## Regression - II

Prof. Dan A. Simovici

UMB

Ridge Regression

2 Logistic Regression

- When the number n of input variables is large, the assumption previously made concerning the linear independence of the columns  $\mathbf{b}^1, \ldots, \mathbf{b}^n$  of the design matrix B may not hold and the rank of B may be smaller than n. In such a case, previous models are not applicable.
- The linear dependencies that may exist between the columns of B
   (reflecting linear dependencies among experiment variables) invalidate
   the assumptions previously made. These dependencies are known as
   colinearities among variables.

- One solution is to replace B'B in the least-square estimate  $\hat{\mathbf{r}} = (B'B)^{-1}B'\mathbf{y}$  by  $B'B + \lambda I_n$  and to define the *ridge regression* estimate as  $\mathbf{r}(\lambda) = (B'B + \lambda I_n)^{-1}B'\mathbf{y}$ .
- The term ridge regression is justified by the fact that the main diagonal in the correlation matrix may be thought of as a ridge.
- We retrieve the ridge regression estimate as a solution of a regularized optimization problem, that is, as an optimization problem where the objective function is modified by adding a term that has an effect the shrinking of regression coefficients.

• Instead of minimizing the function  $f(\mathbf{r}) = \parallel B\mathbf{r} - \mathbf{y} \parallel_2^2$  we use the objective function

$$g(\mathbf{r}, \lambda) = \parallel B\mathbf{r} - \mathbf{y} \parallel_2^2 + \lambda \parallel \mathbf{r} \parallel^2$$
.

This approach is known as  $Tikhonov \ regularization \ method$  and g is known as the  $ridge \ loss \ function$ .

 Ridge regression imposes further constraints on the coefficients r<sub>i</sub> by constraing the sum of their squares. A necessary condition of optimality is  $(\nabla g)_r = \mathbf{0}_n$ . This yields:

$$(\nabla g)_{\mathbf{r}} = 2B'B\mathbf{r} - 2B'\mathbf{y} + 2\lambda\mathbf{r}$$

$$= 2(B'B\mathbf{r} - B'\mathbf{y} + \lambda\mathbf{r})$$

$$= 2[(B'B + \lambda I_n)\mathbf{r} - B'\mathbf{y}] = \mathbf{0}_n,$$

which yields the previous estimate of  $\mathbf{r}$ . The ridge estimator is therefore a stationary point of g.

The Hessian of g is the matrix  $H_g(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial r_j \partial r_k}\right)$ , and it is easy to see that

$$H_g(\mathbf{x}) = 2(B'B + \lambda I_n).$$

This implies that  $H_g$  is positive definite, hence the stationary point is a minimum.

Note that the ridge loss function is convex, as a sum of two convex functions. Therefore, the stationary point mentioned above is a global minimum of this function.

If B is an unitary matrix (statisticians use the term "orthogonal covariates), we have  $B'B = I_n$ , so the equality

$$(B'B + \lambda I_n)\mathbf{r} - B'\mathbf{y} = \mathbf{0}_n,$$

implies

$$I_n(1+\lambda)\mathbf{r}=B'\mathbf{y},$$

hence

$$\parallel \mathbf{r} \parallel \leqslant \frac{\parallel B' \mathbf{y} \parallel}{n(1+\lambda)}.$$

Thus, large values of  $\lambda$  tend to control the number non-zero coefficients.

Despite its name *logistic regression* is essentially a classification technique. The term "regression" is justified by the use of a probabilistic approach involving the linear model defined for linear regression. The typical problem involves classifying objects into two classes, designated as  $C_1$  and  $C_{-1}$ . Let  $\mathbf{s}$  be a data sample of size m, that consists of the pairs of values of a random vector  $\mathbf{X}$  ranging over  $\mathbb{R}^n$  and a random variable Y ranging over  $\{-1,1\}$ .

$$s = ((x_1, y_1), \dots, (x_m, y_m)),$$

where  $\mathbf{x}_1, \dots, \mathbf{x}_m$  belong to  $\mathbb{R}^n$  and  $y_i \in \{-1, 1\}$  for  $1 \leqslant i \leqslant m$ .

