Support Vector Machines - I

Prof. Dan A. Simovici

UMB

Problem Setting

- the input space is $\mathcal{X} \subseteq \mathbb{R}^n$;
- the output space is $\mathcal{Y} = \{-1, 1\}$;
- concept sought: a function $f: \mathcal{X} \longrightarrow \mathcal{Y}$;
- sample: a sequence $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m$ extracted from a distribution \mathcal{D} .

Problem Statement

- the hypothesis space H is $H \subseteq \mathcal{Y}^{\mathcal{X}}$;
- task: find $h \in H$ such that the generalization error

$$L_{\mathcal{D}}(h) = P_{\mathsf{x} \sim \mathcal{D}}(h(\mathsf{x}) \neq f(\mathsf{x}))$$

is small.

The smaller the VCD(H) the more efficient the process is. One possibility is the class of linear functions from \mathcal{X} to \mathcal{Y} :

$$H = \{x \sim sign(\mathbf{w}'\mathbf{x} + b) \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\},\$$

where

$$sign(a) = \begin{cases} 1 & \text{if } a \ge 0, \\ -1 & \text{if } a < 0. \end{cases}$$

A Fundamental Assumption: Linear Separability of S

If S is linearly separable there are, in general, infinitely many hyperplanes that can do the separation.

Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.

The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$

Equation of the line passing through \mathbf{x}_0 and perpendicular on the hyperplane is

$$\mathbf{x} - \mathbf{x}_0 = t\mathbf{w}$$
;

Since **z** is a point on this line that belongs to the hyperplane, to find the value of t that corresponds to **z** we must have $\mathbf{w}'(\mathbf{x}_0 + t\mathbf{w}) + b = 0$, that is,

$$t = -\frac{\mathbf{w}'\mathbf{x}_0 + b}{\parallel \mathbf{w} \parallel^2}$$

The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$

Thus, $\mathbf{z} = \mathbf{x}_0 - \frac{\mathbf{w}'\mathbf{x}_0 + b}{\|\mathbf{w}\|^2}\mathbf{w}$, hence the distance from

 \mathbf{x}_0 to the hyperplane is

$$\parallel \mathbf{x}_0 - \mathbf{z} \parallel = \frac{|\mathbf{w}'\mathbf{x}_0 + b|}{\parallel \mathbf{w} \parallel}.$$

Primal Optimization Problem

We seek a hyperplane in \mathbb{R}^n having the equation

$$\mathbf{w}'\mathbf{x}+b=0,$$

where $\mathbf{w} \in \mathbb{R}^n$ is a vector normal to the hyperplane and $b \in \mathbb{R}$ is a scalar. A hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ that does not pass through a point of S is in canonical form relative to a sample S if

$$\min_{(\mathbf{x}, y) \in \mathcal{S}} |\mathbf{w}'\mathbf{x} + b| = 1.$$

Note that we may always assume that the separating hyperplane are in canonical form relative by S by rescaling the coefficients of the equation that define the hyperplane (the components of \mathbf{w} and b).

If the hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ is in canonical form relative to the sample S, then the distance to the hyperplane to the closest points in S (the margin of the hyperplane) is the same, namely,

$$\rho = \min_{(\mathbf{x}, y) \in \mathcal{S}} \frac{|\mathbf{w}'\mathbf{x} + b|}{\parallel \mathbf{w} \parallel} = \frac{1}{\parallel \mathbf{w} \parallel}.$$

Canonical Separating Hyperplane

For a canonical separating hyperplane we have

$$|\mathbf{w}'\mathbf{x} + b| \geqslant 1$$

for any point (x, y) of the sample and

$$|\mathbf{w}'\mathbf{x} + b| = 1$$

for every support point. The point (\mathbf{x}_i, y_i) is classified correctly if y_i has the same sign as $\mathbf{w}'\mathbf{x}_i + b$, that is, $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$.

Maximizing the margin is equivalent to minimizing $\|\mathbf{w}\|$ or, equivalently, to minimizing $\frac{1}{2} \|\mathbf{w}\|^2$. Thus, in the separable case the SVM problem is equivalent to the following convex optimization problem:

- minimize $\frac{1}{2} \parallel \mathbf{w} \parallel^2$;
- subjected to $y_i(\mathbf{w}'\mathbf{x}_i + b) \geqslant 1$ for $1 \leqslant i \leqslant m$.

Why $\frac{1}{2} \parallel \mathbf{w} \parallel^2$?

Note that this objective function,

$$\frac{1}{2} \parallel \mathbf{w} \parallel^2 = \frac{1}{2} (w_1^2 + \dots + w_n^2)$$

is differentiable!

We have $\nabla\left(\frac{1}{2} \parallel \mathbf{w} \parallel^2\right) = \mathbf{w}$ and that

$$H_{\frac{1}{2}\|\mathbf{w}\|^2}=\mathbf{I}_n,$$

which shows that $\frac{1}{2} \parallel \mathbf{w} \parallel^2$ is a convex function of \mathbf{w} .

Support Vectors

The Lagrangean of the optimization problem

- minimize $\frac{1}{2} \parallel \mathbf{w} \parallel^2$;
- subjected to $y_i(\mathbf{w}'\mathbf{x}_i + b) \geqslant 1$ for $1 \leqslant i \leqslant m$.

is

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 - \sum_{i=1}^m a_i (y_i(\mathbf{w}'\mathbf{x}_i + b) - 1).$$

The Karush-Kuhn-Tucker Optimality Conditions

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0,$$

$$\nabla_b L = -\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i (y_i (\mathbf{w}' \mathbf{x}_i + b) - 1) = 0 \text{ for all } i$$

imply

$$\mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0,$$

$$\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i = 0 \text{ or } y_i (\mathbf{w}' \mathbf{x}_i + b) = 1 \text{ for } 1 \leqslant i \leqslant m.$$

Consequences of the KKT Conditions

- the weight vector is a linear combination of the training vectors $\mathbf{x}_1, \dots, \mathbf{x}_m$, where \mathbf{x}_i appears in this combination only if $a_i \neq 0$ (support vectors);
- since $a_i = 0$ or $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1$ for all i, if $a_i \neq 0$, then $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1$ for the support vectors; thus, all these vectors lie on the marginal hyperplanes $\mathbf{w}'\mathbf{x} + b = 1$ or $\mathbf{w}'\mathbf{x} + b = -1$;
- if non-support vector are removed the solution remains the same;
- while the solution of the problem w remains the same different choices may be possible for the support vectors.