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Growth Functions

Definition

Let H be a set of hypotheses and let (x1, . . . , xm) be a sequence of
examples of length m. A hypothesis h ∈ H induces a classification

(h(x1), . . . , h(xm))

of the components of this sequence. The growth function of H is the
function ΠH : N −→ N gives the number of ways a sequence of examples
of length m can be classified by a hypothesis in H:

ΠH(m) = max
(x1,...,xm)∈Xm

|{(h(x1), . . . , h(xm)) | h ∈ H}|
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Growth Functions

Dichotomies

Definition

A dichotomy is a hypothesis h : X −→ {−1, 1}.

If H consists of dichotomies, then (x1, . . . , xm) can be classified in at most
2m ways.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Trace of a Collection of Sets

Definition

Let C be a collection of sets and let K be a set. The trace of C on K is
the collection

CK = {K ∩ C | C ∈ C}.

5 / 84



Basic Definitions for Vapnik-Chervonenkis Dimension

Definition

Let C be a collection of sets. If the trace of C on K , CK equals P(K ), then
we say that K is shattered by C.
The Vapnik-Chervonenkis dimension of the collection C (called the
VC-dimension for brevity) is the largest cardinality of a set K that is
shattered by C and is denoted by VCD(C).
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Basic Definitions for Vapnik-Chervonenkis Dimension

We have VCD(C) = 0 if and only if |C| = 1.

If VCD(C) = d , then there exists a set K of size d such that for each
subset L of K there exists a set C ∈ C such that L = K ∩ C .

C shatters K if and only if CK shatters K . This allows us to assume
without loss of generality that both the sets of the collection C and a
set K shattered by C are subsets of a set U.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Collections of Sets as Sets of Hypotheses

Let U be a set, K a subset, and let C be a collection of sets.
Each C ∈ C defines a hypothesis hC : S −→ {−1, 1} that is a dichotomy,
where

hC (u) =

{
1 if u ∈ C ,

−1 if u 6∈ C .

K is shattered by C if and only if for every subset L of K there exists a
hypothesis hC such that Lpos consists of the positive examples of hC .
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Basic Definitions for Vapnik-Chervonenkis Dimension

Finite Collections have Finite VC-Dimension

Let C be a collection of sets with VCD(C) = d and let K be a set
shattered by C with |K | = d . Since there exist 2d subsets of K , there are
at least 2d subsets of C, so 2d 6 |C|. Consequently, VCD(C) 6 log2 |C|.
This shows that if C is finite, then VCD(C) is finite.
The converse is false: there exist infinite collections C that have a finite
VC -dimension.
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Basic Definitions for Vapnik-Chervonenkis Dimension

A Tabular Representation of Shattering

If U = {u1, . . . , un} is a finite set, then the trace of a collection
C = {C1, . . . ,Cp} of subsets of U on a subset K of U can be presented in
an intuitive, tabular form.
Let θ be a table containing the rows t1, . . . , tp and the binary attributes
u1, . . . , un.
Each tuple tk corresponds to a set Ck of C and is defined by

tk [ui ] =

{
1 if ui ∈ Ck ,

0 otherwise,

for 1 6 i 6 n. Then, C shatters K if the content of the projection r[K ]
consists of 2|K | distinct rows.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let U = {u1, u2, u3, u4} and let
C = {{u2, u3}, {u1, u3, u4}, {u2, u4}, {u1, u2}, {u2, u3, u4}} represented by:

TC
u1 u2 u3 u4

0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

The set K = {u1, u3} is shattered by the collection C because the
projection on K ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1)). contains the all four
necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0).
No subset K of U that contains at least three elements can be shattered
by C because this would require r[K ] to contain at least eight tuples.
Thus, VCD(C) = 2.
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Basic Definitions for Vapnik-Chervonenkis Dimension

every collection of sets shatters the empty set;

if C shatters a set of size n, then it shatters a set of size p, where
p 6 n.

For a collection of sets C and for m ∈ N, let

ΠC[m] = max{|CK | | |K | = m}

be the largest number of distinct subsets of a set having m elements that
can be obtained as intersections of the set with members of C.

We have ΠC[m] 6 2m;

if C shatters a set of size m, then ΠC[m] = 2m.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such
that VCD(C) is finite.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let R be the set of real numbers and let S be the collection of sets
{(−∞, t) | t ∈ R}.
We claim that any singleton is shattered by S. Indeed, if S = {x} is a
singleton, then P({x}) = {∅, {x}}. Thus, if t > x , we have
(−∞, t) ∩ S = {x}; also, if t < x , we have (−∞, t) ∩ S = ∅, so
SS = P(S).
There is no set S with |S | = 2 that can be shattered by S. Indeed,
suppose that S = {x , y}, where x < y . Then, any member of S that
contains y includes the entire set S , so SS = {∅, {x}, {x , y}} 6= P(S).
This shows that S is a VC class and VCD(S) = 1.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Consider the collection I = {[a, b] | a, b ∈ R, a 6 b} of closed intervals.
We claim that VCD(I) = 2. To justify this claim, we need to show that
there exists a set S = {x , y} such that IS = P(S) and no three-element
set can be shattered by I.
For the first part of the statement, consider the intersections

