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Convex Closure of a Set

If S CR" and Cs is the collection of convex sets that contain S, then

@ Cs # () because R" is a convex set that contains S.

@ Any intersection of subsets of Cs is a convex set that contains S.

Thus (Cs is the least convex set that contains S.
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Convex Closure of a Set

Definition
The convex closure of the subset S of R” is the set Kcony(S) =[)Cs.

The convex closure of S is denoted by Kcony(S).
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Convex Closure of a Set

Note that
oS - Kconv(S);

o 5 C S, implies Keony(S1) € Keonv(S2);

° KCOHV(KCODV(S)) - KCOHV(S)'
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Epigraphs and Hypographs of Convex Functions

Definition
Let f : R" —> R be a function. lts epigraph is the set
epi(f) ={(x,y) eR" xR | f(x) <y}.

The hypograph of f is the set

hyp(F) = {(x,¥) ER" x & | y < F(x)}.
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Epigraphs and Hypographs of Convex Functions

The epigraph of a function f : R — R is the dotted area in R? located
above the graph of the function f and it is shown in Figure ??(a); the

hypograph of f is the dotted area below the graph shown in Figure ??(b).

y y

Figure : Epigraph (a) and hypograph (b) of a function f : R — R
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Epigraphs and Hypographs of Convex Functions

Note that the intersection

epi(f) Nhyp(f) = {(x,y) € S xR | y = f(x)}

is the graph of the function f.
If f(x) = o0, then (x,00) & epi(f). Thus, for the function f,, defined by
foo(x) = o0 for x € S we have epi(fy) = 0.
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Epigraphs and Hypographs of Convex Functions

Definition

Let f : R” —» R be a function and let a € R. The level set for f at a is
the set
Lra={x€S | f(x) <a}.
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Separation of Convex Sets

Definition

Let C, D be two subsets of R". A hyperplane w'x — a = 0 separates C, D
if w'x < a for every x € C and w'x > a for every x € D.

If a separating hyperplane H exists for two subsets C, D of L we say that
C, D are separable.

C and D are separated by a hyperplane H if C and D are located in
distinct closed half-spaces associated to H. The sets C and D are linearly
separable if there exists a hyperplane that separates them.
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Separation of Convex Sets

Definition
The subsets C and D of R" are strictly separated by a hyperplane w'x = a

if we have either w'x > a > w'y forx € Candy € D, or wy > a > w'x

forx e Candye D.
The sets C and D are strictly linearly separable if there exists a hyperplane

that strictly separates them.

v
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Separation of Convex Sets

Theorem
Let C be a convex subset in R" such that I(C) # () and let V' be an affine
subspace such that V N 1(C) = 0.
There exists a closed hyperplane H, w'x = a, in R" such that
@ VCHand HNI(C) =0, and

@ there exists ¢ € R such that w'x = ¢ for all x € V and w'x < ¢ for all
x € l(C).

v
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Separation of Convex Sets

Definition
Let C be a convex set in R". A hyperplane H is a supporting hyperplane
of C if the following conditions are satisfied:

Q@ H is closed;

@ Cis included in one of the closed half-spaces determined by H;

@ HNK(C) #0.
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Separation of Convex Sets

Theorem

Let C be a convex set in a linear space L. If1(C) # () and xo € OC, then
there exists a supporting hyperplane H of C such that xg € H.
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Separation of Convex Sets

Theorem

(Separation Theorem) Let Cy, C; be two non-empty convex sets in R"
such that 1(Cy) # 0 and G N I(CG) = 0.

There exists a closed hyperplane H, w'x = a, separating C; and C,. In
other words, there exists a linear functional f € L* such that

sup{w'x | x € G} < inf{w'x | x € G},

which means that C; and C, are located in distinct half-spaces determined
by H.
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Separation of Convex Sets

Corollary

Let C1, G, be two disjoint subsets of R". If C is open, then C; and C; are
separable, that is, that

sup{w'x | x € 1} < inf{w'x | x € G},
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Gateaux and Directional Derivatives

Definition

Let X be an open set in R"” and let f : X — R be a function.

