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Problem Setting

the input space is X ⊆ Rn;

the output space is Y = {−1, 1};
concept sought: a function f : X −→ Y;

sample: a sequence S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m

extracted from a distribution D.
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Problem Statement

the hypothesis space H is H ⊆ YX ;

task: find h ∈ H such that the generalization error

LD(h) = Px∼D(h(x) 6= f (x))

is small.

The smaller the VCD(H) the more efficient the process is. One possibility
is the class of linear functions from X to Y:

H = {x ; sign(w′x + b) | w ∈ Rn, b ∈ R},

where

sign(a) =

{
1 if a ≥ 0,

−1 if a < 0.
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A Fundamental Assumption: Linear Separability of S
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x

If S is linearly separable there are, in general, infinitely many hyperplanes
that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
y

x
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The distance of a point x0 to a hyperplane w′x+ b = 0

Equation of the line passing through x0 and perpendicular on the
hyperplane is

x− x0 = tw;

Since z is a point on this line that belongs to the hyperplane, to find the
value of t that corresponds to z we must have w′(x0 + tw) +b = 0, that is,

t = −w′x0 + b

‖ w ‖2

z

x0

x
w
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The distance of a point x0 to a hyperplane w′x+ b = 0

z

x0

x

w

Thus, z = x0 − w′x0+b
‖w‖2 w, hence the distance from

x0 to the hyperplane is

‖ x0 − z ‖= |w
′x0 + b|
‖ w ‖

.
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Primal Optimization Problem

We seek a hyperplane in Rn having the equation

w′x + b = 0,

where w ∈ Rn is a vector normal to the hyperplane and b ∈ R is a scalar.
A hyperplane w′x + b = 0 that does not pass through a point of S is in
canonical form relative to a sample S if

min
(x,y)∈S

|w′x + b| = 1.

Note that we may always assume that the separating hyperplane are in
canonical form relative by S by rescaling the coefficients of the equation
that define the hyperplane (the components of w and b).

9 / 15



Linear Classification

If the hyperplane w′x + b = 0 is in canonical form relative to the sample
S , then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

ρ = min
(x,y)∈S

|w′x + b|
‖ w ‖

=
1

‖ w ‖
.

y
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ρ
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have

|w′x + b| > 1

for any point (x, y) of the sample and

|w′x + b| = 1

for every support point. The point (xi , yi ) is classified correctly if yi has
the same sign as w′xi + b, that is, yi (w

′xi + b) > 1.
Maximizing the margin is equivalent to minimizing ‖ w ‖ or, equivalently,
to minimizing 1

2 ‖ w ‖
2. Thus, in the separable case the SVM problem is

equivalent to the following convex optimization problem:

minimize 1
2 ‖ w ‖

2;

subjected to yi (w
′xi + b) > 1 for 1 6 i 6 m.
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Why 1
2 ‖ w ‖

2?

Note that this objective function,

1

2
‖ w ‖2=

1

2
(w2

1 + · · ·+ w2
n )

is differentiable!
We have ∇

(
1
2 ‖ w ‖

2
)

= w and that

H 1
2
‖w‖2 = In,

which shows that 1
2 ‖ w ‖

2 is a convex function of w.
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Support Vectors

The Lagrangean of the optimization problem

minimize 1
2 ‖ w ‖

2;

subjected to yi (w
′xi + b) > 1 for 1 6 i 6 m.

is

L(w, b, a) =
1

2
‖ w ‖2 −

m∑
i=1

ai
(
yi (w

′xi + b)− 1
)
.
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The Karush-Kuhn-Tucker Optimality Conditions

∇wL = w−
m∑
i=1

aiyixi = 0,

∇bL = −
m∑
i=1

aiyi = 0,

ai (yi (w
′xi + b)− 1) = 0 for all i

imply

w =
m∑
i=1

aiyixi = 0,

m∑
i=1

aiyi = 0,

ai = 0 or yi (w
′xi + b) = 1 for 1 6 i 6 m.
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Consequences of the KKT Conditions

the weight vector is a linear combination of the training vectors
x1, . . . , xm, where xi appears in this combination only if ai 6= 0
(support vectors);

since ai = 0 or yi (w
′xi + b) = 1 for all i , if ai 6= 0, then

yi (w
′xi + b) = 1 for the support vectors; thus, all these vectors lie on

the marginal hyperplanes w′x + b = 1 or w′x + b = −1;

if non-support vector are removed the solution remains the same;

while the solution of the problem w remains the same different
choices may be possible for the support vectors.
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