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Convex Functions

Definition
Let S be a non-empty convex subset of R”. A function f : S — R is

convex if
f(tx + (1 — t)y) < tf(x) + (1 — t)f(y)

for every x,y € S and t € [0, 1].

If f(tx+ (1 —t)y) < tf(x)+ (1 — t)f(y) for every x,y € S and t € (0,1)
then f is said to be strictly convex.

The function g : S — R is concave if —g is convex.
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Convex Functions

Example

Let f : (0,00) — R be defined by f(x) = x2. The definition domain of f
is clearly convex and we have

f(txa+(1—t)x) = (txg + (1 —t)x)?
= 234+ (1—t)°x3 +2(1 — t)txixa.
Therefore,

F((1— t)xy + txa) — th(x1) — (1 — t)f(x2) = —(1 — t)t(x1 + x2)? < 0,
which implies that f is indeed convex.




Convex Functions

Example

Any norm v on R” is convex. Indeed, for t € (0,1) we have
v(tx + (1 —t)y) < v(tx) +v((1 — t)y) = tv(x) + (1 — t)v(y)

for x,y € R".
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Convex Functions

Example

Let A € R"™*" be a symmetric matrix. The function f : R” — R given by
f(x) = x'Ax is convex if and only if A is a positive semidefinite matrix.
Indeed, suppose that f is convex. For x,y € R” we have

(tx + (L — t)y) A(tx + (1 — t)y) < tx’Ax + (1 — t)y' Ay,
for t € (0,1), which amounts to
(2 —t)XAx+ (1 —t)> = (1—t))y'Ay + (1 — t)ty’ Ax + t(1 — t)x' Ay < 0.

Since A is symmetric, we have (y’Ax)" = x’ Ay and because both terms of
the last equality are scalars we have y’Ax = x’Ay. Note that t> — t <0
because t € [0, 1]. Consequently,

X'Ax +y' Ay +y'Ax + x' Ay > 0,

which amounts to (x +y)'A(x +y) > 0, so A is positive semidefinite.
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Convex Functions

Extending the definition of convex functions

Let f : S — R be a convex function, where S is a convex subset of R".
As a notational convenience, define the function f : R” — R as

P) {f(x) ifx €S,

+o00 otherwise.

Then, f is convex if and only if fis convex, that is, it satisfies the
inequality f(tx + (1 — t)y) < tf(x) + (1 — t)f(y) for every x,y € R". We
extended the usual definition of real-number operations on R by

too = oot = oo for t > 0. If there is no risk of confusion we denote f
simply by f.
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Optimization and Convexity

The importance of convex functions for optimization problems stems from
the fact that every local minimum of a strictly convex function f is the
global minimum of f.

A local variant of the optimization problem is given next.

Definition
Let S be a convex subset of R” and let f : S — R” be a function. The
local minimization problem M(f,g,xo,d) for f at xq is:

minimize f(x)
where x € SN B(xq,0).




Optimization and Convexity

Theorem

If xg is a solution of the minimization problem, where S is a convex set
and f is convex at xq, then xq is also a solution of the local minimization
problem.

If S is convex and f is convex at xq, then a solution of the local
minimization problem M(f,g,xo,9) is a solution of the minimization
problem.
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Proof

Suppose that xq is a solution of M(f,g,x0,6), S is convex, and f is
convex at xg. Let y € S — {xo}. Since S is convex, txg+ (1 —t)y € S for
t €10,1). To have txg + (1 — t)y € B(xp,9) we need to have

| xo —txo — (1 —t)y |[< d, or (1 —1t) | xo—y ||< 6, which is the case if

t>1-— m. With this condition satisfied by t we have

txo + (1 — t)y € B(x0,9) N'S. Therefore,
f(xo) < fltxo+(1—1t)y)
(because xq is a local minimum)
< tf(x0) + (1 - 1)f(y)

(because f is convex at xg),

so f(xo) < f(y). Thus, xq is a solution of the minimization problem. The
converse implication is immediate.
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Optimization and Convexity

Theorem

Let S be a convex subset of R", f : S — R", and g : S — R™, where
S={xecR" | g(x) <0n,}. The set of solutions of the minimization
problem
minimize f(x)
subjected to the condition x € S

