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Gradients

The ∇f notation

(read “nabla f”).
Let f : X −→ R, where X ⊆ Rn, and let z ∈ X . The gradient of f in z is
the vector

(∇f )(z) =


∂f
∂x1

(z)
...

∂f
∂xn

(z)

 ∈ Rn.
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Gradients

Example

Let f : Rn −→ R be the function f (x) = x21 + · · ·+ x2n ; in other words,
f (x) =‖ x ‖2.
We have

∂f

∂x1
= 2x1, . . . ,

∂f

∂xn
= 2xn.

Therefore, (∇f )(x) = 2x.
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Gradients

Example

Let bj ∈ Rn and cj ∈ R for 1 6 j 6 n, and let f : Rn −→ R be the function

f (x) =
n∑

j=1

(b′jx− cj)
2.

We have ∂f
∂xi

(x) =
∑n

j=1 2bij(b
′
jx− cj), where bj =

(
b1j · · · bnj

)
for

1 6 j 6 n. Thus, we obtain:

(∇f )(x) = 2


∑n

j=1 2b1j(b
′
jx− cj)

...∑n
j=1 2bnj(b

′
jx− cj)

 = 2(B ′x− c′)B = 2B ′xB − 2c′B,

where B = (b1 · · ·bn) ∈ Rn×n.
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Gradients

The matrix-valued function Hf : Rk −→ Rk×k defined by

Hf (x) =

(
∂2f

∂xi1 ∂xi2

)
is the Hessian matrix of f . Using this matrix we can write

((h′∇)2f )(x) = Hf (x).
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Optimization

Definition

Let X be a open subset in Rn and let f : X −→ R be a function.
The point x0 ∈ X is a local minimum for f if there exists δ > 0 such that
B(x0, δ) ⊆ X and f (x0) 6 f (x) for every x ∈ B(x0, δ).
The point x0 is a strict local minimum if f (x0) < f (x) for every
x ∈ B(x0, δ)− {x0}.
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Optimization

Theorem

Let f : B(x0, r) −→ R be a function that belongs to the class
C 2(B(x0, r)), where B(x0, r) ⊆ Rk and x0 is a critical point for f . If the
Hessian matrix Hf (x0) is positive semidefinite, then x0 is a local minimum
for f ; if Hf (x0) is negative semidefinite, then x0 is a local maximum for f .
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Optimization

Let f : R2 −→ R be a function in C 2(B(x0, r)). The Hessian matrix in x0
is

Hf (x0) =

(
∂2f
∂x12

∂2f
∂x1 ∂x2

∂2f
∂x2 ∂x1

∂2f
∂x22

.

)
(x0).

Let a11 = ∂2f
∂x12

(x0), a12 = ∂2f
∂x1 ∂x2

(x0), and a22 = ∂2f
∂x22

(x0). Note that

h′Hf (x0)h = a11h
2
1 + 2a12h1h2 + a22h

2
2

= h22
(
a11ξ

2 + 2a12ξ + a22
)
,

where ξ = h1
h2

.
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Optimization

For a critical point x0 we have:

i h′Hf (x0)h > 0 for every h if a11 > 0 and a212 − a11a22 < 0; in this
case, Hf (x0) is positive semidefinite and x0 is a local minimum;

ii h′Hf (x0)h 6 0 for every h if a11 < 0 and a212 − a11a22 < 0; in this
case, Hf (x0) is negative semidefinite and x0 is a local maximum;

iii if a212 − a11a22 > 0; in this case, Hf (x0) is neither positive nor
negative definite, so x0 is a saddle point.