The function f is Gateaux differentiable in xg, where xg € X if there exists
a linear operator (Dxf)(x0) : R” — R such that

f —f
(DF)(x0) (1) = lim L0 F W) = F(x0)
t—0 t
for every u such that xp + tu € X. The linear operator (Dxf)(xo) is the
Gateaux derivative of f in xg.
The Gateaux differential of f at xp is the the linear operator §f(xo; h)

given by

6f(xo; u) = lim floo + tu) = Fixo),
t—0 t
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Gateaux and Directional Derivatives

Let a be a vector in R". Define f :

(Dxf)(x0)(u)

R” — R as f(x) = x’a. We have:

f(xo + tu) — f(xo)

lim

t—0 t

. (%o + tu)a—xpa
lim

t—0 t

. tu'a ,

lim =u'a.

t—0 t




Gateaux and Directional Derivatives

Example

Let A € R™" be a matrix and let f : R” — R be the functional
f(x) = x'Ax. We have (Df)(xq) = x(A + A').
By applying the definition of Gateaux differential we have

(Df)(xo)(u) =

f(xo + tu) — f(xo)

lim
t—0 t
im (xg + tu')A(xo + tu) — xpAxg
t—0 t
! tu'Axg + txpAu + t2u’Au
im
t—0 t
u’'Axg + xgAu = xpA'u + xpAu
xo(A+ A'u,

which yields (Df)(xo) = xp(A + A”).

If A€ R"™" is symmetric and f : R” — R is the functional f(x) = xAx,

then (Df)(xo) = 2xpA.
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Gateaux and Directional Derivatives

Example
The norm || - ||: R” — R is not Gateaux differentiable in 0,.
Indeed, suppose that || - || were differentiable in 0,, which would mean
that the limit:

(70 1]

lim =lim — || v

t—=0 t t—0 t

exists for every u € R”, which is contradictory.

However, the square of the norm, || - ||? is differentiable in 0, because
. tu |2 .
lim [ tu =limt|ul=0.
t—0 t t—0
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Gateaux and Directional Derivatives

Example
Consider the norm || - || on R" given by
I 1= Pxal 4 [xal

for x € R". This norm is not Gateaux differentiable in any point xq located
on an axis. Indeed, let xop = ae; be a point on the " axis. The limit

xo+tu %o [
t—0 t
sty | 2
im
t—0 t
e el el (el il = Jal) + el - )
t—0 t
does not exists, so the norm || - |1 is not differentiable in any of these
points.
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Gateaux and Directional Derivatives

Definition

Let f : R” — R be a function and let h € R" — {0,}.
The directional derivative at xq in the direction h is the function %(xo)

given by
of o f(Xo + th) — f(Xo)
anx0) = lim : :




Gateaux and Directional Derivatives

f is Gateaux differentiable at xq if its directional derivative exists in every
direction.

Let f: R” — R be a function differentiable at xg € R". If {e1,...,e,} is
the standard basis for R", then (Df)(xo)(e;) is known as the partial
derivative of f with respect to x; and is denoted by g—xf(xo).

i
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Gateaux and Directional Derivatives

Theorem

Let X be an open set in R" and let f : X — R be a function.
If f is Gateaux differentiable on X, then

| £(u) = F(v) [I<]| u—v || sup{f'(au + (1 — a)v) | a € [0,1]}.
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Let w € X such that ||w ||=1 and || f(u) — f(v) ||= (w, f(u) — f(v)).
Define the the real-valued function g as g(t) = (w, f(u + t(v — u))) for
t € [0,1]. We have the inequality

| £(u)=f(v) [|= (w, f(v)~f(u)) = [g(1)—g(0) < sup{lg'(t)| | t € [0,1]}.
Since

g'(t) = (w,DERf(u+ t(v—u))t)
B <w| f(u+(t+r)(vu))f(u+t(vu))>

r—>0 r

= (Wa f;:—i—t(v—u)(v - “)) ;

we have [g/(t)] <l £/, 1, (v — u) [l hence
EO] < 1 =9
< g v —u ]
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Convex Functions

Recall that for u,v € RU {00}, the sum u + v is always defined.
It is useful to extend the notion of convex function by allowing oo as a
value. Thus, if a function f is defined on a subset S of a linear space L,
f: 5 — R, the extended-value function of f is the function
f:L— RU{oo} defined by

f(x) ifxes,

o0 otherwise,
If a function f : S — R is convex, where S C L is a convex set, then its
extended-value function f satisfies the inequality that defines convexity
f((1—t)x+ty) < (1—t)f(x)+ tf(y) for every x,y € L and t € [0,1], if
we adopt the convention that 0- oo = 0.
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Convex Functions

Definition

The trivial convex function is the function f, : S — R U {oo} defined by
f(x) = oo for every x € S.

A extended-value convex function 7 : S —s R U {oo} is properly convex or
a proper function if f % fro.

The domain of a function f : S — R U {00} is the set

Dom(f) ={x €S | f(x) < oo}.
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Convex Functions

Example

Let f: (0,00) — R be defined by f(x) = x2. The definition domain of f
is clearly convex and we have:

f((l — t)Xl + tX2) = ((1 — t)Xl + tX2)2
= (1-1)23&+ 253 +2(1 — t)txixo.