IS convex.
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Proof

Let x,y be solutions of the minimization problem. Since S is convex,
tx + (1 —t)y € S. Then, the convexity of f implies

f(tx + (1 —t)y) < tf(x) + (1 = t)f(y) = f(x),

which implies f(tx + (1 — t)y) = f(x), so tx + (1 — t)y is also a solution.
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Optimization and Convexity

Corollary

Under the conditions of the theorem, if f is a strictly convex function,
then the solution of the optimization problem is unique.
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Optimization and Convexity

Suppose that x, z are two solutions of the minimization problem. Since S
is convex, t € (0,1) implies tx + (1 — t)z € S and the strict convexity of f
further implies

f(tx + (1 —t)z) < tf(x) + (1 — t)f(2) = f(x),

which contradicts the fact that x is a solution.
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Differentiability and Convexity

Theorem

Let (a, b) be an open interval of R" and let f : S — R be a differentiable
function on (a, b). Then, f is convex if and only if

fly) = f(x)+ f'(x)(y — x) for every x,y € (a, b).

15/21



Differentiability and Convexity

Proof

Suppose that f is convex on (a, b). Then, for x,y € (a, b) we have
f((1—t)x+ty) < (1—t)f(x) + tf(y)

for t € [0,1]. Therefore, for t < 1 we have

f(x+t(y —x)) — f(x)

fly) = f(x)+

() > () T

When t — 0 we obtain f(y) > f(x) + f'(x)(y — x), which is desired
inequality.
Conversely, suppose that f(y) > f(x) + f'(x)(y — x) for every x,y € (a, b)
and let z = (1 — t)x + ty. We have

f(x) = f(2) + f/(2)(x - 2),

f(y) > (2) + F(2)(y - 2).
By multiplying the first inequality by 1 — t and the second by t we obtain
(1 —t)f(x)+ tf(y) = f(z), which shows that f is convex.

(y —x).
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Differentiability and Convexity

Theorem

Let S be an open subset of R" and let f : S — R be a differentiable
function on S. Then, f is convex if and only if

fly) = f(x)+ (VF),(y — x) for every x,y € S.
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Differentiability and Convexity

Proof
Let g : R — R be the one-argument function defined by

g(t) = f(ty + (1 —t)x).

We have g'(t) = (V) (ry+(1-
and we have g(1) > g(0) +

Hx(y — x). If f is convex, then g is convex
’(0), which implies
f

(x) + (V)x(y —x),

which is the inequality we need to prove.
Conversely, suppose that for the inequality f(y) > f(x) + (Vf)L(y — x)

holds for every x,y € S. If (1 — t)x + ty and (1 — s)x + sy belong to S,
then

g
fly) >

F(1 = x+ ty) > F((L— $)x+ 5y) + (V) apmpap(y — X)(E =),

so g(t) > g(s) + &'(s)(t —s), so g is convex. The convexity of f follows
immediately.
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Differentiability and Convexity

For functions that are twice continuously differentiable on a convex subset
S of R” with a non-empty interior we have the following statement:

Theorem

Let S be a convex subset of R" with a non-empty interior. If f : S — R
is a function in CQ(S), then, f is convex on S if and only if the Hessian
matrix He(x) is positive semidefinite for every x € S.
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Differentiability and Convexity

Proof

Suppose that the Hessian matrix Hg(x) is positive semidefinite for every
x € S. By Taylor's theorem,

1
f(x) — f(x0) = (VF)xo(x —x0) + E(x — x0) Hg(xo0 + t(x — x0))(x — x0)
for some t € [0,1]. The positive semidefiniteness of Hf means that

2(bfx — x0)'Hr(xo + t(x — x0))(x — x0) = 0, so
f(x) = f(x0) + (Vf)x,(x — x0), which implies the convexity of f.
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Differentiability and Convexity

Proof (cont'd)

Suppose now that Hr(xp) is not positive semidefinite at some xg € S. We
may assume that xq is an interior point of S since Hy is continuous. There
exists x € S such that (x — xg)' Hr(x0)(x — x0) < 0. Applying again the
continuity of the Hessian matrix, x may be selected such that

(x — x0)"Hr(x0 + t(x — x0))(x — x0) < 0, which means that

f(x) < f(xo) + f(x0) + (Vf)x,(x — x0), thus contradicting the convexity
of f.
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