Regression - III

Prof. Dan A. Simovici

UMB

If $S \subseteq \mathbb{R}^n$ and \mathcal{C}_S is the collection of convex sets that contain S, then

- **1** $C_S \neq \emptyset$ because \mathbb{R}^n is a convex set that contains S.
- **1** Any intersection of subsets of C_S is a convex set that contains S.

Thus $\bigcap C_S$ is the least convex set that contains S.

The convex closure of the subset S of \mathbb{R}^n is the set $\mathbf{K}_{\text{conv}}(S) = \bigcap \mathcal{C}_S$.

The convex closure of S is denoted by $\mathbf{K}_{\text{conv}}(S)$.

Note that

- $S \subseteq \mathbf{K}_{conv}(S)$;
- $S_1 \subseteq S_2$ implies $\mathbf{K}_{conv}(S_1) \subseteq \mathbf{K}_{conv}(S_2)$;
- $\mathbf{K}_{\operatorname{conv}}(\mathbf{K}_{\operatorname{conv}}(S)) = \mathbf{K}_{\operatorname{conv}}(S)$.

Let $f: \mathbb{R}^n \longrightarrow \hat{\mathbb{R}}$ be a function. Its *epigraph* is the set

$$epi(f) = \{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leqslant y\}.$$

The *hypograph* of *f* is the set

$$\mathsf{hyp}(f) = \{(\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R} \mid y \leqslant f(\mathbf{x})\}.$$

The epigraph of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is the dotted area in \mathbb{R}^2 located above the graph of the function f and it is shown in Figure $\ref{f}(a)$; the hypograph of f is the dotted area below the graph shown in Figure $\ref{f}(b)$.

Figure : Epigraph (a) and hypograph (b) of a function $f: \mathbb{R} \longrightarrow \mathbb{R}$

Note that the intersection

$$\operatorname{epi}(f) \cap \operatorname{hyp}(f) = \{(x, y) \in S \times \mathbb{R} \mid y = f(x)\}$$

is the graph of the function f.

If $f(x) = \infty$, then $(x, \infty) \not\in \operatorname{epi}(f)$. Thus, for the function f_{∞} defined by $f_{\infty}(x) = \infty$ for $x \in S$ we have $\operatorname{epi}(f_{\infty}) = \emptyset$.

Let $f: \mathbb{R}^n \longrightarrow \hat{\mathbb{R}}$ be a function and let $a \in \hat{\mathbb{R}}$. The *level set for f at a* is the set

$$L_{f,a} = \{x \in S \mid f(x) \leqslant a\}.$$

Let C, D be two subsets of \mathbb{R}^n . A hyperplane $\mathbf{w}'\mathbf{x} - a = 0$ separates C, D if $\mathbf{w}'\mathbf{x} \leqslant a$ for every $x \in C$ and $\mathbf{w}'\mathbf{x} \geqslant a$ for every $x \in D$. If a separating hyperplane H exists for two subsets C, D of L we say that C, D are separable.

C and D are separated by a hyperplane H if C and D are located in distinct closed half-spaces associated to H. The sets C and D are *linearly separable* if there exists a hyperplane that separates them.

The subsets C and D of \mathbb{R}^n are *strictly separated* by a hyperplane $\mathbf{w}'\mathbf{x} = a$ if we have either $\mathbf{w}'\mathbf{x} > a > \mathbf{w}'\mathbf{y}$ for $\mathbf{x} \in C$ and $\mathbf{y} \in D$, or $\mathbf{w}'\mathbf{y} > a > \mathbf{w}'\mathbf{x}$ for $\mathbf{x} \in C$ and $\mathbf{y} \in D$.

The sets C and D are *strictly linearly separable* if there exists a hyperplane that strictly separates them.

Theorem

Let C be a convex subset in \mathbb{R}^n such that $I(C) \neq \emptyset$ and let V be an affine subspace such that $V \cap I(C) = \emptyset$.

