The Vapnik-Chervonenkis Dimension

Prof. Dan A. Simovici

UMB

84



@ Growth Functions

@ Basic Definitions for Vapnik-Chervonenkis Dimension
© The Sauer-Shelah Theorem

@ The Link between VCD and PAC Learning

© The VCD of Collections of Sets

84



Growth Functions

Definition
Let H be a set of hypotheses and let (xi,...,xn) be a sequence of
examples of length m. A hypothesis h € H induces a classification

(h(x1),- -, h(xm))

of the components of this sequence. The growth function of H is the
function My : N — N gives the number of ways a sequence of examples
of length m can be classified by a hypothesis in H:

MNy(m) = max  [{(h(x1),...,h(xm)) | h € H}|
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Growth Functions

Dichotomies

Definition
A dichotomy is a hypothesis h: X — {—1,1}.

|

If H consists of dichotomies, then (xi,...,xm) can be classified in at most
2™ ways.



Basic Definitions for Vapnik-Chervonenkis Dimension

Trace of a Collection of Sets

Definition
Let C be a collection of sets and let K be a set. The trace of C on K is

the collection
Ck ={KNC | CeC(C}.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Definition

Let C be a collection of sets. If the trace of C on K, Ck equals P(K), then

we say that K is shattered by C.

The Vapnik-Chervonenkis dimension of the collection C (called the
VC-dimension for brevity) is the largest cardinality of a set K that is
shattered by C and is denoted by VCD(C).

6

84



Basic Definitions for Vapnik-Chervonenkis Dimension

e We have VCD(C) = 0 if and only if |C| = 1.

e If VCD(C) = d, then there exists a set K of size d such that for each
subset L of K there exists a set C € C such that L = KN C.

o C shatters K if and only if Ck shatters K. This allows us to assume
without loss of generality that both the sets of the collection C and a
set K shattered by C are subsets of a set U.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Collections of Sets as Sets of Hypotheses

Let U be a set, K a subset, and let C be a collection of sets.

Each C € C defines a hypothesis h¢c : S — {—1,1} that is a dichotomy,

where

he(u) 1 if ue C,
u)=
¢ 1 ifugcC.

K is shattered by C if and only if for every subset L of K there exists a
hypothesis h¢ such that Lpos consists of the positive examples of h¢.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Finite Collections have Finite VC-Dimension

Let C be a collection of sets with VCD(C) = d and let K be a set
shattered by C with |K| = d. Since there exist 29 subsets of K, there are
at least 29 subsets of C, so 2¢ < |C|. Consequently, VCD(C) < log, [C].
This shows that if C is finite, then VCD(C) is finite.

The converse is false: there exist infinite collections C that have a finite

VC-dimension.
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Basic Definitions for Vapnik-Chervonenkis Dimension

A Tabular Representation of Shattering

If U= {u1,...,un} is a finite set, then the trace of a collection
C={C,...,Cp} of subsets of U on a subset K of U can be presented in
an intuitive, tabular form.

Let 6 be a table containing the rows ti,..., t, and the binary attributes
ui,...,Up.

Each tuple t, corresponds to a set Cx of C and is defined by

¢ [ ] 1 ifu e Ck,
ujl =
: 0 otherwise,

for 1 < i < n. Then, C shatters K if the content of the projection r[K]
consists of 2!K! distinct rows.



Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let U = {u1, up, u3,us} and let

C={{u,us},{v1,us,us},{uo,us},{u1, un}, {to, us, us}} represented by:

Tc
uy u» us ua

O O+ O
_H R R O
= O O =
_ O Rk = O

The set K = {u1, u3} is shattered by the collection C because the
projection on K ((0,1),(1,1),(0,0),(1,0),(0,1)). contains the all four
necessary tuples (0, 1), (1,1), (0,0), and (1,0).

No subset K of U that contains at least three elements can be shattered
by C because this would require r[K] to contain at least eight tuples.
Thus, VCD(C) = 2.

TT
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Basic Definitions for Vapnik-Chervonenkis Dimension

@ every collection of sets shatters the empty set;

o if C shatters a set of size n, then it shatters a set of size p, where
p<n

For a collection of sets C and for m € N, let
Me[m] = max{|Ck| | |K|= m}

be the largest number of distinct subsets of a set having m elements that
can be obtained as intersections of the set with members of C.

e We have MN¢[m] < 2™;

o if C shatters a set of size m, then M¢[m] = 2™.



