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Ridge Regression

@ When the number n of input variables is large, the assumption
previously made concerning the linear independence of the columns
b!,...,b" of the design matrix B may not hold and the rank of B
may be smaller than n. In such a case, previous models are not
applicable.

@ The linear dependencies that may exist between the columns of B
(reflecting linear dependencies among experiment variables) invalidate
the assumptions previously made. These dependencies are known as
colinearities among variables.



Ridge Regression

@ One solution is to replace B’B in the least-square estimate
# = (B'B)"'B'y by B'B + Al, and to define the ridge regression
estimate as r(\) = (B'B + \,) " B'y.

@ The term ridge regression is justified by the fact that the main
diagonal in the correlation matrix may be thought of as a ridge.

@ We retrieve the ridge regression estimate as a solution of a regularized
optimization problem, that is, as an optimization problem where the
objective function is modified by adding a term that has an effect the
shrinking of regression coefficients.



Ridge Regression

o Instead of minimizing the function f(r) =|| Br —y ||3 we use the
objective function

g(r ) =|| Br—y |3 +X | r|?.

This approach is known as Tikhonov regularization method and g is
known as the ridge loss function.

@ Ridge regression imposes further constraints on the coefficients r; by
constraing the sum of their squares.
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Ridge Regression

A necessary condition of optimality is (Vg), = 0,. This yields:

(Vg)e = 2B'Br—2B'y+2\r
= 2(B'Br—B'y+ Xr)
— 2[(B'B + Al,)r — B'y] = 0,,

which yields the previous estimate of r. The ridge estimator is therefore a
stationary point of g.
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Ridge Regression

The Hessian of g is the matrix Hg(x) = (%), and it is easy to see that
J

Hg(x) = 2(B'B + Aly).

This implies that H, is positive definite, hence the stationary point is a
minimum.

Note that the ridge loss function is convex, as a sum of two convex
functions. Therefore, the stationary point mentioned above is a global
minimum of this function.
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Ridge Regression

If B is an unitary matrix (statisticians use the term “orthogonal
covariates), we have B’'B = I, so the equality

(B'B+ Al,)r — B'y = 0,,,

implies
(1 + M\r =By,

hence
H y||

Thus, large values of X\ tend to control the number non-zero coefficients.
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Logistic Regression

Despite its name logistic regression is essentially a classification technique.
The term “regression” is justified by the use of a probabilistic approach
involving the linear model defined for linear regression. The typical problem
involves classifying objects into two classes, designated as C; and C_j.
Let s be a data sample of size m, that consists of the pairs of values of a
random vector X ranging over R” and a random variable Y ranging over
{-1,1}.

s=((x1,51),- -, (Xm, ym)),

where x1,...,Xn belong to R” and y; € {—1,1} for 1 <i < m.
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Logistic Regression

In logistic regression we assume that the logarithmic ratio In %

is an affine function rg 4+ rnxy + - - - + rax,. If a dummy component xp that
is set to 1 is added, as we did for linear regression, then the above
assumption can be written as

P(Y =1 X =x) ,

Ny = —ix=x) ~ "% (1)

where r,x € R,
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Logistic Regression

Let £:(0,1) — R be the logit function defined as

for p € (0,1) and let f : R — (0, 1) be the logistic function L(x) = %
Note that L(x) + L(—x) =1 for x € R and the fact that L and ¢ are
inverse functions.
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Logistic Regression

Equality (1) can be written as

er’x
P(Y = 1’X = X) = W = L(rlx)7
and 1
P(Y = —1|X = X) = W — 1 - L(I’,X) — L(_r/x).

Both cases are captured by the equality
P(Y = y|X = x) = L(yr'x).

Equivalently, we have /(P(Y = y|X = x)) = yr'x.
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Logistic Regression

Since the example of s are independently generated the probability of
obtaining the class y; for each of the examples x; is defined by the
likelihood function [17; P(Y = yi|X = x;). To simplify notations we
denote this function of y; and x; as [ ; P(yi|x;). Maximizing this
function is equivalent to minimizing

Ar) = —% In (H P(Yi|xi)> = —%Zln P(yilx;)
i=1 i=1

lzm] L(yirxs) 1Zm:| L 1§:|(1+e*y“')
= —= nL(yrx;,) = — n == n iXi
m YilXi m L(yirx;)) m — ’

i=1

with respect to r. Note that small values of this expression can be
obtained when y;r'x; is large, that is, when r'x; has the same sign as y;.
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Logistic Regression

A

To minimize A(r) we need to impose the conditions 5 = 0 for
J

1 <j < n+1, which amount to

m

> L/()/il‘Xi)M =0,

or;
i=1 J

or
m

> Lyiexi)(1 — L(yirxi))yjxii = O,
i—1

for 1 <j < n+ 1. This is a non-linear system in r which can be solved by

approximation methods.
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