There exists a closed hyperplane H, $\mathbf{w}'\mathbf{x} = a$, in \mathbb{R}^n such that

- $V \subseteq H$ and $H \cap I(C) = \emptyset$, and
- **1** there exists $c \in \mathbb{R}$ such that $\mathbf{w}'\mathbf{x} = c$ for all $\mathbf{x} \in V$ and $\mathbf{w}'\mathbf{x} < c$ for all $x \in I(C)$.

Let C be a convex set in \mathbb{R}^n . A hyperplane H is a *supporting hyperplane* of C if the following conditions are satisfied:

- H is closed;

Theorem

Let C be a convex set in a linear space L. If $I(C) \neq \emptyset$ and $x_0 \in \partial C$, then there exists a supporting hyperplane H of C such that $x_0 \in H$.

Theorem

(Separation Theorem) Let C_1 , C_2 be two non-empty convex sets in \mathbb{R}^n such that $I(C_1) \neq \emptyset$ and $C_2 \cap I(C_1) = \emptyset$.

There exists a closed hyperplane H, $\mathbf{w}'\mathbf{x} = \mathbf{a}$, separating C_1 and C_2 . In other words, there exists a linear functional $f \in L^*$ such that

$$\sup\{\mathbf{w}'\mathbf{x} \mid \mathbf{x} \in C_1\} \leqslant \inf\{\mathbf{w}'\mathbf{x} \mid x \in C_2\},\$$

which means that C_1 and C_2 are located in distinct half-spaces determined by H.

Corollary

Let C_1 , C_2 be two disjoint subsets of \mathbb{R}^n . If C_1 is open, then C_1 and C_2 are separable, that is, that

$$\sup\{\mathbf{w}'\mathbf{x} \mid \mathbf{x} \in C_1\} \leqslant \inf\{\mathbf{w}'\mathbf{x} \mid \mathbf{x} \in C_2\},\$$

Let X be an open set in \mathbb{R}^n and let $f: X \longrightarrow \mathbb{R}$ be a function.

The function f is *Gâteaux differentiable* in \mathbf{x}_0 , where $\mathbf{x}_0 \in X$ if there exists a linear operator $(D_x f)(\mathbf{x}_0) : \mathbb{R}^n \longrightarrow \mathbb{R}$ such that

$$(D_{\mathsf{x}}f)(\mathsf{x}_0)(u) = \lim_{t \to 0} \frac{f(\mathsf{x}_0 + t\mathsf{u}) - f(\mathsf{x}_0)}{t}$$

for every **u** such that $x_0 + t\mathbf{u} \in X$. The linear operator $(D_x f)(x_0)$ is the *Gâteaux derivative* of f in x_0 .

The *Gâteaux differential* of f at x_0 is the linear operator $\delta f(x_0; h)$ given by

$$\delta f(x_0; u) = \lim_{t\to 0} \frac{f(x_0 + tu) - f(x_0)}{t}.$$

Let **a** be a vector in \mathbb{R}^n . Define $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ as $f(\mathbf{x}) = \mathbf{x}'\mathbf{a}$. We have:

$$(D_{x}f)(\mathbf{x}_{0})(\mathbf{u}) = \lim_{t \to 0} \frac{f(\mathbf{x}_{0} + t\mathbf{u}) - f(\mathbf{x}_{0})}{t}$$
$$= \lim_{t \to 0} \frac{(\mathbf{x}_{0} + t\mathbf{u})'\mathbf{a} - \mathbf{x}'_{0}\mathbf{a}}{t}$$
$$= \lim_{t \to 0} \frac{t\mathbf{u}'\mathbf{a}}{t} = \mathbf{u}'\mathbf{a}.$$