Basic Definitions for Vapnik-Chervonenkis Dimension

Definition
A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such
that VCD(C) is finite.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let R be the set of real numbers and let S be the collection of sets
{(—o0,t) | t € R}.

We claim that any singleton is shattered by S. Indeed, if S = {x} is a
singleton, then P({x}) = {0, {x}}. Thus, if t > x, we have

(—o0,t) NS = {x}; also, if t < x, we have (—oo0,t)NS =0, so

Ss =P(S).

There is no set S with |S| = 2 that can be shattered by S. Indeed,
suppose that S = {x, y}, where x < y. Then, any member of S that
contains y includes the entire set S, so Ss = {0, {x}, {x,y}} # P(S).
This shows that S is a VC class and VCD(S) = 1.

14
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Consider the collection Z = {[a, b] | a, b € R, a < b} of closed intervals.
We claim that VCD(Z) = 2. To justify this claim, we need to show that
there exists a set S = {x, y} such that Zs = P(S) and no three-element
set can be shattered by 7.

For the first part of the statement, consider the intersections

[u,v]N'S =0, where v < x,
[X—6X+y]ﬂ5 {x},
[%,y]HS {r}
[X—e,y—i—e]ﬂS:{x,y},

which show that Zs = P(S).
For the second part of the statement, let T = {x,y, z} be a set that
contains three elements. Any interval that contains x and z also contains

y, so it is impossible to obtain the set {x, z} as an intersection between an

interval in Z and the set T.




Basic Definitions for Vapnik-Chervonenkis Dimension

An Example

Let H be the collection of closed half-planes in R? of the form
{x=(x1,x2) €R? | ax; + bxo —c > 0,a# 0 or b # 0}.

We claim that VCD(H) = 3.

Let P, Q, R be three non-colinear points. Each line is marked with the sets
it defines; thus, it is clear that the family of half-planes shatters the set
{P,Q,R}, so VCD(H) is at least 3.

o /P.Q.R}
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example (cont'd)

To complete the justification of the claim we need to show that no set
that contains at least four points can be shattered by H.

Let {P,Q,R,S} be a set that contains four points such that no three
points of this set are collinear. If S is located inside the triangle P, Q, R,
then every half-plane that contains P, Q, R also contains S, so it is
impossible to separate the subset {P, Q, R}. Thus, we may assume that
no point is inside the triangle formed by the remaining three points.
Observe that any half-plane that contains two diagonally opposite points,
for example, P and R, contains either Q or S, which shows that it is
impossible to separate the set {P, R}. Thus, no set that %ontains four

Te

points may be shattered by H, so VCD(H) = 3. ®s



Basic Definitions for Vapnik-Chervonenkis Dimension

A family of d + 1 points in R? can be shattered by hyperplanes. Consider
the points
x0:0d,x,-:e1 forlgigd.

h

Let yo,¥1,---,¥d € {—1,1} and let w be the vector whose i*! coordinate

is yi. We have w'x; = y; for 1 <7< d, so
sign (w’x,- + &) = sign (y,- + &> =y
2 2
Thus, points x; for which y; = 1 are on the positive side of the hyperplane

w'x = 0; the ones for which y; = —1 are on the oposite side, so any family
of d + 1 points in RY can be shattered by hyperplanes.



Basic Definitions for Vapnik-Chervonenkis Dimension

To obtain an upper bound we need to show that no set of d + 2 points
can be shattered by half-spaces. For this we need the following result:

Theorem

(Radon’s Theorem) Any set X = {x1,...,Xq4+2} of d 4+ 2 points in RY can
be partitioned into two sets X1 and X, such that the convex hulls of Xy
and X intersect.




Basic Definitions for Vapnik-Chervonenkis Dimension

Proof

Consider the following system with d + 1 linear equations and d + 2
variables a1, ap, ..., 440!

d+2 d+2

Za,-x,- == Od, Za,- =0.

i=1 i=1
Since the number of variables (d + 2) is larger than d + 1, the system has
a non-trivial solution Bi,. .., Bq4+2. Since 27;12 Bi = 0 both sets

h={i1<i<d+2,8>0}bh={1<i<d+28 <0}
are non-empty sets and
X1 = {X,‘ | I € Il},X2 = {X,‘ | i € 12},

form a partition of X.



