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Convex Closure of a Set

If S ⊆ Rn and CS is the collection of convex sets that contain S , then

i CS 6= ∅ because Rn is a convex set that contains S .

ii Any intersection of subsets of CS is a convex set that contains S .

Thus
⋂
CS is the least convex set that contains S .
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Convex Closure of a Set

Definition

The convex closure of the subset S of Rn is the set Kconv(S) =
⋂
CS .

The convex closure of S is denoted by Kconv(S).
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Convex Closure of a Set

Note that

S ⊆ Kconv(S);

S1 ⊆ S2 implies Kconv(S1) ⊆ Kconv(S2);

Kconv(Kconv(S)) = Kconv(S).
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Epigraphs and Hypographs of Convex Functions

Definition

Let f : Rn −→ R̂ be a function. Its epigraph is the set

epi(f ) = {(x, y) ∈ Rn × R | f (x) 6 y}.

The hypograph of f is the set

hyp(f ) = {(x, y) ∈ Rn × R | y 6 f (x)}.
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Epigraphs and Hypographs of Convex Functions

The epigraph of a function f : R −→ R is the dotted area in R2 located
above the graph of the function f and it is shown in Figure ??(a); the
hypograph of f is the dotted area below the graph shown in Figure ??(b).
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Figure : Epigraph (a) and hypograph (b) of a function f : R −→ R
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Epigraphs and Hypographs of Convex Functions

Note that the intersection

epi(f ) ∩ hyp(f ) = {(x , y) ∈ S × R | y = f (x)}

is the graph of the function f .
If f (x) =∞, then (x ,∞) 6∈ epi(f ). Thus, for the function f∞ defined by
f∞(x) =∞ for x ∈ S we have epi(f∞) = ∅.
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Epigraphs and Hypographs of Convex Functions

Definition

Let f : Rn −→ R̂ be a function and let a ∈ R̂. The level set for f at a is
the set

Lf ,a = {x ∈ S | f (x) 6 a}.

9 / 39



Separation of Convex Sets

Definition

Let C ,D be two subsets of Rn. A hyperplane w′x− a = 0 separates C ,D
if w′x 6 a for every x ∈ C and w′x > a for every x ∈ D.
If a separating hyperplane H exists for two subsets C ,D of L we say that
C ,D are separable.

C and D are separated by a hyperplane H if C and D are located in
distinct closed half-spaces associated to H. The sets C and D are linearly
separable if there exists a hyperplane that separates them.
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Separation of Convex Sets

Definition

The subsets C and D of Rn are strictly separated by a hyperplane w′x = a
if we have either w′x > a > w′y for x ∈ C and y ∈ D, or w′y > a > w′x
for x ∈ C and y ∈ D.
The sets C and D are strictly linearly separable if there exists a hyperplane
that strictly separates them.

11 / 39



Separation of Convex Sets

Theorem

Let C be a convex subset in Rn such that I(C ) 6= ∅ and let V be an affine
subspace such that V ∩ I(C ) = ∅.
There exists a closed hyperplane H, w′x = a, in Rn such that

i V ⊆ H and H ∩ I(C ) = ∅, and

ii there exists c ∈ R such that w′x = c for all x ∈ V and w′x < c for all
x ∈ I(C ).
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Separation of Convex Sets

Definition

Let C be a convex set in Rn. A hyperplane H is a supporting hyperplane
of C if the following conditions are satisfied:

i H is closed;

ii C is included in one of the closed half-spaces determined by H;

iii H ∩K(C ) 6= ∅.
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Separation of Convex Sets

Theorem

Let C be a convex set in a linear space L. If I(C ) 6= ∅ and x0 ∈ ∂C , then
there exists a supporting hyperplane H of C such that x0 ∈ H.
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Separation of Convex Sets

Theorem

(Separation Theorem) Let C1,C2 be two non-empty convex sets in Rn

such that I(C1) 6= ∅ and C2 ∩ I(C1) = ∅.
There exists a closed hyperplane H, w′x = a, separating C1 and C2. In
other words, there exists a linear functional f ∈ L∗ such that

sup{w′x | x ∈ C1} 6 inf{w′x | x ∈ C2},

which means that C1 and C2 are located in distinct half-spaces determined
by H.
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Separation of Convex Sets