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be the functional $f(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$. We have $(Df)(\mathbf{x}_0) = \mathbf{x}'_0 (A + A')$. By applying the definition of Gâteaux differential we have

$$(Df)(\mathbf{x}_0)(\mathbf{u}) = \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\mathbf{u}) - f(\mathbf{x}_0)}{t}$$

$$= \lim_{t \to 0} \frac{(\mathbf{x}'_0 + t\mathbf{u}')A(\mathbf{x}_0 + t\mathbf{u}) - \mathbf{x}'_0A\mathbf{x}_0}{t}$$

$$= \lim_{t \to 0} \frac{t\mathbf{u}'A\mathbf{x}_0 + t\mathbf{x}'_0A\mathbf{u} + t^2\mathbf{u}'A\mathbf{u}}{t}$$

$$= \mathbf{u}'A\mathbf{x}_0 + \mathbf{x}'_0A\mathbf{u} = \mathbf{x}'_0A'\mathbf{u} + \mathbf{x}'_0A\mathbf{u}$$

$$= \mathbf{x}'_0(A + A')\mathbf{u},$$

which yields $(Df)(\mathbf{x}_0) = \mathbf{x}_0'(A + A')$. If $A \in \mathbb{R}^{n \times n}$ is symmetric and $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is the functional $f(\mathbf{x}) = \mathbf{x}'A\mathbf{x}$, then $(Df)(\mathbf{x}_0) = 2\mathbf{x}_0'A$.

The norm $\|\cdot\|: \mathbb{R}^n \longrightarrow \mathbb{R}_{\geq 0}$ is not Gâteaux differentiable in $\mathbf{0}_n$. Indeed, suppose that $\|\cdot\|$ were differentiable in $\mathbf{0}_n$, which would mean that the limit:

$$\lim_{t\to 0}\frac{\parallel tu\parallel}{t}=\lim_{t\to 0}\frac{|t|}{t}\parallel u\parallel$$

exists for every $u \in \mathbb{R}^n$, which is contradictory.

However, the square of the norm, $\|\cdot\|^2$ is differentiable in $\mathbf{0}_n$ because

$$\lim_{t\to 0}\frac{\parallel t\mathbf{u}\parallel^2}{t}=\lim_{t\to 0}t\parallel\mathbf{u}\parallel=0.$$

Consider the norm $\|\cdot\|_1$ on \mathbb{R}^n given by

$$\| \mathbf{x} \|_1 = |x_1| + \ldots + |x_n|$$

for $\mathbf{x} \in \mathbb{R}^n$. This norm is not Gâteaux differentiable in any point \mathbf{x}_0 located on an axis. Indeed, let $\mathbf{x}_0 = a\mathbf{e}_i$ be a point on the i^{th} axis. The limit

$$\begin{split} & \lim_{t \to 0} \frac{\parallel \mathbf{x}_0 + t\mathbf{u} \parallel_1 - \parallel \mathbf{x}_0 \parallel_1}{t} \\ & = \lim_{t \to 0} \frac{\parallel a\mathbf{e}_i + t\mathbf{u} \parallel_1 - \parallel a\mathbf{e}_i \parallel_1}{t} \\ & = \lim_{t \to 0} \frac{|t||u_1| + \dots + |t||u_{i-1}| + (|t||u_i| - |a|) + |t||u_{i+1}| + \dots + |t||u_n|}{t} \end{split}$$

does not exists, so the norm $\|\cdot\|_1$ is not differentiable in any of these points.

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function and let $\mathbf{h} \in \mathbb{R}^n - \{\mathbf{0}_n\}$.

The directional derivative at \mathbf{x}_0 in the direction \mathbf{h} is the function $\frac{\partial f}{\partial h}(x_0)$ given by

$$\frac{\partial f}{\partial \mathbf{h}}(\mathbf{x}_0) = \lim_{t \downarrow 0} \frac{f(\mathbf{x}_0 + t\mathbf{h}) - f(\mathbf{x}_0)}{t}.$$

f is Gâteaux differentiable at \mathbf{x}_0 if its directional derivative exists in every direction.

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function differentiable at $\mathbf{x}_0 \in \mathbb{R}^n$. If $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is the standard basis for \mathbb{R}^n , then $(Df)(\mathbf{x}_0)(\mathbf{e}_i)$ is known as the *partial derivative* of f with respect to x_i and is denoted by $\frac{\partial f}{\partial x_i}(\mathbf{x}_0)$.