Basic Definitions for Vapnik-Chervonenkis Dimension

Proof (cont'd)

Define 8 = ;o Bi- Since Y iy Bi = = i), Bi, we have

Also,

B >0forichand =5 >0foric k. Thisimplies that
>

1
ieh B

belongs both to the convex hulls of X; and X5.



Basic Definitions for Vapnik-Chervonenkis Dimension

Let X be a set of d + 2 points in RY. By Radon’s Theorem it can be
partitioned into X3 and X; such that the two convex hulls intersect.
When two sets are separated by a hyperplane, their convex hulls are also
separated by the hyperplane. Thus, X; and X5 cannot be separated by a
hyperplane and X is not shattered.

N
N

®



Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let R be the set of rectangles whose sides are parallel with the axes x and
y. There is a set S with |S| = 4 that is shattered by R. Let S be a set of
four points in R? that contains a unique “northernmost point” P,, a
unique “southernmost point” Ps, a unique “easternmost point” P., and a
unique “westernmost point” P,,. If L C S and L # (), let R; be the
smallest rectangle that contains L. For example, we show the rectangle R,
for the set {Pp, Ps, Pe}.

Puw




Basic Definitions for Vapnik-Chervonenkis Dimension

Example (cont'd)

This collection cannot shatter a set of points that contains at least five
points. Indeed, let S be such that |S| > 5. If the set contains more than
one “northernmost” point, then we select exactly one to be P,. Then, the
rectangle that contains the set K = {P,, Pe, Ps, Py} contains the entire
set S, which shows the impossibility of separating S.



Basic Definitions for Vapnik-Chervonenkis Dimension

The Class of Convex Polygons

Example
Consider the system of all convex polygons in the plane.

For any positive integer m, place m points on the unit circle. Any subset

of the points are the vertices of a convex polygon. Clearly that polygon
will not contain any of the points not in the subset. This shows that we
can shatter arbitrarily large sets, so the VC-dimension is infinite.




Basic Definitions for Vapnik-Chervonenkis Dimension

The Case of Convex Polygons with d Vertices

Example

Consider the class of convex polygons that have no more than d vertices in
R? and place 2d + 1 points placed on the circle.

@ Label a subset of these points as positive, and the remaining points as
negative. Since we have an odd number of points there exists a
majority in one of the classes (positive or negative).

o If the negative point are in majority, there are at most d positive
points; these are contained by the convex polygon formed by joining
the positive points.

@ If the positive are in majority, consider the polygon formed by the
tangents of the negative points.




Basic Definitions for Vapnik-Chervonenkis Dimension

Negative Points in the Majority

positive examples [ ]

negative examples °

27 /84



Basic Definitions for Vapnik-Chervonenkis Dimension

Positive Points in the Majority
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example cont'd

@ Since a set with 2d + 1 points can be shattered, the VC dimension of
the set of convex polygons with at most d vertices is at least 2d + 1.

@ Note that if all labeled points are located on a circle then it is
impossible for a point to be in the convex closure of a subsets of the
remaining points. Thus, placing the points on a circle maximizes the

number of sets required to shatter the set, so the VC-dimension is
indeed 2d + 1.



The Sauer-Shelah Theorem

Theorem

Let S ={s1,...,sn} be a set and let C be a collection of subsets of S.
Every family C of subsets of S shatters at least as many sets as |C|.

30



Proof

Let SH(C) be the family of subsets of S shattered by C. We need to prove
that |SH(C)| = |C|.

The argument is by induction on |C|.

Consider the subfamily Co = {U € C | s1 € U} of sets in C not containing
s1. By the inductive hypothesis, Cp shatters at least as many subsets of
S'={s,s3,...,sn} as |Co|, that is |SH(Co)| = |Col.

Next, consider the families

Ci = {UeC| s €U}and
Ci = {U—{51}|U€C,51€U}.

@ The families Cp and C; of subsets of S are disjoint and
IC| = |Col + |C4l.

e Cp and Cj are families of subsets of S’ and |Cj| = |C].
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The Sauer-Shelah Theorem

Proof (cont'd)

By induction, C{ shatters at least as many subsets of S’ = {s3,s3,...,5,}
as its cardinality, that is, |[SH(C})| > |Cy].

