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Outline

What is the PAC Model?

Definition

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 −→ N and a learning algorithm A such that for every
ε, δ ∈ (0, 1), every distribution D over X , and for every labeling function
f : X −→ {0, 1}, if realizable assumption holds with respect to H,D, f ,
then when running the algorithm on m > mH(ε, δ) iid examples generated
by D and labeled by f , A returns a hypothesis h such that, with probability
at least 1− δ (over the choice of examples), we have L(D,f )(h) 6 ε.
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Outline

Approximation Parameters

the accuracy parameter ε determines how far the output classifier can
be from the optimal one, and

the confidence parameter δ indicates how likely is the classifier is to
meet that accuracy requirement.
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The Agnostic PAC Learning

What is Agnostic PAC Learning

The realizability assumption (the existence of a hypothesis h∗ ∈ H
such that Px∼D(h∗(x) = f (x)) = 1 ) is not realistic in many cases.

Agnostic learning replaces the realizability assumption and the
targeted labeling function f , with a distribution D defined on pairs
(data, labels), that is with a distribution D on X × Y.
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The Agnostic PAC Learning

When the probability distribution D was defined on X , the
generalization error of a hypothesis was defined as:

LD,f (h) = D({x | h(x) 6= f (x)}).

Now, D is defined over X × Y, so we redefine the generalization error
as:

LD(h) = D({(x , y) | h(x) 6= y}).

We seek a predictor for which LD(h) is minimal.

The definition of the empirical risk remains the same:

LS(h) =
|{i | h(xi ) 6= yi for 1 6 i 6 m}|

m
.
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The Agnostic PAC Learning

The Bayes Classifier and Its Optimality

Let D be any probability distribution over X × Y, where Y = {0, 1}.
Let X be a random variable ranging over X and Y be a random variable
ranging over Y = {0, 1}.
The Bayes predictor is the function fD defined as

fD(x) =

{
1 if P(Y = 1|X = x) > 1

2

0 otherwise.
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The Agnostic PAC Learning

Theorem

Given any probability distribution D over X × {0, 1} the best label
predicting function from X to {0, 1} is the Bayes predictor.

Proof: Let X be a random variable ranging over X , Y be a random
variable ranging over Y = {0, 1}, and let αx be the probability of a having
a label 1 given x , that is,

αx = P(Y = 1|X = x).

In other words, the Bayes predictor is

fD(x) =

{
1 if αx > 1

2

0 if αx <
1
2 .
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The Agnostic PAC Learning

Proof (cont’d)

We have:

LD(fD) = P(fD(X ) 6= y |X = x)

= P(fD(x) = 1|X = x)P(Y = 0|X = x)

+P(fD(x) = 0|X = x)P(Y = 1|X = x)

= P

(
αx >

1

2

)
P(Y = 0|X = x)

+P

(
αx <

1

2

)
P(Y = 1|X = x)
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The Agnostic PAC Learning

Proof (cont’d)

If αx > 1
2 , then min{αx , 1− αx} = 1− αx , P

(
αx > 1

2

)
= 1,

P
(
αx <

1
2

)
= 0 and

P

(
αx >

1

2

)
(1− αx) + P

(
αx <

1

2

)
αx

= 1− αx = min{1− αx , αx}.

If αx <
1
2 , then min{αx , 1− αx} = αx , P

(
αx > 1

2

)
= 0, P

(
αx <

1
2

)
= 1

and

P

(
αx >

1

2

)
(1− αx) + P

(
αx <

1

2

)
αx

= αx = min{1− αx , αx}.
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The Agnostic PAC Learning

Proof (cont’d)

Let g be any other classifier. We have:

P(g(X ) 6= Y |X = x) = P(g(X ) = 0|X = x)P(Y = 1|X = x)

+P(g(X ) = 1|X = x)P(Y = 0|X = x)

= P(g(X ) = 0|X = x)αx

+P(g(X ) = 1|X = x)(1− αx)

> P(g(X ) = 0|X = x) min{αx , 1− αx}
+P(g(X ) = 1|X = x) min{αx , 1− αx}

> (P(g(X ) = 0|X = x) + P(g(X ) = 1|X = x))

·min{αx , 1− αx}
= min{αx , 1− αx} = P(fD(X ) 6= y |X = x).
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The Agnostic PAC Learning

Agnostic PAC Learnability

Definition

A hypothesis class H is agnostic PAC learnable if there exists a function
mH : (0, 1)2 −→ N and a learning algorithm A with the following property:
For every ε, δ ∈ (0, 1) and for every distribution D over X × Y, when
running A on m > mH(ε, δ) iid examples generated by D, A returns a
hypothesis h such that with probability at least 1− δ (over the choice of
the m training examples) we have

LD(h) 6 min
h′∈H

LD(h′) + ε.
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The Agnostic PAC Learning

If the realizability assumption holds, agnostic PAC learning provides
the same guarantees as PAC learning.

When the realizability assumption does not hold, no learner can
guarantee an arbitrary small error.

A learner A can declare success if the error is not much larger than
the smallest error achievable by a hypothesis from H.
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The Scope of Learning Problems

Multiclass Classification

Example

Let X be a set of document features, and Y a set of topics (sports,
politics, health, etc.).
By document features we mean counts of certain key words, size, or origin
of the document.
The loss function will be the probability of the event that occurs when the
predictor suggest a wrong label.
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The Scope of Learning Problems

Regression

Example

In regression we seek to find a functional relationship h between the X and
Y components of the data.
For example, to predict the weight of a baby at birth X can be a set of
triplets in R3

(head circumference, abdominal circumference, femur length)
and Y is is the weight at birth. We seek h that will minimize the loss
LD(h) = E(x ,y)∼D(h(x)− y)2.
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The Scope of Learning Problems

Generalized Loss Functions

Definition

Given a set of hypotheses H, a domain Z , a loss function is a function
` : H× Z −→ R+.

For prediction problems we have Z = X × Y.

Definition

The risk function is the expected loss of the classifier h ∈ H with respect
to a probability distribution D over Z , namely

LD(h) = Ez∼D(`(h, z)).

The empirical risk is the expected loss over the sample
S = (z1, . . . , sm) ∈ Zm as

LS(h) =
1

m

m∑
i=1

`(h, zi ).
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The Scope of Learning Problems

0-1 Loss

The random variable z ranges over X × Y and the loss function is

`0−1(h, (x , y)) =

{
0 if h(x) = y ,

1 if h(x) 6= y .

This is used in binary or multiclass classification problems.
For the 0/1 loss the definition of LD(h) = Ez∼D(`(h, z)) coincides with the
previous definition in the agnostic PAC, LD(h) = D({(x , y) | h(x) 6= y}).
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The Scope of Learning Problems

Square Loss

The random variable z ranges over X × Y and the loss function is

`sq(h, (x , y)) = (h(x)− y)2.
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The Scope of Learning Problems

Agnostic PAC Learnability for General Loss Functions

Definition

A hypothesis class H is agnostic PAC learnable with respect to a set Z
and a loss function ` : H× Z −→ R+ if there exists a function
mH : (0, 1)2 −→ N and a learning algorithm A with the following property:
For every ε, δ ∈ (0, 1) and for every distribution D over Z , when running A
on m > mH(ε, δ) iid examples generated by D, A returns a hypothesis h
such that with probability at least 1− δ (over the choice of the m training
examples) we have

LD(h) 6 min
h′∈H

LD(h′) + ε,

where LD(h) = Ez∼D(`(h, z)).
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