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The k-Means Algorithm

The k-means algorithm is a partitional algorithm that requires the
specification of the number of clusters k as an input.

The set of objects to be clustered S = {o1, . . . , on} is a subset of Rm.
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The k-Means Algorithm

The Starting Point

The k-means algorithm begins with a randomly chosen collection of k
points c1, . . . , ck in Rm called centroids. An initial partition of the set S of
objects is computed by assigning each object oi to its closest centroid cj .
Let Uj be the set of points assigned to the centroid cj .
The assignments of objects to centroids are expressed by a matrix (bij),
where

bij =

{
1 if oi ∈ Uj ,

0 otherwise.

Since each object is assigned to exactly one cluster, we have
∑k

j=1 bij = 1.

Also,
∑n

i=1 bij equals the number of objects assigned to the centroid cj .
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The k-Means Algorithm

Recomputing the Centroids

After these assignments, expressed by the matrix (bij), the centroids cj

must be re-computed using the formula:

cj =

∑n
i=1 bijo

i∑n
i=1 bij

(1)

for 1 6 j 6 k.
The sum of squared errors of a partition π = {U1, . . . ,Uk} of a set of
objects S was defined as

sse(π) =
k∑

j=1

∑
o∈Uj

d2(o, cj),

where cj is the centroid of Uj for 1 6 j 6 k . The error of such an
assignment is the sum of squared errors of the partition π = {U1, . . . ,Uk}
defined as

sse(π) =
n∑

i=1

k∑
j=1

bij ||oi − cj ||2

=
n∑

i=1

k∑
j=1

bij

m∑
p=1

(
o ip − c jp

)2
.
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The k-Means Algorithm

The mk necessary conditions for a local minimum of this function,

∂sse(π)

∂c jp
=

n∑
i=1

bij
(
−2(o ip − c jp)

)
= 0,

for 1 6 p 6 m and 1 6 j 6 k , can be written as

n∑
i=1

bijo
i
p =

n∑
i=1

bijc
j
p = c jp

n∑
i=1

bij ,

or as

c jp =

∑n
i=1 bijo

i
p∑n

i=1 bij

for 1 6 p 6 m.
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The k-Means Algorithm

In vectorial form, these conditions amount to

cj =

∑n
i=1 bijo

i∑n
i=1 bij

,

which is exactly the formula that is used to update the centroids. Thus,
the choice of the centroids can be justified by the goal of obtaining local
minima of the sum of squared errors of the clusterings.
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The k-Means Algorithm

Since we have new centroids, objects must be reassigned, which means
that the values of bij must be recomputed, which, in turn, affects the
values of the centroids, etc.
The halting criterion of the algorithm depends on particular
implementations and may involve

i performing a certain number of iterations;

ii lowering the sum of squared errors sse(π) below a certain limit;

iii the current partition coinciding with the previous partition.
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The k-Means Algorithm

Forgy’s Algorithm

Algorithm 1: The k-means Forgy’s Algorithm

Data: the set of objects to be clustered S = {o1, . . . , on} and the number
of clusters k

Result: collection of k clusters
1 extract a randomly chosen collection of k vectors c1, . . . , ck in Rn;
2 assign each object oi to the closest centroid cj ;

3 let π = {U1, . . . ,Uk} be the partition defined by c1, . . . , ck ;
4 recompute the centroids of the clusters U1, . . . ,Uk ;
5 while halting criterion is not met do
6 compute the new value of the partition π using the current centroids;
7 recompute the centroids of the blocks of π;
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The PAM Algorithm

Another algorithm, named PAM (an acronym of “Partition Around
Medoids”) developed by Kaufman and Rousseeuw, also requires as an
input parameter the number k of clusters to be extracted.
The k clusters are determined based on a representative object from each
cluster, called the medoid of the cluster. The medoid of a cluster is one of
the objects that have a most central position in the cluster.
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The PAM Algorithm

PAM begins with a set of objects S , where |S | = n, a dissimilarity n × n
matrix D, and a prescribed number of clusters k . The dij entry of the
matrix D is the dissimilarity d(oi , oj) between the objects oi and oj .
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The PAM Algorithm

The algorithm has two phases:

the building phase, and

the swapping phase.
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The PAM Algorithm

The Builing Phase

The building phase aims to construct a set L of selected objects, L ⊆ S .
The set of remaining objects is denoted by R; clearly, R = S − L.
To determine the most centrally located object we compute