The number of subsets of S’ shattered by Cp and C; sum up to at least
|Co| + |C}| = |C|, and every subset of S’ shattered by C} is shattered by
C1 C C. Note that there may be subsets V of S’ shattered by both Cy and
C1. In this case both V and V U {s;1} are shattered by C.
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The Sauer-Shelah Theorem

Theorem

(Sauer-Shelah Theorem) Let S be a set with |S| = n and let C be a
collection of subsets of S such that

IC| > é <7>

Then, there exists a subset of S having at least k 4+ 1 elements such that C
shatters S.

v

Proof: Let |SH(C)| be the number of sets shattered by C. We have
ISH(C)| = |C| by the previous theorem.

Let Px(S) be the collection of subsets of S that contain k or fewer
elements.

The inequality of the theorem means that |C| > |Px(S)|, hence
ISH(C)| > |Pk(S)|. Therefore, there exists a subset of S with at least
k + 1 elements that is shattered by C.
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The Sauer-Shelah Theorem

For n,k € N and 0 < k < n define the number (}) as

<<nk> B Z: <7>

Clearly, (5y) =1and (/) =2".

Theorem

Let ¢ : N> — N be the function defined by

1 ifm=0ord=0
o(d,m—1)+¢(d —1,m—1), otherwise.

¢(d, m) = ( ;”d)

¢(d, m) = {

We have

for d, m € N.
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Proof

The argument is by strong induction on s = d + m.

The base case, s =0, implies m = 0 and d = 0, and the equality is
immediate.



The Sauer-Shelah Theorem

Suppose that the equality holds for ¢(d’, m’), where d'+ m' < d + m. We
have:

o(d,m) = ¢(d,m—1)+¢(d —1,m—1)
(by definition)
= XL (") + 25 (7))

(bg/ induc’;ive hypdothesis)1
= Yo (M) + X (7))
(by changing the summation index in the second sum)
T Rt (e )
1) —
= XL () + (1)
= T (D) = (%)

which gives the desired conclusion.
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Another Inequality

Suppose that VCD(C) = d and |S| = n. Then SH(C) € P4(S), hence

€] < ISH(C)| < Ed: (7) _ <<nd>.

i=1
Together with the previous inequality we obtain:

n

d _
2 <|c’|<(<d)—¢<n,d>.



The Sauer-Shelah Theorem

Lemma
Ford € N and d > 2 we have

dd
d—1

Proof: The argument is by induction on d. In the basis step, d = 2 both
members are equal to 2.
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The Sauer-Shelah Theorem

Suppose the inequality holds for d. We have

(d +1)d+1 (d+1)¢ d? (d+1)9

(d+1) 4 41 4

d? 1\¢ 1\¢
= — (14+4=) 229 (14+=) =29
i (ra) =2 (1)

(by inductive hypothesis)

because

1\9 1
1+=) >14d=-=2.

This concludes the proof of the inequality.
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The Sauer-Shelah Theorem

Lemma
We have ¢(d, m) < 2’3—? for every m > d and d > 1. J

Proof: The argument is by induction on d and n. If d =1, then
#(1,m) =m+1<2m for m > 1, so the inequality holds for every m > 1,
when d = 1.
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Proof (cont'd)

If m=d > 2, then ¢(d, m) = ¢(d,d) =29 and the desired inequality
follows immediately from a previous Lemma.
Suppose that the inequality holds for m > d > 1. We have

(by the definition of ¢)
md md—1
2™ 12
gl o)
(by inductive hypothesis)
d—1

E 2h(ug).

N
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Proof (cont'd)

It is easy to see that the inequality
d—1

m m (m+1)9
2(d—1)! (HH) S22

d 1\¢
+1<(1+)
m m

and, therefore, is valid. This yields immediately the inequality of the
lemma.

is equivalent to
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The Sauer-Shelah Theorem

The Asymptotic Behavior of the Function ¢

Theorem
The function ¢ satisfies the inequality:
em\d
o.m < (%)
o(d,m) < (<2
for every m > d and d > 1.

Proof: By a previous Lemma, ¢(d, m) < 2’3—7. Therefore, we need to

show only that
d d
2 <> <dl
e
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Proof (cont'd)

The argument is by induction on d > 1. The basis case, d =1 is
immediate. Suppose that 2 (g)d < d!. We have

L (AN () (d 1N\ d+
e N e d e

() P () e

because
1\
(1 + d) <e.
The last inequality holds because the sequence ( ) is an
increasing sequence whose limit is e. Since 2 (< 1)d+1 <2(¢ ) (d +1),

by inductive hypothesis we obtain:

2( :) < (d+1)L.
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The Sauer-Shelah Theorem

Corollary

If m is sufficiently large we have ¢(d, m) = O(mY).

