Homework 2

posted October 11, 2017 due October 25, 2017

- 1. Let \mathcal{C} be a collection of sets such that $VCD(\mathcal{C}) \geq 2$. Prove that:
 - (a) C contains two sets A, B such that $|A \oplus B| = 1$;
 - (b) both $\mathcal{P}'(\mathcal{C}, s)$ and $\mathcal{P}''(\mathcal{C}, s)$ are non-empty for some $s \in S$.
- 2. Let \mathcal{C}, \mathcal{D} be two collections of subsets of a set S. Prove that for every $m \in \mathbb{N}$ we have $\Pi_{\mathcal{C} \cup \mathcal{D}}[m] = \max\{\Pi_{\mathcal{C}}[m], \Pi_{\mathcal{D}}[m]\}.$
- 3. Let S be a nonempty set and let $C = \{\{x\} \mid x \in S\}$. Prove that VCD(C) = 1.
- 4. Let S be a nonempty set. Prove that if C is a collection of subsets of S such that $|C| \ge 2$, then $VCD(C) \ge 1$.
- 5. Prove that if \mathcal{C} is a chain of subsets of a set S, then $VCD(\mathcal{C}) = 1$.
- 6. Let \mathcal{C}, \mathcal{D} be two collections of subsets of a set S. Prove that for every $m \in \mathbb{N}$ we have $\Pi_{\mathcal{C} \cup \mathcal{D}}[m] = \max\{\Pi_{\mathcal{C}}[m], \Pi_{\mathcal{D}}[m]\}.$