[u, v ] ∩ S = ∅, where v < x ,

[x − ε, x+y
2 ] ∩ S = {x},

[ x+y
2 , y ] ∩ S = {y},

[x − ε, y + ε] ∩ S = {x , y},

which show that IS = P(S).
For the second part of the statement, let T = {x , y , z} be a set that
contains three elements. Any interval that contains x and z also contains
y , so it is impossible to obtain the set {x , z} as an intersection between an
interval in I and the set T .
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Basic Definitions for Vapnik-Chervonenkis Dimension

An Example

Let H be the collection of closed half-planes in R2 of the form

{x = (x1, x2) ∈ R2 | ax1 + bx2 − c > 0, a 6= 0 or b 6= 0}.

We claim that VCD(H) = 3.
Let P,Q,R be three non-colinear points. Each line is marked with the sets
it defines; thus, it is clear that the family of half-planes shatters the set
{P,Q,R}, so VCD(H) is at least 3.

s
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{P}
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example (cont’d)

To complete the justification of the claim we need to show that no set
that contains at least four points can be shattered by H.
Let {P,Q,R,S} be a set that contains four points such that no three
points of this set are collinear. If S is located inside the triangle P,Q,R,
then every half-plane that contains P,Q,R also contains S , so it is
impossible to separate the subset {P,Q,R}. Thus, we may assume that
no point is inside the triangle formed by the remaining three points.
Observe that any half-plane that contains two diagonally opposite points,
for example, P and R, contains either Q or S , which shows that it is
impossible to separate the set {P,R}. Thus, no set that contains four

points may be shattered by H, so VCD(H) = 3.

s
s

ssP

Q

R

S
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Basic Definitions for Vapnik-Chervonenkis Dimension

A family of d + 1 points in Rd can be shattered by hyperplanes. Consider
the points

x0 = 0d , xi = e1 for 1 6 i 6 d .

Let y0, y1, . . . , yd ∈ {−1, 1} and let w be the vector whose i th coordinate
is yi . We have w′xi = yi for 1 6 i 6 d , so

sign
(
w′xi +

y0

2

)
= sign

(
yi +

y0

2

)
= yi .

Thus, points xi for which yi = 1 are on the positive side of the hyperplane
w′x = 0; the ones for which yi = −1 are on the oposite side, so any family
of d + 1 points in Rd can be shattered by hyperplanes.
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Basic Definitions for Vapnik-Chervonenkis Dimension

To obtain an upper bound we need to show that no set of d + 2 points
can be shattered by half-spaces. For this we need the following result:

Theorem

(Radon’s Theorem) Any set X = {x1, . . . , xd+2} of d + 2 points in Rd can
be partitioned into two sets X1 and X2 such that the convex hulls of X1

and X2 intersect.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Proof

Consider the following system with d + 1 linear equations and d + 2
variables α1, α2, . . . , αd+2:

d+2∑
i=1

αixi = 0d ,
d+2∑
i=1

αi = 0.

Since the number of variables (d + 2) is larger than d + 1, the system has
a non-trivial solution β1, . . . , βd+2. Since

∑d+2
i=1 βi = 0 both sets

I1 = {i |1 6 i 6 d + 2, βi > 0}, I2 = {i |1 6 i 6 d + 2, βi < 0}

are non-empty sets and

X1 = {xi | i ∈ I1},X2 = {xi | i ∈ I2},

form a partition of X .
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Basic Definitions for Vapnik-Chervonenkis Dimension

Proof (cont’d)

Define β =
∑

i∈I1 βi . Since
∑

i∈I1 βi = −
∑

i∈I2 βi , we have

∑
i∈I1

βi
β
xi =

∑
i∈I2

−βi
β

xi .

Also, ∑
i∈I1

βi
β

=
∑
i∈I2

−βi
β

= 1,

βi
β > 0 for i ∈ I1 and −βiβ > 0 for i ∈ I2. This implies that

∑
i∈I1

βi
β
xi

belongs both to the convex hulls of X1 and X2.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Let X be a set of d + 2 points in Rd . By Radon’s Theorem it can be
partitioned into X1 and X2 such that the two convex hulls intersect.
When two sets are separated by a hyperplane, their convex hulls are also
separated by the hyperplane. Thus, X1 and X2 cannot be separated by a
hyperplane and X is not shattered.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example

Let R be the set of rectangles whose sides are parallel with the axes x and
y . There is a set S with |S | = 4 that is shattered by R. Let S be a set of
four points in R2 that contains a unique “northernmost point” Pn, a
unique “southernmost point” Ps , a unique “easternmost point” Pe , and a
unique “westernmost point” Pw . If L ⊆ S and L 6= ∅, let RL be the
smallest rectangle that contains L. For example, we show the rectangle RL

for the set {Pn,Ps ,Pe}.q

q
qq

Pn

Ps

Pe

Pw
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example (cont’d)