The statement is a direct consequence of the previous theorem.
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The Sauer-Shelah Theorem

Denote by @ the symmetric difference of two sets.

Theorem
Let C a family of sets and Cy € C. Define the family A¢, as

Aq,(C)={T | T=Co® C where C € C}.

We have VCD(C) = VCD(Ac,(C)).
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Proof

Let S be aset, S =Cs and Sp = (A (C))s.

Define ¢ : S — Sp as P(SN C) =SN (G & C). We claim that ¢ is a
bijection.

If (SN C)=yv(SNC) for C,C" € C, then

SN(G& C)=SN (G C'). Therefore,

(SNG)a(SNC)=(SNG)a (SN,

which implies SN C = SN C’, so 4 is injective.

On other hand, if U € Sy we have U=5SN(Co & C), so U =¢(SnN C),
hence % is a surjection. Thus, S and Sy have the same number of sets,
which implies that a set S is shattered by C if and only if it is shattered by
A, (C).



Classes with Infinite VCDs are not PAC-learnable

Theorem
A class H with VCD(H) = oo is not PAC-learnable. J

Proof: Assume that H is PAC-learnable. Let A be a training algorithm
and let m be the sample size needed to learn H with accuracy € and
certainty 1 — 4. In other words, after seeing m examples, A produces a
hypothesis h € H with P(Lp(h) <€) >1—6.
Since VCD(H) = oo, for every m € N there exists a sample S of length 2m
that is shattered by . Let D be such that the probability of each
example x; of S is % and the probability of other examples is 0.
Since S is shattered, we can choose a target hypothesis h; € H such that
1

P(he(xi) =0) = P(he(x;) = 1) = 5

for every x; in S (as if the labels h¢(x;) are determined by a coin flip).
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Proof (cont'd)

A selects an iid sample of m instances S’ such that S’ C S and outputs a
consistent hypothesis h. The probability of error for each x; &€ S’ is

1
P(he(x) # h(xi)) =
because we could select the labels of the points not seen by A (which
produces h) arbitrarily.
Regardless of h we have:

1 1 1 1
E(Lp(h))=m-0- — o — =
(o) =m0 ™ om ™~ 4
(We have 2m points to sample such that the error of half of them is 0 as h
is consistent on S').
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Proof (cont'd)

Thus, for any sample size m, if A produces a consistent hypothesis, then
the expectation of the error will be %.

However, since with probability at least 1 — & we have that Lp(h) <e, it
follows that

E(Lp(h)) < (1 —6)e+d-p,
where [ is such that € < 8 < 1. Note that
(1-0)e+0-6<(1—-0)e+d=€e+0—€d <e+0.
It suffices to take

1
6 < =
€+ 4

to obtain a contradition!
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The Sauer-Shelah Theorem

Hypothesis Consistency in Set-Theoretical Terms

Let C be a concept over the set of examples X' and let S be a sample
drawn from X according to a probability distribution D.

@ A hypothesis Gy regarded here as a set, is consistent with S if
CNS=CnNS. Equivalently, SN (G @ C) = 0.

e (y is inconsistent with S if SN (Cy @ C) # 0.
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The Sauer-Shelah Theorem

On slide 46 we established that VCD(C) = VCD(A¢,(C)), where
A,(C)={T | T=GaC | Cecl}.
Define now
D eC) = {T | Telhg(C) [ P(T)> e}
= [T |T=GC®C,CeCandP(T)> e}

o A¢,(C) is the set of error regions relative to the hypothesis Co.

o Ac, (C) is the set of error regions relative to the hypothesis Cy
having the probability not smaller than e.
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The Sauer-Shelah Theorem

Definition
A set S is an e-net for A (C) if every set T in Ag, (C) is hit by a point
in S, that is, for every error region T € A¢, (C) we have TNS # 0.




The Sauer-Shelah Theorem

Claim:
If the sample S forms an e-net for Ac,(C) and the learning
algorithm outputs a hypothesis (represented here by a set
Co € C) that is consistent with S, then this hypothesis must
have error less than e.

Indeed, since

o Co® C € Ag/(C) was not hit by S (otherwise, Cp would not be
consistent with S), and

o Sis an e-net for A (C),
we must have Gy @ C & A¢, (C) and therefore Lp(Cp) < €.
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The Sauer-Shelah Theorem

Thus, if we can bound the probability that a random sample S does not
form an e-net for A, (C), then we have bounded the probability that for
a hypothesis Cy consistent with S we have Lp((p) > €.