Note that in the first two previous cases we have a212 < a11a22, so a11 and
a22 have the same sign.
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Optimization

Example

Let a1, . . . , am be m points in Rn. The function f (x) =
∑m

i=1 ‖ x− ai ‖2
gives the sum of squares of the distances between x and the points
a1, . . . , am. We will prove that this sum has a global minimum obtained
when x is the barycenter of the set {a1, . . . , am}.
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Optimization

Example (cont’d)

We have

f (x) = m ‖ x ‖2 −2
m∑
i=1

a′ix +
m∑
i=1

‖ ai ‖2

= m(x21 + · · ·+ x2n )− 2
n∑

j=1

m∑
i=1

aijxj +
m∑
i=1

‖ ai ‖2,

which implies

∂f

∂xj
= 2mxj − 2

m∑
i=1

aij

for 1 6 j 6 n. Thus, there exists only one critical point given by

xj =
1

m

m∑
i=1

aij

for 1 6 j 6 n.
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Optimization

The Hessian matrix Hf = 2mIn is pkarositive definite, so the critical point
is a local minimum and, in view of convexity of f , the global minimum.
This point is the barycenter of the set {a1, . . . , am}.
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Lagrange Multipliers

Theorem

(Existence Theorem of Lagrange Multipliers) Let f : Rn −→ R and let
h : Rn −→ Rm be two functions such that f ∈ C 1(Rn), h ∈ C 1(Rn), and
the matrix (Dh)(x) is of full rank, that is, rank((Dh)(x)) = m < n.
If x0 is a regular point of h and a local extremum of f subjected to the
restriction h(x0) = 0m, then (∇f )(x0) is a linear combination of
(∇h1)(x0), . . . , (∇hm)(x0).
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Lagrange Multipliers

Example

Let A ∈ Rn×n be a symmetric matrix and let f : Rn −→ R be the function
defined by f (x) = x′Ax. We seek to minimize f subjected to the restriction
‖ x ‖= 1, or equivalently h(x) =‖ x ‖2 −1 = 0. Since (∇f ) = 2Ax and
(∇h)(x) = 2x, by Theorem 6 there exists λ such that 2Ax0 = 2λx0 for any
extremum of f subjected to ‖ x0 ‖= 1. Thus, x0 must be a unit
eigenvector of A and λ must be an eigenvalue of the same matrix.
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General Optimization Problems

Let f : Rn −→ R, c : Rn −→ Rm, and d : Rn −→ Rp be three functions
defined on Rn. A general formulation of a constrained optimization
problem is

minimize f (x), where x ∈ Rn,
subject to c(x) 6 0m, where c : Rn −→ Rm,
and d(x) = 0p, where d : Rn −→ Rp.

Here c specifies inequality constraints placed on x, while d defines equality
constraints.
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General Optimization Problems

Note that equality constraints can be replaced in a constrained
optimization problem by inequality constraints. Indeed, a constraint of the
form d(x) = 0p can be replaced by a pair of constraints d(x) 6 0p and
−d(x) 6 0p. This transformation is inapplicable if we assume that all
equality constraints must be convex (or concave) because this
transformation may introduce constraints that violate convexity (or
concavity, respectively). On the other hand, if d is an affine function,
replacing d(x) = 0p by both d(x) 6 0p and −d(x) 6 0p results in two
affine restrictions that are both convex and concave functions.
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General Optimization Problems

If only inequality constraints are present (as specified by the function c)
the feasible region is:

Rc = {x ∈ Rn | c(x) 6 0m}.
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General Optimization Problems

Let x ∈ Rc. The set of active constraints at x is

ACT(Rc, c, x) = {i ∈ {1, . . . ,m} | ci (x) = 0}.

If i ∈ ACT(Rc, c, x), we say that ci is an active constraint or that ci is tight
on x ∈ S ; otherwise, that is, if ci (x) < 0, ci is an inactive constraint on x.