This collection cannot shatter a set of points that contains at least five
points. Indeed, let S be such that |S | > 5. If the set contains more than
one “northernmost” point, then we select exactly one to be Pn. Then, the
rectangle that contains the set K = {Pn,Pe ,Ps ,Pw} contains the entire
set S , which shows the impossibility of separating S .
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Basic Definitions for Vapnik-Chervonenkis Dimension

The Class of Convex Polygons

Example

Consider the system of all convex polygons in the plane.
For any positive integer m, place m points on the unit circle. Any subset
of the points are the vertices of a convex polygon. Clearly that polygon
will not contain any of the points not in the subset. This shows that we
can shatter arbitrarily large sets, so the VC-dimension is infinite.
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Basic Definitions for Vapnik-Chervonenkis Dimension

The Case of Convex Polygons with d Vertices

Example

Consider the class of convex polygons that have no more than d vertices in
R2 and place 2d + 1 points placed on the circle.

Label a subset of these points as positive, and the remaining points as
negative. Since we have an odd number of points there exists a
majority in one of the classes (positive or negative).

If the negative point are in majority, there are at most d positive
points; these are contained by the convex polygon formed by joining
the positive points.

If the positive are in majority, consider the polygon formed by the
tangents of the negative points.
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Basic Definitions for Vapnik-Chervonenkis Dimension

Negative Points in the Majority

positive examples

negative examples
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Basic Definitions for Vapnik-Chervonenkis Dimension

Positive Points in the Majority

positive examples

negative examples
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Basic Definitions for Vapnik-Chervonenkis Dimension

Example cont’d

Since a set with 2d + 1 points can be shattered, the VC dimension of
the set of convex polygons with at most d vertices is at least 2d + 1.

Note that if all labeled points are located on a circle then it is
impossible for a point to be in the convex closure of a subsets of the
remaining points. Thus, placing the points on a circle maximizes the
number of sets required to shatter the set, so the VC-dimension is
indeed 2d + 1.
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The Sauer-Shelah Theorem

Theorem

Let S = {s1, . . . , sn} be a set and let C be a collection of subsets of S.
Every family C of subsets of S shatters at least as many sets as |C|.
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The Sauer-Shelah Theorem

Proof

Let SH(C) be the family of subsets of S shattered by C. We need to prove
that |SH(C)| > |C|.
The argument is by induction on |C|.
Consider the subfamily C0 = {U ∈ C | s1 6∈ U} of sets in C not containing
s1. By the inductive hypothesis, C0 shatters at least as many subsets of
S ′ = {s2, s3, . . . , sn} as |C0|, that is |SH(C0)| > |C0|.
Next, consider the families

C1 = {U ∈ C | s1 ∈ U} and

C′1 = {U − {s1} | U ∈ C, s1 ∈ U}.

The families C0 and C1 of subsets of S are disjoint and
|C| = |C0|+ |C1|.
C0 and C′1 are families of subsets of S ′ and |C′1| = |C|.
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The Sauer-Shelah Theorem

Proof (cont’d)

By induction, C′1 shatters at least as many subsets of S ′ = {s2, s3, . . . , sn}
as its cardinality, that is, |SH(C′1)| > |C′1|.
The number of subsets of S ′ shattered by C0 and C′1 sum up to at least
|C0|+ |C′1| = |C|, and every subset of S ′ shattered by C′1 is shattered by
C1 ⊆ C. Note that there may be subsets V of S ′ shattered by both C0 and
C′1. In this case both V and V ∪ {s1} are shattered by C.
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The Sauer-Shelah Theorem

Theorem

(Sauer-Shelah Theorem) Let S be a set with |S | = n and let C be a
collection of subsets of S such that

|C| >
k∑

i=0

(
n

i

)
.

Then, there exists a subset of S having at least k + 1 elements such that C
shatters S.

Proof: Let |SH(C)| be the number of sets shattered by C. We have
|SH(C)| > |C| by the previous theorem.
Let Pk(S) be the collection of subsets of S that contain k or fewer
elements.
The inequality of the theorem means that |C| > |Pk(S)|, hence
|SH(C)| > |Pk(S)|. Therefore, there exists a subset of S with at least
k + 1 elements that is shattered by C.
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The Sauer-Shelah Theorem

For n, k ∈ N and 0 6 k 6 n define the number
( n
6k

)
as

(
n

6 k

)
=

k∑
i=0

(
n

i

)
.

Clearly,
( n
60

)
= 1 and

( n
6n

)
= 2n.

Theorem

Let φ : N2 −→ N be the function defined by

φ(d ,m) =

{
1 if m = 0 or d = 0

φ(d ,m − 1) + φ(d − 1,m − 1), otherwise.