The Sauer-Shelah Theorem

Example

Suppose that C is finite. For any fixed set Co @ C € Ag, (C), the
probability that we fail to hit Co & C in m random examples is at most

(1 —€)™. Thus, the probability that we fail to hit some Co & C € Ag, ((C)
is bounded above by |C|(1 —€)™.
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The Double Sample Theorem

Theorem

Let C be a concept class with VCD(C) = d.

Let A be any algorithm that given a set S of m labeled examples
{(xi,c(x7)) | 1 < i< m} sampled iid according to some fixed but
unknown distribution D over the instance space X produces as output a
hypothesis h that is consistent with c. Then, A is a PAC algorithm and

1 1 d 1
m = kg Elogg—l—zlogz .

for some positive constant ky.




The Link between VCD and PAC Learning
Proof

@ Draw a sample 51 of size m from D and let A be the event that the
elements of S; fail to form an e-net for A, (C).

o If A occurs, then S; misses some region T, where

T € ACo,e(C)-

Fix this region T and draw an additional sample S, of size m from D.



The Link between VCD and PAC Learning

Let V be a binomial random variable that gives the number of hits of T
by the sample S. We have E(V) = me and var(V) = me(1 — ¢€) because
the probability of an element of S hitting T is e.

By Chebyshev's Inequality applied to V we have

me(1 — €)
P(]V — me| > a) < —
Taking a = 5 it follows that
em 4(1—¢)
PV — Z =) <

(v-ml>T) <
4 1
< - < "
em 2

provided that m > %.
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The Link between VCD and PAC Learning

Thus, if m > %,

PV —eml < ) >

N =

The inequality
IV —em| < %

is equivalent to ' < V' < 362’", which implies P(V > <) >
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)
Proof (cont'd)

To summarize: we have calculated the probability that S, will hit T many
times given that T was fixed using the previous sampling, that is, given
that S; does not form an e-net.

Let B be the event that S; does not form an e-net and that S, hits T at

least <7 times. Then, we have shown that for m = O(1/¢) we have
P(B|A) > 3.

61 /84



)
Proof (cont'd)

Since P(B|A) > 1 we have

P(B) = P(BIAP(A) > 5 P(A).

Our goal of bounding P(A) is equivalent to finding ¢ such that P(B) < %
because this would imply P(A) < 6.
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)
Proof (cont'd)

Let S = 51 US, be a random sample of 2m. Note that since the samples
are iid obtaining S is equivalent of sampling S; and S, separately and let
T be a fixed set such that |T| > <.

Consider a random partition of S into S; and S> and consider the
probability that S; N T = (.

An Equivalent Problem: we have 2m balls each colored red or blue with
exactly £ red balls, where ¢ > <. Divide the 2m balls into groups of equal
size 51 and Sp. Find an upper bound on the probability that all ¢ balls fall
in Sy (that is, the probability that S; N R = ().
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Proof (cont'd)

Yet Another Equivalent Problem: Divide 2m non-colored balls into $; and
S», choose ¢ to be colored red, and compute the probability that all red
balls fall in Sp. The probability of this taking place is:

Note that 1 o
7 Fwm—i 1 1 _
om = g <1l3=2=27
) i ~o

This is the probability for a fixed S and T. The probability that this
occurs for some T € Ag, (S) such that | T| > < can be computed by
summing over all T and applying the union bound:

em _em em _€em
P(B) < “_IACM(S)(7)|2 2 <|”ACO(5)(7)\2 2

d
< (26"7) PRI
d 64 / 84
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)
Proof (cont'd)

The last inequality implies
1 1 d 1
m=ky| —log-+ —log— ).
€ 0 € €

for some positive constant ky.
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The Link between VCD and PAC Learning

Optional Material
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The VCD of Collections of Sets

Let u: BX — B, be a Boolean function of k arguments and let
Ci,...,Ck be k subsets of a set U. Define the set u(Cy,..., Ck) as the
subset C of U whose indicator function is Ic = u(l¢,,...,Ic,)-

Example

If u: B2 — B, is the Boolean function u(ar, a2) = a1 V ap, then

u(Cl, Cz) is C1 U G; similarly, if U(Xl,Xz) = x1 P xo, then U(Cl, Cg) is the
symmetric difference C; & C, for every C1, G € P(U).




