Clustering - I

Prof. Dan A. Simovici

UMB

1 Partitions and Equivalence Relations

2 Partitions

An *equivalence relation* on a set S is a relation ρ that is reflexive, symmetric, and transitive.

This means that

- $(x,x) \in \rho$ for every $x \in S$;
- $(x,y) \in \rho$ if and only if $(y,x) \in \rho$;
- $(x,y) \in \rho$ and $(y,z) \in \rho$ imply $(x,z) \in \rho$.

Let U and V be two sets, and consider a function $f:U\longrightarrow V$. The relation $\ker(f)\subseteq U\times U$, called the $\ker(f)$ is given by

$$\ker(f) = \{(u, u') \in U \times U \mid f(u) = f(u')\}.$$

In other words, $(u, u') \in \ker(f)$ if f maps both u and u' into the same element of V.

Let $m \in \mathbb{N}$ be a positive natural number. Define the function $f_m : \mathbb{Z} \longrightarrow \mathbb{N}$ by $f_m(n) = r$ if r is the remainder of the division of n by m. The range of the function f_m is the set $\{0, \ldots, m-1\}$.

The relation $\ker(f_m)$ is usually denoted by \equiv_m . We have $(p,q) \in \equiv_m$ if and only if p-q is divisible by m; if $(p,q) \in \equiv_m$, we also write $p \equiv q \pmod{m}$.

Let ρ be an equivalence on a set U and let $u \in U$. The *equivalence class* of u is the set $[u]_{\rho}$, given by

$$[u]_{\rho} = \{ y \in U \mid (u, y) \in \rho \}.$$

When there is no risk of confusion, we write simply [u] instead of $[u]_{\rho}$.

Note that an equivalence class [u] of an element u is never empty since $u \in [u]$ because of the reflexivity of ρ .

Theorem

Let ρ be an equivalence on a set U and let $u, v \in U$. The following three statements are equivalent:

- $(u,v) \in \rho;$
- [u] = [v];

Let S be a set and let $\rho \in EQ(S)$. A subset U of S is ρ -saturated if it equals a union of equivalence classes of ρ .

It is easy to see that U is a ρ -saturated set if and only if $x \in U$ and $(x,y) \in \rho$ imply $y \in U$. It is clear that both \emptyset and S are ρ -saturated sets.

Let S be a nonempty set. A partition of S is a nonempty collection $\pi = \{B_i \mid i \in I\}$ of nonempty subsets of S, such that $\{J_i \mid i \in I\} = S$, and $B_i \cap B_i = \emptyset$ for every $i, j \in I$ such that $i \neq j$. Each set B_i of π is a block of the partition π .

The set of partitions of a set S is denoted by PART(S). The partition of S that consists of all singletons of the form $\{s\}$ with $s \in S$ will be denoted

by α_S ; the partition that consists of the set S itself will be denoted by ω_S .

For the two-element set $S = \{a, b\}$, there are two partitions: the partition $\alpha_S = \{\{a\}, \{b\}\}\}$ and the partition $\omega_S = \{\{a, b\}\}\}$.

For the one-element set $T = \{c\}$, there exists only one partition,

 $\alpha_T = \omega_T = \{\{t\}\}.$

A complete list of partitions of a set $S = \{a, b, c\}$ consists of

$$\begin{array}{rclrcl} \pi_0 & = & \{\{a\},\{b\},\{c\}\}, & \pi_1 & = & \{\{a,b\},\{c\}\}, \\ \pi_2 & = & \{\{a\},\{b,c\}\}, & \pi_3 & = & \{\{a,c\},\{b\}\}, \\ \pi_4 & = & \{\{a,b,c\}\}. \end{array}$$

Clearly,
$$\pi_0 = \alpha_S$$
 and $\pi_4 = \omega_S$.

Let S be a set and let $\pi, \sigma \in \mathsf{PART}(S)$. The partition π is *finer* than the partition σ if every block C of σ is a union of blocks of π . This is denoted by $\pi \leqslant \sigma$.

Theorem

Let $\pi = \{B_i \mid i \in I\}$ and $\sigma = \{C_j \mid j \in J\}$ be two partitions of a set S. For $\pi, \sigma \in PART(S)$, we have $\pi \leqslant \sigma$ if and only if for every block $B_i \in \pi$ there exists a block $C_i \in \sigma$ such that $B_i \subseteq C_i$.

Proof

If $\pi \leqslant \sigma$, then it is clear for every block $B_i \in \pi$ there exists a block $C_j \in \sigma$ such that $B_i \subseteq C_j$.

Conversely, suppose that for every block $B_i \in \pi$ there exists a block $C_j \in \sigma$ such that $B_i \subseteq C_j$. Since two distinct blocks of σ are disjoint, it follows that for any block B_i of π , the block C_j of σ that contains B_i is unique. Therefore, if a block B of π intersects a block C of σ , then $B \subseteq C$. Let $Q = \bigcup \{B_i \in \pi \mid B_i \subseteq C_j\}$. Clearly, $Q \subseteq C_j$. Suppose that there exists $x \in C_j - Q$. Then, there is a block $B_\ell \in \pi$ such that $x \in B_\ell \cap C_j$, which implies that $B_\ell \subseteq C_j$. This means that $x \in B_\ell \subseteq C$, which contradicts the assumption we made about x. Consequently, $C_j = Q$, which concludes the argument.

Note that $\alpha_S \leqslant \pi \leqslant \omega_S$ for every $\pi \in PART(S)$.

Two equivalence classes either coincide or are disjoint. Therefore, starting from an equivalence $\rho \in EQ(U)$, we can build a partition of the set U.

Definition

The *quotient set* of the set U with respect to the equivalence ρ is the partition U/ρ , where

$$U/\rho = \{[u]_\rho \mid u \in U\}.$$

An alternative notation for the partition U/ρ is π_{ρ} .

Theorem

Let $\pi = \{B_i \mid i \in I\}$ be a partition of the set U. Define the relation ρ_{π} by $(x,y) \in \rho_{\pi}$ if there is a set $B_i \in \pi$ such that $\{x,y\} \subseteq B_i$. The relation ρ_{π} is an equivalence.

Proof

Let B_i be the block of the partition that contains u. Since $\{u\} \subseteq B_i$, we have $(u,u) \in \rho_{\pi}$ for any $u \in U$, which shows that ρ_{π} is reflexive. The relation ρ_{π} is clearly symmetric. To prove the transitivity of ρ_{π} , consider $(u,v),(v,w) \in \rho_{\pi}$. We have the blocks B_i and B_j such that $\{u,v\} \subseteq B_i$ and $\{v,w\} \subseteq B_j$. Since $v \in B_i \cap B_j$, we obtain $B_i = B_j$ by the definition of partitions; hence, $(u,w) \in \rho_{\pi}$.