We have

φ(d ,m) =

(
m

6 d

)
for d ,m ∈ N.
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The Sauer-Shelah Theorem

Proof

The argument is by strong induction on s = d + m.
The base case, s = 0, implies m = 0 and d = 0, and the equality is
immediate.
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The Sauer-Shelah Theorem

Suppose that the equality holds for φ(d ′,m′), where d ′ + m′ < d + m. We
have:

φ(d ,m) = φ(d ,m − 1) + φ(d − 1,m − 1)
(by definition)

=
∑d

i=0

(m−1
i

)
+
∑d−1

i=0

(m−1
i

)
(by inductive hypothesis)

=
∑d

i=0

(m−1
i

)
+
∑d

i=1

(m−1
i−1

)
(by changing the summation index in the second sum)

=
∑d

i=0

(m−1
i

)
+
∑d

i=0

(m−1
i−1

)
(because

(m−1
−1

)
= 0)

=
∑d

i=0

((m−1
i

)
+
(m−1
i−1

))
=

∑d
i=0

(m
i

)
=
( m
6d

)
,

which gives the desired conclusion.
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The Sauer-Shelah Theorem

Another Inequality

Suppose that VCD(C) = d and |S | = n. Then SH(C) ⊆ Pd(S), hence

|C| 6 |SH(C)| 6
d∑

i=1

(
n

i

)
=

(
n

6 d

)
.

Together with the previous inequality we obtain:

2d 6 |C| 6
(

n

6 d

)
= φ(n, d).
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The Sauer-Shelah Theorem

Lemma

For d ∈ N and d > 2 we have

2d−1 6
dd

d!
.

Proof: The argument is by induction on d . In the basis step, d = 2 both
members are equal to 2.
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The Sauer-Shelah Theorem

Suppose the inequality holds for d . We have

(d + 1)d+1

(d + 1)!
=

(d + 1)d

d!
=

dd

d!
· (d + 1)d

dd

=
dd

d!
·
(

1 +
1

d

)d

> 2d ·
(

1 +
1

d

)d

> 2d

(by inductive hypothesis)

because (
1 +

1

d

)d

> 1 + d
1

d
= 2.

This concludes the proof of the inequality.
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The Sauer-Shelah Theorem

Lemma

We have φ(d ,m) 6 2md

d! for every m > d and d > 1.

Proof: The argument is by induction on d and n. If d = 1, then
φ(1,m) = m + 1 6 2m for m > 1, so the inequality holds for every m > 1,
when d = 1.
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The Sauer-Shelah Theorem

Proof (cont’d)

If m = d > 2, then φ(d ,m) = φ(d , d) = 2d and the desired inequality
follows immediately from a previous Lemma.
Suppose that the inequality holds for m > d > 1. We have

φ(d ,m + 1) = φ(d ,m) + φ(d − 1,m)

(by the definition of φ)

6 2
md

d!
+ 2

md−1

(d − 1)!

(by inductive hypothesis)

= 2
md−1

(d − 1)!

(
1 +

m

d

)
.
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The Sauer-Shelah Theorem

Proof (cont’d)

It is easy to see that the inequality

2
md−1

(d − 1)!

(
1 +

m

d

)
6 2

(m + 1)d

d!

is equivalent to

d

m
+ 1 6

(
1 +

1

m

)d

and, therefore, is valid. This yields immediately the inequality of the
lemma.
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The Sauer-Shelah Theorem

The Asymptotic Behavior of the Function φ

Theorem

The function φ satisfies the inequality:

φ(d ,m) <
(em

d

)d
for every m > d and d > 1.

Proof: By a previous Lemma, φ(d ,m) 6 2md

d! . Therefore, we need to
show only that

2

(
d

e

)d

< d!.
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The Sauer-Shelah Theorem

Proof (cont’d)

The argument is by induction on d > 1. The basis case, d = 1 is

immediate. Suppose that 2
(
d
e

)d
< d!. We have

2

(
d + 1

e

)d+1

= 2

(
d

e

)d (d + 1

d

)d d + 1

e

=

(
1 +

1

d

)d 1

e
· 2
(
d

e

)d

(d + 1) < 2

(
d

e

)d

(d + 1),

because (
1 +

1

d

)d

< e.

The last inequality holds because the sequence
((

1 + 1
d

)d)
d∈N

is an

increasing sequence whose limit is e. Since 2
(
d+1
e

)d+1
< 2

(
d
e

)d
(d + 1),

by inductive hypothesis we obtain:

2

(
d + 1

e

)d+1

< (d + 1)!.

This proves the inequality of the theorem.
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The Sauer-Shelah Theorem

Corollary

If m is sufficiently large we have φ(d ,m) = O(md).

The statement is a direct consequence of the previous theorem.
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The Sauer-Shelah Theorem

Denote by ⊕ the symmetric difference of two sets.

Theorem

Let C a family of sets and C0 ∈ C. Define the family ∆C0 as

∆C0(C) = {T | T = C0 ⊕ C where C ∈ C}.