The VCD of Collections of Sets

Let u: Bé( — By and Cq, ...,Ck are k family of subsets of U, the family
of sets u(Cy,...,Cx) is

U(Cl,...,ck):{U(Cl,...,Ck) ’ C1€Cl,...,CkGCk}.

Theorem

Let a(k) be the least integer a such that gz fog(ea) = k-

IfC1,...,Ck are k collections of subsets of the set U such that

d= max{ VCD(C;) | 1 < i< k} and u: B3 — By is a Boolean function,
then

VED(u(Cy, ..., Ck)) < a(k) - d.
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Proof

Let S be a subset of U that consists of m elements. The collection (C;)s
is not larger than ¢(d, m). For a set in the collection W € u(Cs,...,Ck)s
we can write W = SN u(C,..., Cy), or, equivalently,

1y =1s-u(lg,...,1c,).

There exists a Boolean function gs such that

1s-u(leg,....1¢) =8s(1s - 1¢, ..., 1s - 1¢,) = gs(1sncs - - -5 1snc,)-

Since there are at most ¢(d, m) distinct sets of the form SN C; for every i,
1 <i < k, it follows that there are at most (¢(d, m))* distinct sets W,
hence u(Cy,...,Cx)[m] < (¢(d, m))k.
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Proof (cont'd)

By a previous theorem,

u(Cr,...,C)[m] < (%’”)kd.

We observed that if MN¢[m] < 2™, then VCD(C) < m. Therefore, to limit
the Vapnik-Chervonenkis dimension of the collection u(Cy,...,Ck) it
suffices to require that (?)kd < 2m

Let a= 1. The last inequality can be written as (ea)kd < 2%,
equivalently, we have (ea)X < 22, which yields k < Iog(ea) If a(k) is the

least integer a such that k < Iog( then m < a(k)d, which gives our

ea)’
conclusion.
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The VCD of Collections of Sets

Example

If Kk =2, the least integer a such that @ > 2 is k =10, as it can be
seen by graphing this function; thus, if C1,C> are two collection of
concepts with VCD(C1) = VCD(Cz) = d, the Vapnik-Chervonenkis

dimension of the collections C; V Cz or C1 A Ca is not larger than 10d.
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The VCD of Collections of Sets

Lemma

Let S, T be two sets and let f : S — T be a function. If D is a collection
of subsets of T, U is a finite subset of S and C = f~1(D) is the collection
{f~1(D) | D € D}, then Cu| < [Dy(u.

Proof: Let V = f(U) and denote f| U by g. For D, D' € D we have

(Uunf YD) e Unf (D))
= Un(fiD)efY(D)=Un(fY(DoD))
= g(vn(DaD) =g (VND)sg (VaD)
Thus, C = UNf~}(D)and C' = UNf1(D') are two distinct members

of Cy, then VN D and V N D’ are two distinct members of Df‘(U). This
implies ’CU‘ < ‘Df(U)’



The VCD of Collections of Sets

Theorem

Let S, T be two sets and let f : S — T be a function. If D is a collection
of subsets of T and C = f~1(D) is the collection {f~}(D) | D € D}, then
VCD(C) < VCD(D). Moreover, if f is a surjection, then

VCD(C) = VCD(D).
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Proof

Suppose that C shatters an n-element subset K = {xy,...,x,} of S, so
[Ck| = 2" By a previous Lemma we have |Ck| < |Dry)l, so Dyl = 27,
which implies |[f(U)| = n and |Dy(y)| = 2", because f(U) cannot have
more than n elements. Thus, D shatters f(U), so VCD(C) < VCD(C).
Suppose now that f is surjective and H = {t1,..., ty} is an m element set
that is shattered by D. Consider the set L = {u1,..., un} such that

ui € f71(t;) for 1 < i < m. Let U be a subset of L. Since H is shattered
by D, there is a set D € D such that f(U) = HN D, which implies

U= LNfYD). Thus, L is shattered by C and this means that

VCD(C) = VCD(D).
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The VCD of Collections of Sets

Definition
The density of C is the number

denss(C) = inf{s € Ryq | M¢[m] < ¢ - m® for every m € N},

for some positive constant c.
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The VCD of Collections of Sets

Theorem

Let S, T be two sets and let f : S — T be a function. If D is a collection
of subsets of T and C = f~(D) is the collection {f (D) | D € D}, then
denss(C) < denss(D). Moreover, if f is a surjection, then

denss(C) = denss(D).