Corollary

Let C1,C2 be two disjoint subsets of Rn. If C1 is open, then C1 and C2 are
separable, that is, that

sup{w′x | x ∈ C1} 6 inf{w′x | x ∈ C2},
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Gâteaux and Directional Derivatives

Definition

Let X be an open set in Rn and let f : X −→ R be a function.
The function f is Gâteaux differentiable in x0, where x0 ∈ X if there exists
a linear operator (Dx f )(x0) : Rn −→ R such that

(Dx f )(x0)(u) = lim
t→0

f (x0 + tu)− f (x0)

t

for every u such that x0 + tu ∈ X . The linear operator (Dx f )(x0) is the
Gâteaux derivative of f in x0.
The Gâteaux differential of f at x0 is the the linear operator δf (x0; h)
given by

δf (x0; u) = lim
t→0

f (x0 + tu)− f (x0)

t
.
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Gâteaux and Directional Derivatives

Example

Let a be a vector in Rn. Define f : Rn −→ R as f (x) = x′a. We have:

(Dx f )(x0)(u) = lim
t→0

f (x0 + tu)− f (x0)

t

= lim
t→0

(x0 + tu)′a− x′0a

t

= lim
t→0

tu′a

t
= u′a.

18 / 39



Gâteaux and Directional Derivatives

Example

Let A ∈ Rn×n be a matrix and let f : Rn −→ R be the functional
f (x) = x′Ax. We have (Df )(x0) = x′0(A + A′).
By applying the definition of Gâteaux differential we have

(Df )(x0)(u) = lim
t→0

f (x0 + tu)− f (x0)

t

= lim
t→0

(x′0 + tu′)A(x0 + tu)− x′0Ax0

t

= lim
t→0

tu′Ax0 + tx′0Au + t2u′Au

t
= u′Ax0 + x′0Au = x′0A′u + x′0Au

= x′0(A + A′)u,

which yields (Df )(x0) = x′0(A + A′).
If A ∈ Rn×n is symmetric and f : Rn −→ R is the functional f (x) = x′Ax,
then (Df )(x0) = 2x′0A.
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Gâteaux and Directional Derivatives

Example

The norm ‖ · ‖: Rn −→ R>0 is not Gâteaux differentiable in 0n.
Indeed, suppose that ‖ · ‖ were differentiable in 0n, which would mean
that the limit:

lim
t→0

‖ tu ‖
t

= lim
t→0

|t|
t
‖ u ‖

exists for every u ∈ Rn, which is contradictory.
However, the square of the norm, ‖ · ‖2 is differentiable in 0n because

lim
t→0

‖ tu ‖2

t
= lim

t→0
t ‖ u ‖= 0.
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Gâteaux and Directional Derivatives

Example

Consider the norm ‖ · ‖1 on Rn given by

‖ x ‖1= |x1|+ . . .+ |xn|

for x ∈ Rn. This norm is not Gâteaux differentiable in any point x0 located
on an axis. Indeed, let x0 = aei be a point on the i th axis. The limit

lim
t→0

‖ x0 + tu ‖1 − ‖ x0 ‖1

t

= lim
t→0

‖ aei + tu ‖1 − ‖ aei ‖1

t

= lim
t→0

|t||u1|+ · · ·+ |t||ui−1|+ (|t||ui | − |a|) + |t||ui+1|+ · · ·+ |t||un|
t

does not exists, so the norm ‖ · ‖1 is not differentiable in any of these
points.
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Gâteaux and Directional Derivatives

Definition

Let f : Rn −→ R be a function and let h ∈ Rn − {0n}.
The directional derivative at x0 in the direction h is the function ∂f

∂h (x0)
given by

∂f

∂h
(x0) = lim

t↓0

f (x0 + th)− f (x0)

t
.
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Gâteaux and Directional Derivatives

f is Gâteaux differentiable at x0 if its directional derivative exists in every
direction.
Let f : Rn −→ R be a function differentiable at x0 ∈ Rn. If {e1, . . . , en} is
the standard basis for Rn, then (Df )(x0)(ei ) is known as the partial
derivative of f with respect to xi and is denoted by ∂f