We have VCD(C) = VCD(∆C0(C)).
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The Sauer-Shelah Theorem

Proof

Let S be a set, S = CS and S0 = (∆C0(C))S .
Define ψ : S −→ S0 as ψ(S ∩ C ) = S ∩ (C0 ⊕ C ). We claim that ψ is a
bijection.
If ψ(S ∩ C ) = ψ(S ∩ C ′) for C ,C ′ ∈ C, then
S ∩ (C0 ⊕ C ) = S ∩ (C0 ⊕ C ′). Therefore,

(S ∩ C0)⊕ (S ∩ C ) = (S ∩ C0)⊕ (S ∩ C ′),

which implies S ∩ C = S ∩ C ′, so ψ is injective.
On other hand, if U ∈ S0 we have U = S ∩ (C0 ⊕ C ), so U = ψ(S ∩ C ),
hence ψ is a surjection. Thus, S and S0 have the same number of sets,
which implies that a set S is shattered by C if and only if it is shattered by
∆C0(C).
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The Sauer-Shelah Theorem

Classes with Infinite VCDs are not PAC-learnable

Theorem

A class H with VCD(H) =∞ is not PAC-learnable.

Proof: Assume that H is PAC-learnable. Let A be a training algorithm
and let m be the sample size needed to learn H with accuracy ε and
certainty 1− δ. In other words, after seeing m examples, A produces a
hypothesis h ∈ H with P(LD(h) 6 ε) > 1− δ.
Since VCD(H) =∞, for every m ∈ N there exists a sample S of length 2m
that is shattered by H. Let D be such that the probability of each
example xi of S is 1

2m and the probability of other examples is 0.
Since S is shattered, we can choose a target hypothesis ht ∈ H such that

P(ht(xi ) = 0) = P(ht(xi ) = 1) =
1

2

for every xi in S (as if the labels ht(xi ) are determined by a coin flip).
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The Sauer-Shelah Theorem

Proof (cont’d)

A selects an iid sample of m instances S ′ such that S ′ ⊆ S and outputs a
consistent hypothesis h. The probability of error for each xi 6∈ S ′ is

P(ht(xi ) 6= h(xi )) =
1

2

because we could select the labels of the points not seen by A (which
produces h) arbitrarily.
Regardless of h we have:

E (LD(h)) = m · 0 · 1

2m
+ m · 1

2
· 1

2m
=

1

4
.

(We have 2m points to sample such that the error of half of them is 0 as h
is consistent on S ′).
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The Sauer-Shelah Theorem

Proof (cont’d)

Thus, for any sample size m, if A produces a consistent hypothesis, then
the expectation of the error will be 1

4 .
However, since with probability at least 1− δ we have that LD(h) 6 ε, it
follows that

E (LD(h)) 6 (1− δ)ε+ δ · β,

where β is such that ε < β 6 1. Note that

(1− δ)ε+ δ · β 6 (1− δ)ε+ δ = ε+ δ − εδ < ε + δ.

It suffices to take

ε+ δ <
1

4

to obtain a contradition!
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The Sauer-Shelah Theorem

Hypothesis Consistency in Set-Theoretical Terms

Let C be a concept over the set of examples X and let S be a sample
drawn from X according to a probability distribution D.

A hypothesis C0 regarded here as a set, is consistent with S if
C0 ∩ S = C ∩ S . Equivalently, S ∩ (C0 ⊕ C ) = ∅.
C0 is inconsistent with S if S ∩ (C0 ⊕ C ) 6= ∅.
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The Sauer-Shelah Theorem

On slide 46 we established that VCD(C) = VCD(∆C0(C)), where

∆C0(C) = {T | T = C0 ⊕ C | C ∈ C}.

Define now

∆C0,ε(C) = {T | T ∈ ∆C0(C) | P(T ) > ε}
= {T | T = C0 ⊕ C ,C ∈ C and P(T ) > ε}.

∆C0(C) is the set of error regions relative to the hypothesis C0.

∆C0,ε(C) is the set of error regions relative to the hypothesis C0

having the probability not smaller than ε.
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The Sauer-Shelah Theorem

Definition

A set S is an ε-net for ∆C0(C) if every set T in ∆C0,ε(C) is hit by a point
in S , that is, for every error region T ∈ ∆C0,ε(C) we have T ∩ S 6= ∅.
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The Sauer-Shelah Theorem

Claim:

If the sample S forms an ε-net for ∆C0(C) and the learning
algorithm outputs a hypothesis (represented here by a set
C0 ∈ C) that is consistent with S, then this hypothesis must
have error less than ε.

