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Problem Setting

@ the input space is X C R";
@ the output spaceis Y = {-1,1};
@ concept sought: a function f : X — Y;

e sample: a sequence S = ((x1,¥1),---, (Xm, ¥m)) € (X x )7
extracted from a distribution D.
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Problem Statement

o the hypothesis space H is H C Y¥;

o task: find h € H such that the generalization error

Lp(h) = Px~p(h(x) # f(x))
is small.

The smaller the VCD(H) the more efficient the process is. One possibility
is the class of linear functions from X to V:

H = {x ~ sign(w'x + b) | w € R", b € R},

1 ifa>0
sign(a):{ ma=s

where

-1 ifa<0O.
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A Fundamental Assumption: Linear Separability of S

X

If S is linearly separable there are, in general, infinitely many hyperplanes
that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
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The distance of a point x¢ to a hyperplane w'x + b =0

Equation of the line passing through x¢ and perpendicular on the

hyperplane is
X — Xg = tw;

Since z is a point on this line that belongs to the hyperplane, to find the
value of t that corresponds to z we must have w'(xg + tw) + b = 0, that is,

X0
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The distance of a point x¢ to a hyperplane w'x + b =0

X0

w'xo+

”w”2bw, hence the distance from

Thus, z=xg —

Xg to the hyperplane is
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Primal Optimization Problem

We seek a hyperplane in R"” having the equation

wx+b=0,

where w € R" is a vector normal to the hyperplane and b € R is a scalar.

A hyperplane w'x + b = 0 that does not pass through a point of S is in
canonical form relative to a sample S if

min _|w'x + b| = 1.
(x.y)eS
Note that we may always assume that the separating hyperplane are in

canonical form relative by S by rescaling the coefficients of the equation
that define the hyperplane (the components of w and b).
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If the hyperplane w'x + b = 0 is in canonical form relative to the sample
S, then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

. |w'x+ b 1
p= min = .
(xy)es || w | | wl
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have
wW'x+ b| > 1
for any point (x, y) of the sample and
w'x+ bl =1

for every support point. The point (x;, y;) is classified correctly if y; has
the same sign as w'x; + b, that is, y;(w'x; + b) > 1.

Maximizing the margin is equivalent to minimizing || w || or, equivalently,
to minimizing % || w ||2. Thus, in the separable case the SVM problem is
equivalent to the following convex optimization problem:

o minimize 1 || w ||%;
@ subjected to y;(w'x; +b) > 1for 1 <i< m.
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Why 3 [| w [|*?

Note that this objective function,

1 1
Sl wP= S+ 4 w2)

is differentiable!
We have V (% | w ||?) =w and that

iz = o

which shows that 3 || w ||? is a convex function of w.
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Support Vectors

The Lagrangean of the optimization problem
Ce 1 2.
e minimize 5 || w [|%;

@ subjected to yj(w'x; + b) > 1for 1 < i< m.

m

1
L(w, b,a) = > | w —Za,- (y,-(w’x,- +b) — 1) )
i=1
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The Karush-Kuhn-Tucker Optimality Conditions

m
VWL = W — Za,-y,-x,- = 0,
i=1

Vol = => ayi=0,
i=1

ai()/i(W/Xi +b)—1) = Oforalli
imply

m
w = § ajyix; =0,
i—1

m
Y ayi = 0,
i=1

ai = Oory(wxj+b)=1forl<i<m.
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Consequences of the KKT Conditions

@ the weight vector is a linear combination of the training vectors
X1,...,Xm, Where x; appears in this combination only if a; # 0
(support vectors);

@ since a; = 0 or y;(w'x; + b) = 1 for all i, if a; # 0, then
yi(w'x; + b) = 1 for the support vectors; thus, all these vectors lie on
the marginal hyperplanes w'x + b =1 or w'x + b = —1,

@ if non-support vector are removed the solution remains the same;

@ while the solution of the problem w remains the same different
choices may be possible for the support vectors.
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