19 / 45



General Optimization Problems

The next theorem provides necessary conditions for optimality that include
the linear independence of the gradients of the components of the
constraint (∇ci )(x0) for i ∈ ACT(S , c, x0)} and ensure that the coefficient
of the gradient of the objective function (∇f )(x0) is not null. These
conditions are known as the Karush-Kuhn-Tucker conditions or the KKT
conditions.
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General Optimization Problems

Theorem

(Karush-Kuhn-Tucker Theorem) Let S be a non-empty open subset of
Rn and let f : Rn −→ R and c : Rn −→ Rm. Let x0 be a local minimum in
S of f subjected to the restriction c(x0) 6 0m.
Suppose that f is differentiable in x0, ci are differentiable in x0 for
i ∈ ACT(S , c, x0), and ci are continuous in x0 for i 6∈ ACT(S , c, x0).
If {(∇ci )(x0) | i ∈ ACT(S , c, x0)} is a linearly independent set, then there
exist non-negative numbers wi for i ∈ ACT(S , c, x0) such that

(∇f )(x0) +
∑
{wi (∇ci )(x0) | i ∈ ACT(S , c, x0)} = 0n.
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General Optimization Problems

Theorem continued

Furthermore, if the functions ci are differentiable in x0 for
i 6∈ ACT(S , c, x0), then the previous condition can be written as:

i (∇f )(x0) +
∑m

i=1 wi (∇ci )(x0) = 0n;

ii w′c(x0) = 0;

iii w > 0m, where w =

w1
...

wm

.
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Duality

The Primal Problem

Consider the following optimization problem for an object function
f : Rn −→ R, a subset C ⊆ Rn, and the constraint functions
c : Rn −→ Rm and d : Rn −→ Rp:

minimize f (x),where x ∈ C,
subject to c(x) 6 0m
and d(x) = 0p.

We refer to this optimization problem as the primal problem.
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Duality

Definition

The Lagrangian associated to the primal problem is the function
L : Rn × Rm × Rp −→ R given by:

L(x,u, v) = f (x) + u′c(x) + v′d(x)

for x ∈ Rn, u ∈ Rm, and v ∈ Rp.
The component ui of u is the Lagrangian multiplier corresponding to the
constraint ci (x) 6 0; the component vj of v is the Lagrangian multiplier
corresponding to the constraint dj(x) = 0.
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Duality

The Dual Optimization Problem

The dual optimization problem starts with the Lagrange dual function
g : Rm × Rp −→ R defined by

g(u, v) = inf
x∈C

L(x,u, v) (1)

and consists of

maximize g(u, v), where u ∈ Rm and v ∈ Rp,
subject to u > 0m.
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Duality

Theorem

For every primal problem the Lagrange dual function g : Rm × Rp −→ R
defined by Equality (1) is concave over Rm × Rp.
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Duality

Proof

For u1,u2 ∈ Rm and v1, v2 ∈ Rp we have:

g(tu1 + (1− t)u2, tv1 + (1− t)v2)

= inf{f (x) + (tu′1 + (1− t)u′2)c(x) + (tv′1 + (1− t)v′2)d(x) | x ∈ S}
= inf{t(f (x) + u′1c + v′1d) + (1− t)(f (x) + u′2c(x) + v′2d(x)) | x ∈ S}
> t inf{f (x) + u′1c + v′1d | x ∈ S}

+(1− t) inf{f (x) + u′2c(x) + v′2d(x) | x ∈ S}
= tg(u1, v1) + (1− t)g(u2, v2),

which shows that g is concave.
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Duality

The concavity of g is significant because a local optimum of g is a
global optimum regardless of convexity properties of f , c or d.

Although the dual function g is not given explicitly, the restrictions of
the dual have a simpler form and this may be an advantage in specific
cases.

The dual function produces lower bounds for the optimal value of the
primal problem.
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Duality

Theorem

(The Weak Duality Theorem) Suppose that x∗ is an optimum of f and
f∗ = f (x∗), (u∗, v∗) is an optimum for g, and g∗ = g(u∗, v∗). We have
g∗ 6 f∗.

Proof: Since c(x∗) 6 0m and d(x∗) = 0p it follows that

L(x∗,u, v) = f (x∗) + u′c(x∗) + v′d(x∗) 6 f∗.