Theorem

Let X be an open set in \mathbb{R}^n and let $f: X \longrightarrow \mathbb{R}$ be a function. If f is Gâteaux differentiable on X, then

$$|| f(\mathbf{u}) - f(\mathbf{v}) || \le || \mathbf{u} - \mathbf{v} || \sup \{ f'(a\mathbf{u} + (1-a)\mathbf{v}) | a \in [0,1] \}.$$

Let $w \in X$ such that $\| \mathbf{w} \| = 1$ and $\| f(\mathbf{u}) - f(\mathbf{v}) \| = (\mathbf{w}, f(\mathbf{u}) - f(\mathbf{v}))$. Define the real-valued function g as $g(t) = (\mathbf{w}, f(\mathbf{u} + t(\mathbf{v} - \mathbf{u})))$ for $t \in [0, 1]$. We have the inequality

$$\parallel f(\mathbf{u}) - f(\mathbf{v}) \parallel = (\mathbf{w}, f(\mathbf{v}) - f(\mathbf{u})) = |g(1) - g(0)| \leqslant \sup\{|g'(t)| \mid t \in [0, 1]\}.$$

Since

$$g'(t) = (\mathbf{w}, \mathsf{DER}f(\mathbf{u} + t(\mathbf{v} - \mathbf{u}))t)$$

$$= \left(\mathbf{w}, \lim_{r \to 0} \frac{f(\mathbf{u} + (t+r)(\mathbf{v} - \mathbf{u})) - f(\mathbf{u} + t(\mathbf{v} - \mathbf{u}))}{r}\right)$$

$$= \left(\mathbf{w}, f'_{\mathbf{u}+t(\mathbf{v}-\mathbf{u})}(\mathbf{v} - \mathbf{u})\right),$$

we have $|g'(t)| \leq ||f'_{\mathbf{u}+t(\mathbf{v}-\mathbf{u})}(\mathbf{v}-\mathbf{u})||$, hence

$$|g'(t)| \leqslant ||f'_{\mathbf{u}+t(\mathbf{v}-\mathbf{u})}(\mathbf{v}-\mathbf{u})||$$

$$\leqslant ||f'_{\mathbf{u}+t(\mathbf{v}-\mathbf{u})}||||\mathbf{v}-\mathbf{u}||.$$

Recall that for $u,v\in\mathbb{R}\cup\{\infty\}$, the sum u+v is always defined. It is useful to extend the notion of convex function by allowing ∞ as a value. Thus, if a function f is defined on a subset S of a linear space L, $f:S\longrightarrow\mathbb{R}$, the *extended-value function* of f is the function $\hat{f}:L\longrightarrow\mathbb{R}\cup\{\infty\}$ defined by

$$\hat{f}(x) = \begin{cases} f(x) & \text{if } x \in S, \\ \infty & \text{otherwise,} \end{cases}$$

If a function $f:S\longrightarrow \mathbb{R}$ is convex, where $S\subseteq L$ is a convex set, then its extended-value function \hat{f} satisfies the inequality that defines convexity $\hat{f}((1-t)x+ty)\leqslant (1-t)\hat{f}(x)+t\hat{f}(y)$ for every $x,y\in L$ and $t\in [0,1]$, if we adopt the convention that $0\cdot \infty=0$.

The trivial convex function is the function $f_{\infty}: S \longrightarrow \mathbb{R} \cup \{\infty\}$ defined by $f(x) = \infty$ for every $x \in S$.

A extended-value convex function $\hat{f}: S \longrightarrow \mathbb{R} \cup \{\infty\}$ is *properly convex* or a *proper function* if $\hat{f} \neq f_{\infty}$.