In logistic regression we assume that the logarithmic ratio  $\ln \frac{P(Y=1|\mathbf{X}=\mathbf{x})}{P(Y=-1|\mathbf{X}=\mathbf{x})}$  is an affine function  $r_0+r_1x_1+\cdots+r_nx_n$ . If a dummy component  $x_0$  that is set to 1 is added, as we did for linear regression, then the above assumption can be written as

$$\ln \frac{P(Y=1|\mathbf{X}=\mathbf{x})}{P(Y=-1|\mathbf{X}=\mathbf{x})} = \mathbf{r}'\mathbf{x},$$
 (1)

where  $\mathbf{r}, \mathbf{x} \in \mathbb{R}^{n+1}$ .

Let  $\ell:(0,1)\longrightarrow\mathbb{R}$  be the *logit function* defined as

$$\ell(p) = \ln \frac{p}{1-p}$$

for  $p \in (0,1)$  and let  $f: \mathbb{R} \longrightarrow (0,1)$  be the logistic function  $L(x) = \frac{e^x}{1+e^x}$ . Note that L(x) + L(-x) = 1 for  $x \in \mathbb{R}$  and the fact that L and  $\ell$  are inverse functions.

Equality (1) can be written as

$$P(Y=1|X=\mathbf{x}) = \frac{e^{\mathbf{r}'\mathbf{x}}}{1+e^{\mathbf{r}'\mathbf{x}}} = L(\mathbf{r}'\mathbf{x}),$$

and

$$P(Y = -1|X = \mathbf{x}) = \frac{1}{1 + e^{\mathbf{r}'\mathbf{x}}} = 1 - L(\mathbf{r}'\mathbf{x}) = L(-\mathbf{r}'\mathbf{x}).$$

Both cases are captured by the equality

$$P(Y = y|X = \mathbf{x}) = L(y\mathbf{r}'\mathbf{x}).$$

Equivalently, we have  $\ell(P(Y = y | X = \mathbf{x})) = y\mathbf{r}'\mathbf{x}$ .

Since the example of  $\mathbf{s}$  are independently generated the probability of obtaining the class  $y_i$  for each of the examples  $\mathbf{x}_i$  is defined by the *likelihood function*  $\prod_{i=1}^m P(Y=y_i|\mathbf{X}=\mathbf{x}_i)$ . To simplify notations we denote this function of  $y_i$  and  $\mathbf{x}_i$  as  $\prod_{i=1}^m P(y_i|\mathbf{x}_i)$ . Maximizing this function is equivalent to minimizing

$$\Lambda(\mathbf{r}) = -\frac{1}{m} \ln \left( \prod_{i=1}^{m} P(y_i | \mathbf{x}_i) \right) = -\frac{1}{m} \sum_{i=1}^{m} \ln P(y_i | \mathbf{x}_i) 
= -\frac{1}{m} \sum_{i=1}^{m} \ln L(y_i \mathbf{r} \mathbf{x}_i) = \frac{1}{m} \sum_{i=1}^{m} \ln \frac{1}{L(y_i \mathbf{r} \mathbf{x}_i)} = \frac{1}{m} \sum_{i=1}^{m} \ln(1 + e^{-y_i \mathbf{r} \mathbf{x}_i}),$$

with respect to  $\mathbf{r}$ . Note that small values of this expression can be obtained when  $y_i \mathbf{r}' \mathbf{x}_i$  is large, that is, when  $\mathbf{r}' \mathbf{x}_i$  has the same sign as  $y_i$ .

To minimize  $\Lambda(\mathbf{r})$  we need to impose the conditions  $\frac{\partial \Lambda}{\partial r_j} = 0$  for  $1 \leqslant j \leqslant n+1$ , which amount to

$$\sum_{i=1}^{m} L'(y_i \mathbf{r} \mathbf{x}_i) \frac{\partial (y_i \mathbf{r} \mathbf{x}_i)}{\partial r_j} = 0,$$

or

$$\sum_{i=1}^{m} L(y_i \mathbf{r} \mathbf{x}_i) (1 - L(y_i \mathbf{r} \mathbf{x}_i)) y_j x_{ji} = 0,$$

for  $1 \le j \le n+1$ . This is a non-linear system in  ${\bf r}$  which can be solved by approximation methods.