∂xi
(x0).
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Gâteaux and Directional Derivatives

Theorem

Let X be an open set in Rn and let f : X −→ R be a function.
If f is Gâteaux differentiable on X , then

‖ f (u)− f (v) ‖6‖ u− v ‖ sup{f ′(au + (1− a)v) | a ∈ [0, 1]}.
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Gâteaux and Directional Derivatives

Let w ∈ X such that ‖ w ‖= 1 and ‖ f (u)− f (v) ‖= (w, f (u)− f (v)).
Define the the real-valued function g as g(t) = (w, f (u + t(v− u))) for
t ∈ [0, 1]. We have the inequality

‖ f (u)−f (v) ‖= (w, f (v)−f (u)) = |g(1)−g(0)| 6 sup{|g ′(t)| | t ∈ [0, 1]}.

Since

g ′(t) = (w,DERf (u + t(v− u))t)

=

(
w, lim

r→0

f (u + (t + r)(v− u))− f (u + t(v− u))

r

)
=

(
w, f ′u+t(v−u)(v− u)

)
,

we have |g ′(t)| 6‖ f ′u+t(v−u)(v− u) ‖, hence

|g ′(t)| 6 ‖ f ′u+t(v−u)(v− u) ‖
6 ‖ f ′u+t(v−u) ‖‖ v− u ‖ .
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Convex Functions

Recall that for u, v ∈ R ∪ {∞}, the sum u + v is always defined.
It is useful to extend the notion of convex function by allowing ∞ as a
value. Thus, if a function f is defined on a subset S of a linear space L,
f : S −→ R, the extended-value function of f is the function
f̂ : L −→ R ∪ {∞} defined by

f̂ (x) =

{
f (x) if x ∈ S ,

∞ otherwise,

If a function f : S −→ R is convex, where S ⊆ L is a convex set, then its
extended-value function f̂ satisfies the inequality that defines convexity
f̂ ((1− t)x + ty) 6 (1− t)f̂ (x) + tf̂ (y) for every x , y ∈ L and t ∈ [0, 1], if
we adopt the convention that 0 · ∞ = 0.
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Convex Functions

Definition

The trivial convex function is the function f∞ : S −→ R ∪ {∞} defined by
f (x) =∞ for every x ∈ S .

A extended-value convex function f̂ : S −→ R ∪ {∞} is properly convex or
a proper function if f̂ 6= f∞.
The domain of a function f : S −→ R ∪ {∞} is the set
Dom(f ) = {x ∈ S | f (x) <∞}.
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Convex Functions

Example

Let f : (0,∞) −→ R be defined by f (x) = x2. The definition domain of f
is clearly convex and we have:

f ((1− t)x1 + tx2) = ((1− t)x1 + tx2)2

= (1− t)2x2
1 + t2x2

2 + 2(1− t)tx1x2.

Therefore,

f ((1− t)x1 + tx2)− (1− t)f (x1)− tf (x2)

= (1− t)2x2
1 + t2x2

2 + 2(1− t)tx1x2 − (1− t)x2
1 − tx2

2

= −t(1− t)(x1 − x2)2 6 0,

which implies that f is indeed convex.
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Convex Functions

Example

The function f : R −→ R defined by f (x) = |a− xb| is convex because

f ((1− t)x1 + tx2) = |a− ((1− t)x1 + tx2)b|
= |a(1− t) + at − ((1− t)x1 + tx2)b|
= |(1− t)(a− x1b) + t(a− x2b)

6 |(1− t)(a− x1b)|+ |t(a− x2b)| = (1− t)f (x1) + tf (x2)

for t ∈ [0, 1].
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Convex Functions

Example

Any norm ν on a real linear space L is convex. Indeed, for t ∈ [0, 1] we
have

ν(tx + (1− t)y) 6 ν(tx) + ν((1− t)y) = tν(x) + (1− t)ν(y)

for x , y ∈ L.
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Convex Functions

It is easy to verify that any linear combination of convex functions with
non-negative coefficients defined on a real linear space L (of functions
convex at x0 ∈ L) is a convex function (a function convex at x0).
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Convex Functions

