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Ridge Regression

When the number n of input variables is large, the assumption
previously made concerning the linear independence of the columns
b1, . . . ,bn of the design matrix B may not hold and the rank of B
may be smaller than n. In such a case, previous models are not
applicable.

The linear dependencies that may exist between the columns of B
(reflecting linear dependencies among experiment variables) invalidate
the assumptions previously made. These dependencies are known as
colinearities among variables.
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Ridge Regression

One solution is to replace B ′B in the least-square estimate
r̂ = (B ′B)−1B ′y by B ′B + λIn and to define the ridge regression
estimate as r(λ) = (B ′B + λIn)−1B ′y.

The term ridge regression is justified by the fact that the main
diagonal in the correlation matrix may be thought of as a ridge.

We retrieve the ridge regression estimate as a solution of a regularized
optimization problem, that is, as an optimization problem where the
objective function is modified by adding a term that has an effect the
shrinking of regression coefficients.

4 / 14



Ridge Regression

Instead of minimizing the function f (r) =‖ Br− y ‖2
2 we use the

objective function

g(r, λ) =‖ Br− y ‖2
2 +λ ‖ r ‖2 .

This approach is known as Tikhonov regularization method and g is
known as the ridge loss function.

Ridge regression imposes further constraints on the coefficients ri by
constraing the sum of their squares.
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Ridge Regression

A necessary condition of optimality is (∇g)r = 0n. This yields:

(∇g)r = 2B ′Br− 2B ′y + 2λr

= 2(B ′Br− B ′y + λr)

= 2[(B ′B + λIn)r− B ′y] = 0n,

which yields the previous estimate of r. The ridge estimator is therefore a
stationary point of g .
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Ridge Regression

The Hessian of g is the matrix Hg (x) =
(

∂2f
∂rj ∂rk

)
, and it is easy to see that

Hg (x) = 2(B ′B + λIn).

This implies that Hg is positive definite, hence the stationary point is a
minimum.
Note that the ridge loss function is convex, as a sum of two convex
functions. Therefore, the stationary point mentioned above is a global
minimum of this function.
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Ridge Regression

If B is an unitary matrix (statisticians use the term “orthogonal
covariates), we have B ′B = In, so the equality

(B ′B + λIn)r− B ′y = 0n,

implies
In(1 + λ)r = B ′y,

hence

‖ r ‖6 ‖ B ′y ‖
n(1 + λ)

.

Thus, large values of λ tend to control the number non-zero coefficients.
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Logistic Regression

Despite its name logistic regression is essentially a classification technique.
The term “regression” is justified by the use of a probabilistic approach
involving the linear model defined for linear regression. The typical problem
involves classifying objects into two classes, designated as C1 and C−1.
Let s be a data sample of size m, that consists of the pairs of values of a
random vector X ranging over Rn and a random variable Y ranging over
{−1, 1}.

s = ((x1, y1), . . . , (xm, ym)),

where x1, . . . , xm belong to Rn and yi ∈ {−1, 1} for 1 6 i 6 m.
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Logistic Regression

In logistic regression we assume that the logarithmic ratio ln P(Y=1|X=x)
P(Y=−1|X=x)

is an affine function r0 + r1x1 + · · ·+ rnxn. If a dummy component x0 that
is set to 1 is added, as we did for linear regression, then the above
assumption can be written as

ln
P(Y = 1|X = x)

P(Y = −1|X = x)
= r′x, (1)

where r, x ∈ Rn+1.
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Logistic Regression

Let ` : (0, 1) −→ R be the logit function defined as

`(p) = ln
p

1− p

for p ∈ (0, 1) and let f : R −→ (0, 1) be the logistic function L(x) = ex

1+ex .
Note that L(x) + L(−x) = 1 for x ∈ R and the fact that L and ` are
inverse functions.
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Logistic Regression

Equality (1) can be written as

P(Y = 1|X = x) =
er

′x

1 + er′x
= L(r′x),

and

P(Y = −1|X = x) =
1

1 + er′x
= 1− L(r′x) = L(−r′x).

Both cases are captured by the equality

P(Y = y |X = x) = L(yr′x).

Equivalently, we have `(P(Y = y |X = x)) = yr′x.
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Logistic Regression

Since the example of s are independently generated the probability of
obtaining the class yi for each of the examples xi is defined by the
likelihood function

∏m
i=1 P(Y = yi |X = xi ). To simplify notations we

denote this function of yi and xi as
∏m

i=1 P(yi |xi ). Maximizing this
function is equivalent to minimizing

Λ(r) = − 1

m
ln

(
m∏
i=1

P(yi |xi )

)
= − 1

m

m∑
i=1

lnP(yi |xi )

= − 1

m

m∑
i=1

ln L(yi rxi ) =
1

m

m∑
i=1

ln
1

L(yi rxi )
=

1

m

m∑
i=1

ln(1 + e−yi rxi ),

with respect to r. Note that small values of this expression can be
obtained when yi r

′xi is large, that is, when r′xi has the same sign as yi .
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Logistic Regression

To minimize Λ(r) we need to impose the conditions ∂Λ
∂rj

= 0 for

1 6 j 6 n + 1, which amount to

m∑
i=1

L′(yi rxi )
∂(yi rxi )

∂rj
= 0,

or
m∑
i=1

L(yi rxi )(1− L(yi rxi ))yjxji = 0,

for 1 6 j 6 n + 1. This is a non-linear system in r which can be solved by
approximation methods.
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