The *domain* of a function $f: S \longrightarrow \mathbb{R} \cup \{\infty\}$ is the set $\mathsf{Dom}(f) = \{x \in S \mid f(\mathbf{x}) < \infty\}.$

Let $f:(0,\infty)\longrightarrow \mathbb{R}$ be defined by $f(x)=x^2$. The definition domain of f is clearly convex and we have:

$$f((1-t)x_1+tx_2) = ((1-t)x_1+tx_2)^2$$

= $(1-t)^2x_1^2+t^2x_2^2+2(1-t)tx_1x_2.$

Therefore,

$$f((1-t)x_1 + tx_2) - (1-t)f(x_1) - tf(x_2)$$

$$= (1-t)^2 x_1^2 + t^2 x_2^2 + 2(1-t)tx_1x_2 - (1-t)x_1^2 - tx_2^2$$

$$= -t(1-t)(x_1 - x_2)^2 \le 0,$$

which implies that f is indeed convex.

The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by f(x) = |a - xb| is convex because

$$f((1-t)x_1 + tx_2) = |a - ((1-t)x_1 + tx_2)b|$$

$$= |a(1-t) + at - ((1-t)x_1 + tx_2)b|$$

$$= |(1-t)(a-x_1b) + t(a-x_2b)$$

$$\leq |(1-t)(a-x_1b)| + |t(a-x_2b)| = (1-t)f(x_1) + tf(x_1)$$

for $t \in [0, 1]$.

Any norm u on a real linear space L is convex. Indeed, for $t \in [0,1]$ we have

$$\nu(tx + (1-t)y) \le \nu(tx) + \nu((1-t)y) = t\nu(x) + (1-t)\nu(y)$$

for $x, y \in L$.

It is easy to verify that any linear combination of convex functions with non-negative coefficients defined on a real linear space L (of functions convex at $x_0 \in L$) is a convex function (a function convex at x_0).

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. If A is a positive matrix then the function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ defined by $f(\mathbf{x}) = \mathbf{x}'A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$ is convex on \mathbb{R}^n . Let $t \in [0,1]$ and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. By hypothesis we have

$$(t-t^2)(\mathbf{x}-\mathbf{y})'A(\mathbf{x}-\mathbf{y})\geqslant 0$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ because $t - t^2 \geqslant 0$. Therefore,

$$(1-t)\mathbf{x}'A\mathbf{x} + t\mathbf{y}'A\mathbf{y}$$

$$= \mathbf{x}'A\mathbf{x} + t\mathbf{x}'A(\mathbf{y} - \mathbf{x}) + t(\mathbf{y} - \mathbf{x})'A\mathbf{x} + t(\mathbf{y} - \mathbf{x})'A(\mathbf{y} - \mathbf{x})$$

$$\geqslant \mathbf{x}'A\mathbf{x} + t\mathbf{x}'A(\mathbf{y} - \mathbf{x}) + t(\mathbf{y} - \mathbf{x})'A\mathbf{x} + t^2(\mathbf{y} - \mathbf{x})'A(\mathbf{y} - \mathbf{x})$$

$$= (\mathbf{x} + t(\mathbf{y} - \mathbf{x}))'A(\mathbf{x} + t(\mathbf{y} - \mathbf{x})$$

for $t \in [0, 1]$, which proves the convexity of f.

Theorem

Let (a, b) be an open interval of $\mathbb R$ and let $f:(a, b) \longrightarrow \mathbb R$ be a differentiable function on (a, b). Then, f is convex on (a, b) if and only if $f(y) \geqslant f(x) + f'(x)(y-x)$ for every $x, y \in (a, b)$.

Proof

Suppose that f is convex on (a, b). Then, for $x, y \in (a, b)$ we have

$$f((1-t)x+ty)\leqslant (1-t)f(x)+tf(y)$$

for $t \in [0, 1]$. Therefore, for t < 1 we have

$$f(y) \geqslant f(x) + \frac{f(x+t(y-x))-f(x)}{t(y-x)}(y-x).$$

When $t \to 0$ we obtain $f(y) \ge f(x) + f'(x)(y - x)$.