Indeed, since

C0 ⊕ C ∈ ∆C0(C) was not hit by S (otherwise, C0 would not be
consistent with S), and

S is an ε-net for ∆C0(C),

we must have C0 ⊕ C 6∈ ∆C0,ε(C) and therefore LD(C0) 6 ε.
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The Sauer-Shelah Theorem

Thus, if we can bound the probability that a random sample S does not
form an ε-net for ∆C0,ε(C), then we have bounded the probability that for
a hypothesis C0 consistent with S we have LD(C0) > ε.
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The Sauer-Shelah Theorem

Example

Suppose that C is finite. For any fixed set C0 ⊕ C ∈ ∆C0,ε(C), the
probability that we fail to hit C0 ⊕ C in m random examples is at most
(1− ε)m. Thus, the probability that we fail to hit some C0 ⊕ C ∈ ∆C0,ε(C)
is bounded above by |C|(1− ε)m.
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The Link between VCD and PAC Learning

The Double Sample Theorem

Theorem

Let C be a concept class with VCD(C) = d.
Let A be any algorithm that given a set S of m labeled examples
{(xi , c(xi )) | 1 6 i 6 m} sampled iid according to some fixed but
unknown distribution D over the instance space X produces as output a
hypothesis h that is consistent with c. Then, A is a PAC algorithm and

m > k0

(
1

ε
log

1

δ
+

d

ε
log

1

ε

)
.

for some positive constant k0.
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The Link between VCD and PAC Learning

Proof

Draw a sample S1 of size m from D and let A be the event that the
elements of S1 fail to form an ε-net for ∆C0,ε(C).

If A occurs, then S1 misses some region T , where

T ∈ ∆C0,ε(C).

Fix this region T and draw an additional sample S2 of size m from D.
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The Link between VCD and PAC Learning

Let V be a binomial random variable that gives the number of hits of T
by the sample S2. We have E (V ) = mε and var(V ) = mε(1− ε) because
the probability of an element of S2 hitting T is ε.
By Chebyshev’s Inequality applied to V we have

P(|V −mε| > a) 6
mε(1− ε)

a2
.

Taking a = εm
2 it follows that

P(|V −mε| > εm

2
) 6

4(1− ε)
εm

6
4

εm
6

1

2
,

provided that m > 8
ε .
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The Link between VCD and PAC Learning

Thus, if m > 8
ε ,

P(|V − εm| 6 εm

2
) >

1

2
.

The inequality

|V − εm| 6 εm

2

is equivalent to εm
2 6 V 6 3εm

2 , which implies P(V > εm
2 ) > 1

2 .
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The Link between VCD and PAC Learning

Proof (cont’d)

To summarize: we have calculated the probability that S2 will hit T many
times given that T was fixed using the previous sampling, that is, given
that S1 does not form an ε-net.
Let B be the event that S1 does not form an ε-net and that S2 hits T at
least εm

2 times. Then, we have shown that for m = O(1/ε) we have
P(B|A) > 1

2 .
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The Link between VCD and PAC Learning

Proof (cont’d)

Since P(B|A) > 1
2 we have

P(B) = P(B|A)P(A) >
1

2
P(A).

Our goal of bounding P(A) is equivalent to finding δ such that P(B) 6 δ
2

because this would imply P(A) 6 δ.
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The Link between VCD and PAC Learning

Proof (cont’d)

Let S = S1 ∪ S2 be a random sample of 2m. Note that since the samples
are iid obtaining S is equivalent of sampling S1 and S2 separately and let
T be a fixed set such that |T | > εm

2 .
Consider a random partition of S into S1 and S2 and consider the
probability that S1 ∩ T = ∅.
An Equivalent Problem: we have 2m balls each colored red or blue with
exactly ` red balls, where ` > εm

2 . Divide the 2m balls into groups of equal
size S1 and S2. Find an upper bound on the probability that all ` balls fall
in S2 (that is, the probability that S1 ∩ R = ∅).
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The Link between VCD and PAC Learning

Proof (cont’d)

Yet Another Equivalent Problem: Divide 2m non-colored balls into S1 and
S2, choose ` to be colored red, and compute the probability that all red
balls fall in S2. The probability of this taking place is:(m

l

)(2m
`

)
Note that (m

l

)(2m
`

) =
`−1∏
i=0

m − i

2m − i
6

`−1∏
i=0

1

2
=

1

2`
= 2−

εm
2 .

This is the probability for a fixed S and T . The probability that this
occurs for some T ∈ ∆C0,ε(S) such that |T | > εm

2 can be computed by
summing over all T and applying the union bound:

P(B) 6 |Π∆C0,ε
(S)(

εm

2
)|2−

εm
2 6 |Π∆C0

(S)(
εm

2
)|2−

εm
2

6

(
2εm

d

)d

2−
εm
2 6

δ

2
.
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The Link between VCD and PAC Learning

Proof (cont’d)

The last inequality implies

m > k0

(
1

ε
log

1

δ
+

d

ε
log

1

ε

)
.

for some positive constant k0.
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The Link between VCD and PAC Learning

Optional Material
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The VCD of Collections of Sets

Let u : Bk
2 −→ B2 be a Boolean function of k arguments and let

C1, . . . ,Ck be k subsets of a set U. Define the set u(C1, . . . ,Ck) as the
subset C of U whose indicator function is IC = u(IC1 , . . . , ICk

).