Example

Let A ∈ Rn×n be a matrix. If A is a positive matrix then the function
f : Rn −→ R defined by f (x) = x′Ax for x ∈ Rn is convex on Rn.
Let t ∈ [0, 1] and let x, y ∈ Rn. By hypothesis we have

(t − t2)(x− y)′A(x− y) > 0

for x, y ∈ Rn because t − t2 > 0. Therefore,

(1− t)x′Ax + ty′Ay

= x′Ax + tx′A(y− x) + t(y− x)′Ax + t(y− x)′A(y− x)

> x′Ax + tx′A(y− x) + t(y− x)′Ax + t2(y− x)′A(y− x)

= (x + t(y− x))′A(x + t(y− x)

for t ∈ [0, 1], which proves the convexity of f .
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Differentiablity and Convexity

Theorem

Let (a, b) be an open interval of R and let f : (a, b) −→ R be a
differentiable function on (a, b). Then, f is convex on (a, b) if and only if
f (y) > f (x) + f ′(x)(y − x) for every x , y ∈ (a, b).
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Differentiablity and Convexity

Proof

Suppose that f is convex on (a, b). Then, for x , y ∈ (a, b) we have

f ((1− t)x + ty) 6 (1− t)f (x) + tf (y)

for t ∈ [0, 1]. Therefore, for t < 1 we have

f (y) > f (x) +
f (x + t(y − x))− f (x)

t(y − x)
(y − x).

When t → 0 we obtain f (y) > f (x) + f ′(x)(y − x).
Conversely, suppose that f (y) > f (x) + f ′(x)(y − x) for every x , y ∈ (a, b)
and let z = (1− t)x + ty . We have

f (x) > f (z) + f ′(z)(x − z),

f (y) > f (z) + f ′(z)(y − z).

By multiplying the first inequality by 1− t and the second by t we obtain

(1− t)f (x) + tf (y) > f (z),

which shows that f is convex.
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Differentiablity and Convexity

Extension of Previous Theorem

Theorem

Let S be a convex subset of Rn and let f : S −→ R be a Gâteaux
differentiable function on S. Then, f is convex on S if and only if
f (y) > f (x) + (∇f )(x)′(y− x) for every x, y ∈ S.
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Differentiablity and Convexity

Corollary

Let S be an convex subset of Rn and let f : S −→ R be a Gâteaux
differentiable function on S. If (∇f )(x0)′(x− x0) > 0 for every x ∈ S,
then f (x0) is a minimum for f in S.
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Differentiablity and Convexity

Example

Let S = Kconv{a1, . . . , am} ⊆ Rn and let f : S −→ R be the linear
function defined by f (x) = c′x. We have (∇f )(x) = c.
If c′(x− x0) > 0 for every x ∈ S , then x0 is a minimizer for f . Note that
x ∈ S if and only if x =

∑m
i=1 biai , where bi > 0 for 1 6 i 6 m and∑m

i=1 bi = 1. Thr previous inequality can be written as

c′

(
m∑
i=1

biai − x0

)
= c′

m∑
i=1

bi (ai − x0) > 0

for bi > 0, 1 6 i 6 m, and
∑m

i=1 bi = 1. When x0 = ai and

bj =

{
1 if j = i ,

0 otherwise

this condition is satisfied. Thus, there exists a point ai that is a minimizer
for f on S .
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Differentiablity and Convexity

Theorem

Let f : Rn −→ R be a convex, differentiable function. Any critical point x0

of f is a global minimum for f .
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Differentiablity and Convexity

Proof

Let x0 be a critical point for f . Suppose that x0 is not a global minimum
for f . Then, there exists z such that f (z) < f (x0). Since f is differentiable
in x0, we have

(∇f )′x0
(z− x0) =

d

dt
f (x0 + t(z− x0))t=0

= lim
t→0

f (x0 + t(z− x0))− f (x0)

t

= lim
t→0

f (tz + (1− t)x0)))− f (x0)

t

6
tf (z) + (1− t)f (x0)− f (x0)

t

=
t(f (z)− tf (x0))

t
< 0,

which implies (∇f )x0 6= 0n, thus contradicting the fact that x0 is a critical
point.
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