Qi =
n∑

j=1

dij

for 1 6 i 6 n.
The most central object oq is determined by q = arg miniQi . The set L is
initialized as L = {oq}.
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The PAM Algorithm

The Builing Phase (cont’d)

Suppose now that we have constructed a set L of selected objects and
|L| < k .
To add a new selected object to the set L we need to examine all objects
that have not been included in L so far, that is, all objects in R.
The selection is determined by a merit function M : R −→ N.
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The PAM Algorithm

The Builing Phase (cont’d)

To compute the merit M(o) of an object o ∈ R, we scan all objects in R
distinct from o.
Let o ′ ∈ R − {o} be such an object. If d(o, o ′) < d(L, o ′), then adding o
to L could benefit the clustering (from the point of view of o ′) because
d(L, o ′) will diminish.
The potential benefit is d(o ′, L)− d(o, o ′). Of course, if
d(o, o ′) > d(L, o ′), no such benefit exists (from the point of view of o ′).
Thus, we compute the merit of o as

M(o) =
∑

o′∈R−{o}

max{D(L, o ′)− d(o, o ′), 0}.

We add to L the unselected object o that has the largest merit value. The
building phase halts when |L| = k .
The objects in set L are the potential medoids of the k clusters that we
seek to build.
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The PAM Algorithm

The Swapping Phase

The second phase of the algorithm aims to improve the clustering by
considering the merit of swaps between selected and unselected objects.

In a second phase, swapping objects and existing medoids is
considered.

A cost of a swap is defined with the intention of penalizing swaps
that diminish the centrality of the medoids in the clusters.

Swapping continues as long as useful swaps (that is, swaps with
negative costs) can be found.
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The PAM Algorithm

A cost of a swap is defined with the intention of penalizing swaps that
diminish the centrality of the medoids in the clusters. Swapping continues
as long as useful swaps (that is, swaps with negative costs) can be found.
The second phase of the algorithm aims to improve the clustering by
considering the merit of swaps between selected and unselected objects.
So, assume now that oi is a selected object, oi ∈ L, and oh is an
unselected object, oh ∈ R = S − L. We need to determine the cost
C (oi , oh) of swapping oi and oh.
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The PAM Algorithm

Let oj be an arbitrary unselected object. The contribution cihj of oj to the
cost of the swap between oi and oh is defined as follows:

1 If d(oi , oj) and d(oh, oj) are greater than d(o, oj) for any
o ∈ L− {oi}, then cihj = 0.

2 If d(oi , oj) = d(L, oj), then two cases must be considered depending
on the distance e(oj) from ej to the second-closest object of S .

1 If d(oh, oj) < e(oj), then cihj = d(oh, oj)− d(S , oj).
2 If d(oh, oj) > e(oj), then cihj = e(oj)− d(S , oj).

In either of these two subcases, we have

cihj = min{d(oh, oj), ej} − d(oi , oj).

3 If d(oi , oj) > d(L, oj) (that is, oj is more distant from oi than from at
least one other selected object) and d(oh, oj) < d(L, oj) (which
means that oj is closer to oh than to any selected object), then
cihj = d(oh, oj)− d(S , oj).
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The PAM Algorithm

The cost of the swap is C (oi , oh) =
∑

oj∈R cihj . The pair that minimizes

C (oi , oj) is selected. If C (oi , oj) < 0, then the swap is carried out. All
potential swaps are considered.
The algorithm halts when no useful swap exists; that is, no swap with
negative cost can be found.
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The PAM Algorithm

Algorithm 2: The PAM algorithms

Data: a set of objects S , where |S | = n, a dissimilarity n × n matrix D,
and a prescribed number of clusters k

Result: a k-clustering of S
1 construct the set L of k medoids;
2 repeat
3 compute the costs C (oi , oh) for oi ∈ L and oh ∈ R;
4 select the pair (oi , oh) that corresponds to the minimum

m = C (oi , oh);
5 until (m > 0);
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The PAM Algorithm

Note that inside the loop repeat · · ·until there are l(n− l) pairs of objects
to be examined, and for each pair we need to involve n − l non-selected
objects. Thus, one execution of the loop requires O(l(n − l)2), and the

total execution may require up to O
(∑n−l

l=1 l(n − l)2
)

, which is O(n4).

Thus, the usefulness of PAM is limited to rather small data set (no more
than a few hundred objects).
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