Example

If u : B2
2 −→ B2 is the Boolean function u(a1, a2) = a1 ∨ a2, then

u(C1,C2) is C1 ∪ C2; similarly, if u(x1, x2) = x1 ⊕ x2, then u(C1,C2) is the
symmetric difference C1 ⊕ C2 for every C1,C2 ∈ P(U).
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The VCD of Collections of Sets

Let u : Bk
2 −→ B2 and C1, . . . , Ck are k family of subsets of U, the family

of sets u(C1, . . . , Ck) is

u(C1, . . . , Ck) = {u(C1, . . . ,Ck) | C1 ∈ C1, . . . ,Ck ∈ Ck}.

Theorem

Let α(k) be the least integer a such that a
log(ea) > k.

If C1, . . . , Ck are k collections of subsets of the set U such that
d = max{VCD(Ci ) | 1 6 i 6 k} and u : B2

2 −→ B2 is a Boolean function,
then

VCD(u(C1, . . . , Ck)) 6 α(k) · d .
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The VCD of Collections of Sets

Proof

Let S be a subset of U that consists of m elements. The collection (Ci )S
is not larger than φ(d ,m). For a set in the collection W ∈ u(C1, . . . , Ck)S
we can write W = S ∩ u(C1, . . . ,Ck), or, equivalently,
1W = 1S · u(1C1 , . . . , 1Ck

).
There exists a Boolean function gS such that

1S · u(1C1 , . . . , 1Ck
) = gS(1S · 1C1 , . . . , 1S · 1Ck

) = gS(1S∩C1 , . . . , 1S∩Ck
).

Since there are at most φ(d ,m) distinct sets of the form S ∩Ci for every i ,
1 6 i 6 k, it follows that there are at most (φ(d ,m))k distinct sets W ,
hence u(C1, . . . , Ck)[m] 6 (φ(d ,m))k .
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The VCD of Collections of Sets

Proof (cont’d)

By a previous theorem,

u(C1, . . . , Ck)[m] 6
(em

d

)kd
.

We observed that if ΠC[m] < 2m, then VCD(C) < m. Therefore, to limit
the Vapnik-Chervonenkis dimension of the collection u(C1, . . . , Ck) it

suffices to require that
(
em
d

)kd
< 2m.

Let a = m
d . The last inequality can be written as (ea)kd < 2ad ;

equivalently, we have (ea)k < 2a, which yields k < a
log(ea) . If α(k) is the

least integer a such that k < a
log(ea) , then m 6 α(k)d , which gives our

conclusion.
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The VCD of Collections of Sets

Example

If k = 2, the least integer a such that a
log(ea) > 2 is k = 10, as it can be

seen by graphing this function; thus, if C1, C2 are two collection of
concepts with VCD(C1) = VCD(C2) = d , the Vapnik-Chervonenkis
dimension of the collections C1 ∨ C2 or C1 ∧ C2 is not larger than 10d .
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The VCD of Collections of Sets

Lemma

Let S ,T be two sets and let f : S −→ T be a function. If D is a collection
of subsets of T , U is a finite subset of S and C = f −1(D) is the collection
{f −1(D) | D ∈ D}, then |CU | 6 |Df (U)|.

Proof: Let V = f (U) and denote f`U by g . For D,D ′ ∈ D we have

(U ∩ f −1(D))⊕ (U ∩ f −1(D ′))

= U ∩ (f −1(D)⊕ f −1(D ′)) = U ∩ (f −1(D ⊕ D ′))

= g−1(V ∩ (D ⊕ D ′)) = g−1(V ∩ D)⊕ g−1(V ⊕ D ′).

Thus, C = U ∩ f −1(D) and C ′ = U ∩ f −1(D ′) are two distinct members
of CU , then V ∩ D and V ∩ D ′ are two distinct members of Df (U). This
implies |CU | 6 |Df (U)|.
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The VCD of Collections of Sets

Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a collection
of subsets of T and C = f −1(D) is the collection {f −1(D) | D ∈ D}, then
VCD(C) 6 VCD(D). Moreover, if f is a surjection, then
VCD(C) = VCD(D).
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The VCD of Collections of Sets

Proof

Suppose that C shatters an n-element subset K = {x1, . . . , xn} of S , so
|CK | = 2n By a previous Lemma we have |CK | 6 |Df (U)|, so |Df (U)| > 2n,
which implies |f (U)| = n and |Df (U)| = 2n, because f (U) cannot have
more than n elements. Thus, D shatters f (U), so VCD(C) 6 VCD(C).
Suppose now that f is surjective and H = {t1, . . . , tm} is an m element set
that is shattered by D. Consider the set L = {u1, . . . , um} such that
ui ∈ f −1(ti ) for 1 6 i 6 m. Let U be a subset of L. Since H is shattered
by D, there is a set D ∈ D such that f (U) = H ∩ D, which implies
U = L ∩ f −1(D). Thus, L is shattered by C and this means that
VCD(C) = VCD(D).
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The VCD of Collections of Sets

Definition

The density of C is the number

denss(C) = inf{s ∈ R>0 | ΠC[m] 6 c ·ms for every m ∈ N},

for some positive constant c .
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The VCD of Collections of Sets

Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a collection
of subsets of T and C = f −1(D) is the collection {f −1(D) | D ∈ D}, then
denss(C) 6 denss(D). Moreover, if f is a surjection, then
denss(C) = denss(D).

