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SVM - The Separable Case

Recall that the optimization problem for SVMs was

minimize 5 || w |2
subject to y;(w'x+b) =1 for1<i<m

Equivalently, the constraints are
1—yj(wx+b) <0

forl <i<m
The Lagrangean is

L(w, b,a)

= HWHZ“‘Z YIWXI+b))

m
= 5 | w2 —i—Za,- - Za,-y,-w’x,- — bZa,-y,-.
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The Dual Problem

maximize L(w, b, a)

The KKT conditions are

(Vuwl) = w-— Z ajyixi =0,
i=1

(Vol) = =D aiyi=0,
i=1

a,-(l — y,'(W/X,' + b)) =0,
which are equivalent to
wo= 3T aiyixi,
doimgaiyi 0,
a;=0 or yj(wx;j+b)=1,

respectively.



Implications

@ the weight vector w is a linear combination of the training vectors
X1yeee sy Xm,

@ a vector x; appears in w if and only if a; # 0 (such vectors are called
support vectors);
o if a; £ 0, then y;(w'x; + b) = +1.

Note that support vectors define the maximum margin hyperplane, or the
SVM solution.



SVM - The Separable Case

Transforming the Lagrangean

Since

1 m m m
L(w.b.a) =~ || w 1P+ ai =Y aiyw'xi — b aii,
i=1 i=1 i=1

w = > a;y;x; (note that we changed the summation index from i to j),
and > 7, ajyi = 0, we have

L(w, )—*HWHerZa: Zza:ajy,yj

i=1 j=1
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SVM - The Separable Case

Further Transformation of the Lagrangean

Note that
m m
Iwi? = ww= Zajijj' (Zai)/ixi>7
j=1 i=1
m m
= DD Ay
i=1 j=1
Therefore,
1 m
L(w,b,a) = > | w2 +Za,~ ZZa,ajy,ij X

i=1 j=1

m
= Z —fZZaajy,nyx,

i=1 j=1



The Dual Optimization Problem for Separable Sets

L m 1 m m /
maximize Y " aj — 5 > 14 i1 2idjYiYXiX;
subject to a; =2 0 for 1 < i < m and 27;1 ajyi = 0.

Note that the objective function depends on ay, ..., am.



SVM - The Separable Case

@ constraints are affine, so they are qualified and the strong duality
holds; therefore, the primal and the dual problems are equivalent;

@ the solution a of the dual problem can be used directly to determine
the hypothesis returned by the SVM as

h(x) = sign(w'x + b) = sign (Z aiyi(xix) + b) ;
i=1

@ since support vectors lie on the marginal hyperplanes, for every
support vector x; we have w'x; + b = y;, so

m
b=y — Z ajyj(xj-x).
j=1



Leave-One Out (LOO) Analysis in the Separable Case

Let Nsy the number of support vectors that define the hypothesis hg
returned for a sample S in the separable case, where
S= {(Xj’)/j) | 1<j<m}.
Suppose the sample S is S ~ D™, where D is the distribution of examples.
If the algorithm A is trained on all points of S with the exception of x;,
that is, is trained on S — {x;} the hypothesis returned is hs_(y, and the
error is

A 1 &

R <100 (A) = - Z (hs_gx;3(xi) # vi) -

i=1

The leave-one error is the average of the errors obtained by leaving one
example out.
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Leave-One Out (LOO) Analysis in the Separable Case

Lemma

The average leave-one-out error for sample of size m > 2 is an unbiased
estimate of the average generalization error for sample of size m — 1, that
is,

Espm (ERMLo0(A)) = Es/.pm-1 (R(hs') .
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Leave-One Out (LOO) Analysis in the Separable Case

Proof

Es..pm (ERMLOO(A))

1 m
= - Z Es~pm (hs_gx1(Xi) # yi)
i—1

= Espm (hs_{x3(x1) # y1)
(since all points of S are drawn at random and are equally distributed)
= Esiupm-1~p (hs'(x1) # y1)
= Egiupm-1(Eq~p (hsi(x1) # y1))
— Egpot (R(hs)).
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Leave-One Out (LOO) Analysis in the Separable Case

Theorem

If hs is the hypothesis returned by the SVM algorithm A for a sample S,
then

E (ERM(hs)) < Es.pms1 <’\:V+(51)) .

Proof: Let S be a linearly separable sample of size m+ 1. If x is not a
support vector of hg, removing it does not change the solution. Thus,
hs_(x} = hs and hs_y,; correctly classifies x. Thus, if hs_y,; misclassifies
X, then x must be a support vector which implies

Nsy(S)

ERM < .
Loo(A) m 1

Taking the expectation of both sides yields the result.
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Slack Variables

If data is not separable the conditions y;(w’x; + b) > 1 cannot all hold (for
1 < i< m). Instead, we impose a relaxed version, namely

yi(w'x; +b) > 1 ¢,

where &; are new variables known as slack variables.
A slack variable & measures the distance by which x; violates the desired

inequality y;(w'x; + b) > 1.
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SVM - The Non-Separable Case

Wx+b=—-1-"

A vector x; is an outlier if x; is not positioned correctly on the side of the
appropriate hyperplane.
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SVM - The Non-Separable Case

@ a vector x; with 0 < y;(w'x; + b) < 1 is still an outlier even if it is
correctly classified by the hyperplane w'x + b = 0 (see the red point);

o if we omit the outliers the data is correctly separated by the
hyperplane w'x + b = 0 with a soft margin p = IIT1H;

@ we wish to limit the amount of slack due to outliers (3>-7; &), but we
also seek a hyperplane with a large margin (even though this may
lead to more outliers).
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Optimization for Non-Separable Data

minimize 3 || w [|> +C >, &P

subject to y;(w'x; + b) > 1—& and & >0 for 1 < i< m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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Support Vectors

As in the separable case:
@ constraints are affine and thus, qualified;

@ the objective function and the affine constraints are convex and
differentiable;

o thus, the KKT conditions apply.