Conversely, suppose that $f(y) \ge f(x) + f'(x)(y-x)$ for every $x, y \in (a, b)$ and let z = (1-t)x + ty. We have

$$f(x) \geqslant f(z) + f'(z)(x - z),$$

$$f(y) \geqslant f(z) + f'(z)(y - z).$$

By multiplying the first inequality by 1-t and the second by t we obtain

$$(1-t)f(x)+tf(y)\geqslant f(z),$$

which shows that f is convex.

Extension of Previous Theorem

Theorem

Let S be a convex subset of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}$ be a Gâteaux differentiable function on S. Then, f is convex on S if and only if $f(\mathbf{y}) \geqslant f(\mathbf{x}) + (\nabla f)(\mathbf{x})'(\mathbf{y} - \mathbf{x})$ for every $\mathbf{x}, \mathbf{y} \in S$.

Corollary

Let S be an convex subset of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}$ be a Gâteaux differentiable function on S. If $(\nabla f)(\mathbf{x}_0)'(\mathbf{x} - \mathbf{x}_0) \geqslant 0$ for every $\mathbf{x} \in S$, then $f(\mathbf{x}_0)$ is a minimum for f in S.

Let $S = \mathbf{K}_{\operatorname{conv}}\{\mathbf{a}_1,\dots,\mathbf{a}_m\} \subseteq \mathbb{R}^n$ and let $f:S \longrightarrow \mathbb{R}$ be the linear function defined by $f(\mathbf{x}) = \mathbf{c}'\mathbf{x}$. We have $(\nabla f)(\mathbf{x}) = \mathbf{c}$. If $\mathbf{c}'(\mathbf{x} - \mathbf{x}_0) \geqslant 0$ for every $\mathbf{x} \in S$, then \mathbf{x}_0 is a minimizer for f. Note that $\mathbf{x} \in S$ if and only if $\mathbf{x} = \sum_{i=1}^m b_i \mathbf{a}_i$, where $b_i \geqslant 0$ for $1 \leqslant i \leqslant m$ and $\sum_{i=1}^m b_i = 1$. Thr previous inequality can be written as

$$\mathbf{c}'\left(\sum_{i=1}^m b_i \mathbf{a}_i - \mathbf{x}_0\right) = \mathbf{c}'\sum_{i=1}^m b_i(\mathbf{a}_i - \mathbf{x}_0) \geqslant 0$$

for $b_i \geqslant 0$, $1 \leqslant i \leqslant m$, and $\sum_{i=1}^m b_i = 1$. When $\mathbf{x}_0 = \mathbf{a}_i$ and

$$b_j = \begin{cases} 1 & \text{if } j = i, \\ 0 & \text{otherwise} \end{cases}$$

this condition is satisfied. Thus, there exists a point \mathbf{a}_i that is a minimizer for f on S.

Theorem

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a convex, differentiable function. Any critical point \mathbf{x}_0 of f is a global minimum for f.

Proof

Let \mathbf{x}_0 be a critical point for f. Suppose that \mathbf{x}_0 is not a global minimum for f. Then, there exists \mathbf{z} such that $f(\mathbf{z}) < f(\mathbf{x}_0)$. Since f is differentiable in \mathbf{x}_0 , we have

$$(\nabla f)'_{\mathbf{x}_0}(\mathbf{z} - \mathbf{x}_0) = \frac{d}{dt} f(\mathbf{x}_0 + t(\mathbf{z} - \mathbf{x}_0))_{t=0}$$

$$= \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t(\mathbf{z} - \mathbf{x}_0)) - f(\mathbf{x}_0)}{t}$$

$$= \lim_{t \to 0} \frac{f(t\mathbf{z} + (1 - t)\mathbf{x}_0)) - f(\mathbf{x}_0)}{t}$$

$$\leqslant \frac{tf(\mathbf{z}) + (1 - t)f(\mathbf{x}_0) - f(\mathbf{x}_0)}{t}$$

$$= \frac{t(f(\mathbf{z}) - tf(\mathbf{x}_0))}{t} < 0,$$

which implies $(\nabla f)_{\mathbf{x}_0} \neq \mathbf{0}_n$, thus contradicting the fact that \mathbf{x}_0 is a critical point.