Proof: Let L be a subset of S such that |L| = m. Then, |CL| 6 |Df (L)|. In
general, we have |f (L)| 6 m, so |Df (L)| 6 D[m] 6 cms . Therefore, we
have |CL| 6 |Df (L)| 6 D[m] 6 cms , which implies denss(C) 6 denss(D).
If f is a surjection, then, for every finite subset M of T such that |M| = m
there is a subset L of S such that |L| = |M| and f (L) = M. Therefore,
D[m] 6 ΠC[m] and this implies denss(C) = denss(D).
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The VCD of Collections of Sets

If C,D are two collections of sets such that C ⊆ D, then
VCD(C) 6 VCD(D) and denss(C) 6 denss(D).

Theorem

Let C be a collection of subsets of a set S and let C′ = {S − C | C ∈ C}.
Then, for every K ∈ P(S) we have |CK | = |C′K |.
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The VCD of Collections of Sets

Proof

We prove the statement by showing the existence of a bijection
f : CK −→ C′K . If U ∈ CK , then U = K ∩ C , where C ∈ C. Then
S − C ∈ C′ and we define f (U) = K ∩ (S − C ) = K − C ∈ C′K . The
function f is well-defined because if K ∩ C1 = K ∩ C2, then
K − C1 = K − (K ∩ C1) = K − (K ∩ C2) = K − C2.
It is clear that if f (U) = f (V ) for U,V ∈ CK , U = K ∩ C1, and
V = K ∩ C2, then K − C1 = K − C2, so K ∩ C1 = K ∩ C2 and this means
that U = V . Thus, f is injective. If W ∈ C′K , then W = K ∩ C ′ for some
C ′ ∈ C. Since C ′ = S − C for some C ∈ C, it follows that W = K − C , so
W = f (U), where U = K ∩ C .
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The VCD of Collections of Sets

Corollary

Let C be a collection of subsets of a set S and let C′ = {S − C | C ∈ C}.
We have denss(C) = denss(C′) and VCD(C) = VCD(C′).
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The VCD of Collections of Sets

Theorem

For every collection of sets we have denss(C) 6 VCD(C). Furthermore, if
denss(C) is finite, then C is a VC-class.

Proof: If C is not a VC-class the inequality denss(C) 6 VCD(C) is clearly
satisfied. Suppose now that C is a VC-class and VCD(C) = d . By
Sauer-Shelah Theorem we have ΠC[m] 6 φ(d ,m); then, we obtain

ΠC[m] 6
(
em
d

)d
, so denss(C) 6 d .

Suppose now that denss(C) is finite. Since ΠC[m] 6 cms 6 2m for m
sufficiently large, it follows that VCD(C) is finite, so C is a VC-class.
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The VCD of Collections of Sets

Let D be a finite collection of subsets of a set S . The partition πD was
defined as consisting of the nonempty sets of the form
{Da1

1 ∩ Da2
2 ∩ · · · ∩ Dar

r , where (a1, a2, . . . , ar ) ∈ {0, 1}r .

Definition

A collection D = {D1, . . . ,Dr} of subsets of a set S is independent if the
partition πD has the maximum numbers of blocks, that is, it consists of 2r

blocks.

If D is independent, then the Boolean subalgebra generated by D in the
Boolean algebra (P(S), {∩,∪, ¯, ∅,S}) contains 22r sets, because this
subalgebra has 2r atoms. Thus, if D shatters a subset T with |T | = p,
then the collection DT contains 2p sets, which implies 2p 6 22r , or p 6 2r .
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The VCD of Collections of Sets

Definition

Let C be a collection of subsets of a set S . The independence number of C
I (C) is:

I (C) = sup{r | {C1, . . . ,Cr}
is independent for some finite {C1, . . . ,Cr} ⊆ C}.
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The VCD of Collections of Sets

Theorem

Let S ,T be two sets and let f : S −→ T be a function. If D is a collection
of subsets of T and C = f −1(D) is the collection {f −1(D) | D ∈ D}, then
I (C) 6 I (D). Moreover, if f is a surjection, then I (C) = I (D).

Proof: Let E = {D1, . . . ,Dp} be an independent finite subcollection of D.
The partition πE contains 2r blocks. The number of atoms of the
subalgebra generated by {f −1(D1), . . . , f −1(Dp)} is not greater than 2r .
Therefore, I (C) 6 I (D); from the same supplement it follows that if f is
surjective, then I (C) = I (D).
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The VCD of Collections of Sets

Theorem

If C is a collection of subsets of a set S such that VCD(C) > 2n, then
I (C) > n.

Proof: Suppose that VCD(C) > 2n, that is, there exists a subset T of S
that is shattered by C and has at least 2n elements. Then, the collection
Ht contains at least 22n sets, which means that the Boolean subalgebra of
P(T ) generated by TC contains at least 2n atoms. This implies that the
subalgebra of P(S) generated by C contains at least this number of atoms,
so I (C) > n.
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