SVM - The Non-Separable Case

Variables

@ a; > 0 for 1 </ < m are variables associated with m constraints;
@ b; > 0 for 1 < i< m are variables associated with the non-negativity
constraints of the slack variables.
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SVM - The Non-Separable Case

The Lagrangean is defined as:

L(W7b7£1a"'a£mvaab) = % HWHZ +CZ7;1£I
=20 ailyi(w'x; + b) = 1+ &) = 30 big;i.

The KKT conditions are:

Vwl = w-— Z,’-ll aiyixi=0 = w= 27;1 a; yiXi
Vel = => " ayi=0 = Yriayi=0
Vgl = C—aj—bi=0 = a;+b=C

and
ailyilw'x; +b) —1+¢]=0for 1<i<m=a =0or
yi(wx; + b) =1-¢,
bi¢i=0=b;=00r& =0.



Consequences of the KKT Conditions

@ w is a linear combination of the training vectors x1, ..., Xm, where x;
appears in the combination only if a; # 0;

o if a; #0, then y;(w'x; + b) =1 —¢&;;
e if & =0, then y;(w'x; + b) = 1 and x; lies on marginal hyperplane as
in the separable case; otherwise, x; is an outlier;

o if x; is an outlier, b; = 0 and a; = C or x; is located on the marginal
hyperplane.

@ w is unique; the support vectors are not.



The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

:

— 1 m . m m o vovxx
L = §H Zi:l ajyiXj|| — Zi:l j=1didjYiYjX;X;
m m
— it a,-y{b + it ai
_ m R m m P S
= D132 j=1 i djYiyjXiX;,



SVM - The Non-Separable Case

o the Lagrangean has exactly the same form as in the separable case;
@ we need a; > 0 and, in addition b; > 0, which is equivalent to a; < C
(because a; + bj = C);

The dual optimization problem for the non-separable case becomes:

maximize fora Y " | aj — %a;ajy;iji-xj
subject to0 < a; < C and Y 1", ajy; =0
forl1 <i<m.



SVM - The Non-Separable Case

Consequences

@ the objective function is concave and differentiable;

@ the solution can be used to determine the hypothesis
h(x) = sign(w'x + b);

o for any support vector b; we have b = y; — ZJ’":l ajyjXix;.

@ the hypothesis returned depends only on the inner products between
the vectors and not directly on the vectors themselves.



Margins

Definition
The geometric margin relative to a linear classifier h(x) = w'x + b is its
distance to the hyperplane w'x + b = 0:

The margin for a linear classifier h for a sample S = (x1,...,Xn) is

yi(w'x + b)
= min =¥————
1<ism | w |




The VCD of the family of hyperplanes in R" is n+ 1. By the application of
the VCD bound we have that for any § > 0, with probability at least 1 — ¢

we have
2d log <7 log %
R(h) < ERM(h d o
(h) < ERM(h) + | 282 4 [ 28

Therefore, we obtain

2(N + 1) log ™ log 1
R(h)gERM(h)+\/( ;g,\,+1+\/og5_

2m

When N is large compared to m the bound is not helpful.



Theorem

Let S be a sample included in a sphere of radius r, S C {x ||| x ||< r}.
The VC dimension of the set of canonical hyperplanes of the form

h(x) = sign(w'x), mig w'x| =1 and || w[<A,
xe

verifies d < r2A2.




Proof

Suppose that {xi,...,Xq} is a set that can be fully shattered. Then, for

ally = (y1,...,yq) € {—1,1}9 there exists w such that 1 < y;(w'x) for
1<i<d.

Summing up these inequalities yields:

d d
d<w' Y yixi <llw | Dy
i=1 i=1

d
< /\H ZMX; ‘
i—1

N
@



Proof (cont'd)

Since y1,...,Yyq are independent, if i # j, E(yiy;) = E(yi)E(y;) = 0; also,
E(y,'y,') =1.
Since d < /\H 9 yixi

expectations and we have

holds for all y € {—1,1}7, it holds over

Jer(e (1)

m m 1/2
= A (ZZ Ey(y,-m(x:-xj))

i=1 j=1

Q
N

(Pt

J 1/2
= A (Z xf-x,-) < N(dr?)Y2 = Ar/d.
i=1



Thus,
d < N%r?

@ recall that when the data is linearly separable the margin p is given by:

wx+b 1
cy)es wll [fw

p= i

o if we restrict the sample S such that the resulting w is such that
| w =2 =A, it follows that

2
r
d< .

B
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