Proof: Let L be a subset of S such that [L| = m. Then, |C.| < [Dg(yyl. In
general, we have [f(L)| < m, so |D¢()| < D[m] < cm®. Therefore, we
have |C.| < [Df(1)l < D[m] < cm®, which implies denss(C) < denss(D).

If £ is a surjection, then, for every finite subset M of T such that [M| =m
there is a subset L of S such that |L| = |M| and f(L) = M. Therefore,
D[m] < MN¢[m] and this implies denss(C) = denss(D).
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The VCD of Collections of Sets

If C,D are two collections of sets such that C C D, then
VCD(C) < VCD(D) and denss(C) < denss(D).

Theorem

Let C be a collection of subsets of a set S and let C' ={S — C | C € C}.
Then, for every K € P(S) we have |Ck| = |Ck].
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Proof

We prove the statement by showing the existence of a bijection
f:Ck — Ci. If UeCk, then U= KN C, where C € C. Then
S—Ce( and we define f(U)=KN(S—C)=K—-CeCy. The
function f is well-defined because if K N C; = K N (, then
K—C1:K—(Kﬂcl):K—(KﬂCQ):K—CQ.

It is clear that if f(U) = f(V) for U,V € Cxk, U= KN (i, and
V=KNG, then K— (=K — (, so KN = KN (G and this means
that U = V. Thus, f is injective. If W € C),, then W = K N C’ for some
C' e C. Since C' =S — C for some C € C, it follows that W = K — C, so
W = f(U), where U= KnN C.



The VCD of Collections of Sets

Corollary

Let C be a collection of subsets of a set S and let C' ={S — C | C € C}.
We have denss(C) = denss(C") and VCD(C) = VCD(C").
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The VCD of Collections of Sets

Theorem
For every collection of sets we have denss(C) < VCD(C). Furthermore, if
denss(C) is finite, then C is a VC-class.

Proof: If C is not a VC-class the inequality denss(C) < VCD(C) is clearly
satisfied. Suppose now that C is a VC-class and VCD(C) = d. By
Sauer-Shelah Theorem we have M¢[m] < ¢(d, m); then, we obtain

Me[m] < (?)d, so denss(C) < d.

Suppose now that denss(C) is finite. Since MNe[m] < cm® < 2™ for m
sufficiently large, it follows that VCD(C) is finite, so C is a VC-class.
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The VCD of Collections of Sets

Let D be a finite collection of subsets of a set S. The partition 7p was
defined as consisting of the nonempty sets of the form
{D* "D N---N D, where (a1, az,...,a,) € {0,1}".

Definition

A collection D = {Dy,...,D,} of subsets of a set S is independent if the
partition mp has the maximum numbers of blocks, that is, it consists of 2"
blocks.

If D is independent, then the Boolean subalgebra generated by D in the
Boolean algebra (P(S),{N,U, 7,0, S}) contains 2%’ sets, because this
subalgebra has 2" atoms. Thus, if D shatters a subset T with |T| = p,
then the collection D contains 2P sets, which implies 2P < 22", or p < 2.
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The VCD of Collections of Sets

Definition
Let C be a collection of subsets of a set S. The independence number of C
1(C) is:

I(C) = sup{r | {G,...,C}
is independent for some finite {Cy,...,C } CC}.
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The VCD of Collections of Sets

Theorem

Let S, T be two sets and let f : S — T be a function. If D is a collection
of subsets of T and C = f~1(D) is the collection {f~X(D) | D € D}, then
I(C) < I(D). Moreover, if f is a surjection, then I(C) = I(D).

Proof: Let £ = {Ds,...,D,} be an independent finite subcollection of D.
The partition ¢ contains 2" blocks. The number of atoms of the
subalgebra generated by {f~1(D1),...,f*(D,)} is not greater than 2".
Therefore, 1(C) < I(D); from the same supplement it follows that if f is
surjective, then /(C) = I(D).
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The VCD of Collections of Sets

Theorem

If C is a collection of subsets of a set S such that VCD(C) > 2", then
1(C) = n.

Proof: Suppose that VCD(C) > 2", that is, there exists a subset T of S
that is shattered by C and has at least 2" elements. Then, the collection
H; contains at least 22" sets, which means that the Boolean subalgebra of
P(T) generated by T¢ contains at least 2" atoms. This implies that the
subalgebra of P(S) generated by C contains at least this number of atoms,
so I(C) = n.
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