Therefore, g(u, v) = infx∈C L(x,u, v) 6 f∗ for all u and v.
Since g∗ is the optimal value of g , the last inequality implies g∗ 6 f∗.
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Duality

The inequality of Theorem 11 holds when f∗ and g∗ are finite or infinite.
The difference f∗ − g∗ is the duality gap of the primal problem.
Strong duality holds when the duality gap is 0.
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Duality

Note that for the Lagrangian function of the primal problem we can write

sup
u>0m,v

L(x,u, v) = sup
u>0m,v

f (x) + u′c(x) + v′d(x)

=

{
f (x) if c(x) 6 0m,

∞ otherwise
,

which implies f∗ = infx∈Rn supu>0m,v L(x,u, v). By the definition of g∗ we
also have

g∗ = sup
u>0m,v

inf
x∈Rn

L(x,u, v).
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Duality

Thus, the weak duality amounts to the inequality

sup
u>0m,v

inf
x∈Rn

L(x,u, v) 6 inf
x∈Rn

sup
u>0m,v

L(x,u, v),

and the strong duality is equivalent to the equality

sup
u>0m,v

inf
x∈Rn

L(x,u, v) = inf
x∈Rn

sup
u>0m,v

L(x,u, v).
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Duality

Example

Let f : Rn −→ R be the linear function f (x) = a′x, A ∈ Rp×n, and b ∈ Rp.
Consider the primal problem:

minimize a′x, where x ∈ Rn,
subject to x > 0n and
Ax− b = 0p.

The constraint functions are c(x) = −x and d(x) = Ax− b and the
Lagrangian L is

L(x,u, v) = a′x− u′x + v′(Ax− b)

= −v′b + (a′ − u′ + v′A)x.
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Duality

Example (cont’d)

This yields the dual function

g(u, v) = −v′b + inf
x∈Rn

(a′ − u′ + v′A)x.

Unless a′ − u′ + v′A = 0′n we have g(u, v) = −∞. Therefore, we have

g(u, v) =

{
−v′b if a− u + A′v = 0n,

−∞ otherwise.

Thus, the dual problem is

maximize g(u, v),
subject to u > 0m.
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Duality

Example (cont’d)

An equivalent of the dual problem is

maximize −v′b,
subject to a− u + A′v = 0n
and u > 0m.

In turn, this problem is equivalent to:

maximize −v′b,
subject to a + A′v > 0n.
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Duality

Example

The following optimization problem

minimize 1
2x
′Qx− r′x,

where x ∈ Rn,
subject to Ax > b,

where Q ∈ Rn×n is a positive definite matrix, r ∈ Rn, A ∈ Rp×n, and
b ∈ Rp is known as a quadratic optimization problem.
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Duality

The Lagrangian L is

L(x,u) =
1

2
x′Qx− r′x + u′(Ax− b) =

1

2
x′Qx + (u′A− r′)x− u′b

and the dual function is g(u) = infx∈Rn L(x,u) subject to u ≥ 0m. Since x
is unconstrained in the definition of g , the minimum is attained when we
have the equalities

∂

∂xi

(
1

2
x′Qx + (u′A− r′)x− u′b

)
= 0

for 1 6 i 6 n, which amount to x = Q−1(r− Au). The dual optimization
function is: g(u) = −1

2u
′Pu− u′d− 1

2r
′Qr subject to u > 0p, where

P = AQ−1A′, d = b− AQ−1r. This shows that the dual problem of this
quadratic optimization problem is itself a quadratic optimization problem.
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Duality

Example

Let a1, . . . , am ∈ Rn. We seek to determine a closed sphere B[x, r ] of
minimal radius that includes all points ai for 1 6 i 6 m. This is the
minimum bounding sphere problem, formulated by J. J. Sylvester. This
problem amounts to solving the following primal optimization problem:

minimize r , where r ≥ 0,
subject to ‖ x− ai ‖6 r for 1 6 i 6 m.
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Duality

An equivalent formulation requires minimizing r2 and stating the
restrictions as ‖ x− ai ‖2 −r2 6 0 for 1 6 i 6 m. The Lagrangian of this
problem is:

L(r , x,u) = r2 +
m∑
i=1

ui (‖ x− ai ‖2 −r2)

= r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ‖ x− a2i ‖

and the dual function is:

g(u) = inf
r∈R>0,x∈Rn

L(r , x,u)

= inf
r∈R>0,x∈Rn

r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ‖ x− ai |2 ‖ .
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Duality

This leads to the following conditions:

∂L(r , x,u)

∂r
= 2r

(
1−

m∑
i=1

ui

)
= 0

∂L(r , x,u)

∂xp
= 2

m∑
i=1

ui (x− ai )p = 0 for 1 6 p 6 n.

The first equality yields
∑m

i=1 ui = 1. Therefore, from the second equality
we obtain x =

∑m
i=1 uiai . This shows that for x is a convex combination

of a1, . . . , am. The dual function is

g(u) =
m∑
i=1

ui

(
m∑

h=1

uhah − ai

)
= 0

because
∑m

i=1 ui = 1.
Note that the restriction functions gi (x, r) =‖ x− ai ‖2 −r2 6 0 are not
convex.
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Duality

Example

Consider the primal problem

minimize x21 + x22 , where x1, x2 ∈ R,
subject to x1 − 1 > 0.

It is clear that the minimum of f (x) is obtained for x1 = 1 and x2 = 0 and
this minimum is 1. The Lagrangian is

L(u) = x21 + x22 + u1(x1 − 1)

and the dual function is

g(u) = inf
x
{x21 + x22 + u1(x1 − 1) | x ∈ R2} = −u21

4
.

Then sup{g(u1) | u1 ≥ 0} = 0 and a gap exists between the minimal
value of the primal function and the maximal value of the dual function.
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Duality

Example

Let a, b > 0, p, q < 0 and let r > 0. Consider the following primal
problem:

minimize f (x) = ax21 + bx22
subject to px1 + qx2 + r 6 0 and x1 > 0, x2 > 0.

The set C is {x ∈ R2 | x1 > 0, x2 > 0}. The constraint function is
c(x) = px1 + qx2 + r 6 0 and the Lagrangian of the primal problem is

L(x, u) = ax21 + bx22 + u(px1 + qx2 + r),

where u is a Lagrangian multiplier.
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Duality

Thus, the dual problem objective function is

g(u) = inf
x∈C

L(x, u)

= inf
x∈C

ax21 + bx22 + u(px1 + qx2 + r)

= inf
x∈C
{ax21 + upx1 | x1 > 0}

+ inf
x∈C
{bx22 + uqx2 | x2 > 0}+ ur

The infima are achieved when x1 = −up
2a and x2 = −uq

2b if u > 0 and at
x = 02 if u < 0. Thus,

g(u) =

{
−
(
p2

4a + q2

4b

)
u2 + ru if u ≥ 0,

ru if u < 0

which is a concave function.
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Duality

The maximum of g(u) is achieved when u = 2r
p2

a
+ q2

b

and equals

r2(
p2

a + q2

b

)

x1

x2

Family of Concentric Ellipses; the ellipse that “touches” the line
px1 + qx2 + r = 0 gives the optimum value for f . The dotted area is the

feasible region.
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Duality

Note that if x is located on an ellipse ax21 + bx22 − k = 0, then f (x) = k.
Thus, the minimum of f is achieved when k is chosen such that the ellipse
is tangent to the line px1 + qx2 + r = 0. In other words, we seek to

determine k such that the tangent of the ellipse at x0 =

(
x01
x02

)
located on

the ellipse coincides with the line given by px1 + qx2 + r = 0.
The equation of the tangent is

ax1x01 + bx2x02 − k = 0.

Therefore, we need to have:

ax01
p

=
bx02
q

=
−k
r
,

hence x01 = −kp
ar and x02 = −kq

br . Substituting back these coordinates in

the equation of the ellipse yields k1 = 0 and k2 = r2

p2

a
+ q2

b

. In this case no

duality gap exists.
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