Therefore,

f((1—t)x1+ txx) — (1= t)f(x1) — tf(x2)
= (1-t)2F 4+ 255 +2(1 — t)txaxo — (1 — t)x¥ — tx3
= —t(]. — t)(Xl — X2)2 <0,

which implies that f is indeed convex.

28 /39



Convex Functions

Example
The function f : R — R defined by f(x) = |a — xb| is convex because
f(1—t)x1+tx) = Ja—((1—t)x1+ tx)b|

la(1 —t) + at — ((1 — t)x1 + tx2)b|
= |(]. — t)(a — le) + t(a — X2b)

N

for t € [0,1].

(1 —t)(a —xb)| + |t(a — xb)| = (1 - )f(x1) +
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Convex Functions

Example

Any norm v on a real linear space L is convex. Indeed, for t € [0, 1] we
have

v(tx + (1= t)y) < v(tx) +v((1 = t)y) = tv(x) + (1 = t)v(y)

for x,y € L.
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Convex Functions

It is easy to verify that any linear combination of convex functions with
non-negative coefficients defined on a real linear space L (of functions
convex at xp € L) is a convex function (a function convex at xp).
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Convex Functions

Example

Let A € R"™*" be a matrix. If A is a positive matrix then the function
f : R" — R defined by f(x) = x’Ax for x € R" is convex on R".
Let t € [0,1] and let x,y € R". By hypothesis we have

(t—)(x—y)Alx—y) >0
for x,y € R" because t — t2 > 0. Therefore,

(1 —t)x'Ax + ty' Ay
= XAx+ txA(y — x) + t(y — x) Ax + t(y — x)'A(y — x)
> XAx + txXAly — x) + t(y — x)'Ax + t?(y — x)’A(y — x)
= (x+tly —x))Ax+ t(y — x)

for t € [0, 1], which proves the convexity of f.

32/39



Differentiablity and Convexity

Theorem

Let (a, b) be an open interval of R and let f : (a,b) — R be a
differentiable function on (a, b). Then, f is convex on (a, b) if and only if
f(y) = f(x)+ f'(x)(y — x) for every x,y € (a, b).
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Proof

Suppose that f is convex on (a, b). Then, for x,y € (a, b) we have
f((L—=t)x+ty) < (1—t)f(x)+ tf(y)
for t € [0,1]. Therefore, for t < 1 we have

) > 700 + Y NIy,

When t — 0 we obtain f(y) > f(x) + f’( )y — x).

X
Conversely, suppose that f(y) > f(x) + f'(x)(y — x) for every x,y € (a, b)
and let z = (1 — t)x + ty. We have

f(x) = f(z) + f(2)(x — 2),
fly) = f(2) + F(2)(y — 2).
By multiplying the first inequality by 1 — t and the second by t we obtain
(L =1)f(x) + tf(y) = f(2),

which shows that f is convex.
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Differentiablity and Convexity

Extension of Previous Theorem

Theorem

Let S be a convex subset of R" and let f : S — R be a Gateaux
differentiable function on S. Then, f is convex on S if and only if
f(y) = f(x) + (VF)(x)'(y — x) for every x,y € S.
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Differentiablity and Convexity

Corollary

Let S be an convex subset of R" and let f : S — R be a Gateaux
differentiable function on S. If (Vf)(xo)'(x — xo) = 0 for every x € S,
then f(xo) is a minimum for f in S.
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Differentiablity and Convexity

Example

Let S = Keonv{a1,...,am} CR" and let f : S — R be the linear
function defined by f(x) = c’x. We have (Vf)(x) =

If ¢/(x —xg) > 0 for every x € S, then xq is a minimizer for f. Note that
x € Sif and only if x =", b;ja;, where b; > 0 for 1 < i < m and
>, bj = 1. Thr previous inequality can be written as

(Zba,—x())—cz:b i—%0) =0

for bj >0, 1<i<m and > 7, bj = 1. When xo = a; and
b [1 =i
0 otherwise

this condition is satisfied. Thus, there exists a point a; that is a minimizer
for f on S.
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Differentiablity and Convexity

Theorem

Let f : R” — R be a convex, differentiable function. Any critical point xg
of f is a global minimum for f.
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Proof
Let xg be a critical point for f. Suppose that xg is not a global minimum

for f. Then, there exists z such that f(z) < f(xo). Since f is differentiable
in Xg, we have

(Vf);o(z —Xo) = %f(xo + t(z — x0))t=0

_ f(xo + t(z — x0)) — f(x0)
t—0 t

— i f(tz+ (1 — t)xq))) — f(x0)
t—0 t

< tf(z) + (1 — tzf(xo)— f(xo)

_ t(f(z) — tf(xo)) <0

; )

which implies (V )y, # 05, thus contradicting the fact that x¢ is a critical
point.
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