \mathbf{c}_{1} \|_{2}^{2} + \| \mathbf{c}_{2} \|_{2}^{2}$,

where **z** consists of the first *r* components of **y**. This shows that the minimal value of $|| B\mathbf{r} - \mathbf{y} ||_2^2$ is achieved by the solution of the system $R\mathbf{z} = \mathbf{c}_1$ and is equal to $|| \mathbf{c}_2 ||_2^2$. Therefore, the vectors **r** that minimize $|| B\mathbf{r} - \mathbf{y} ||_2^2$ have the form $\begin{pmatrix} \mathbf{z} \\ \mathbf{w} \end{pmatrix}$ for an arbitrary $\mathbf{w} \in \mathbb{R}^{n-r}$.

Instead of the Euclidean norm we can use the $\|\cdot\|_{\infty}$. Note that we have $t = \|B\mathbf{r} - \mathbf{y}\|_{\infty}$ if and only if $-t\mathbf{1} \leq B\mathbf{r} - \mathbf{y} \leq t\mathbf{1}$, so finding \mathbf{r} that minimizes $\|\cdot\|_{\infty}$ amounts to solving a linear programming problem: minimize t subjected to the restrictions $-t\mathbf{1} \leq B\mathbf{r} - \mathbf{y} \leq t\mathbf{1}$.

An Equivalent Formulation

An optimization approach to linear regression seeks $\mathbf{r} \in \mathbb{R}^n$ that minimizes the square loss function $L : \mathbb{R}^n \longrightarrow \mathbb{R}_{\geq 0}$ defined as

$$L(\mathbf{r}) = \frac{1}{n} \sum_{j=1}^{n} ((\mathbf{b}_j, \mathbf{r}) - y_j)^2.$$

Since

$$\frac{\partial L}{\partial r_k} = \frac{2}{n} \sum_{j=1}^n ((\mathbf{b}_j, \mathbf{r}) - y_j) b_k,$$

it follows that the gradient of L is

$$(\nabla L)(\mathbf{r}) = \frac{2}{n} \sum_{j=1}^{n} ((\mathbf{b}_j, \mathbf{r}) - y_j) \mathbf{b}_j.$$

The condition $(\nabla L)(\mathbf{r}) = 0$ that is necessary for the optimum amounts now to $(B'B)\mathbf{r} = B'\mathbf{y}$, that is to the system of normal equations of B and y.