Convex Functions

Prof. Dan A. Simovici

Convex Functions

2 Optimization and Convexity

3 Differentiability and Convexity

Definition

Let S be a non-empty convex subset of \mathbb{R}^n . A function $f:S\longrightarrow \mathbb{R}$ is convex if

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant tf(\mathbf{x}) + (1-t)f(\mathbf{y})$$

for every $\mathbf{x}, \mathbf{y} \in S$ and $t \in [0, 1]$.

If $f(t\mathbf{x} + (1-t)\mathbf{y}) < tf(\mathbf{x}) + (1-t)f(\mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in S$ and $t \in (0,1)$ then f is said to be strictly convex.

The function $g: S \longrightarrow \mathbb{R}$ is *concave* if -g is convex.

Example

Let $f:(0,\infty)\longrightarrow \mathbb{R}$ be defined by $f(x)=x^2$. The definition domain of f is clearly convex and we have

$$f(tx_1 + (1-t)x_2) = (tx_1 + (1-t)x_2)^2$$

= $t^2x_1^2 + (1-t)^2x_2^2 + 2(1-t)tx_1x_2$.

Therefore,

$$f((1-t)x_1+tx_2)-tf(x_1)-(1-t)f(x_2)=-(1-t)t(x_1+x_2)^2\leqslant 0$$
, which implies that f is indeed convex.

Example

Any norm ν on \mathbb{R}^n is convex. Indeed, for $t \in (0,1)$ we have

$$\nu(t\boldsymbol{x} + (1-t)\boldsymbol{y}) \leqslant \nu(t\boldsymbol{x}) + \nu((1-t)\boldsymbol{y}) = t\nu(\boldsymbol{x}) + (1-t)\nu(\boldsymbol{y})$$

for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Example

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. The function $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ given by $f(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ is convex if and only if A is a positive semidefinite matrix. Indeed, suppose that f is convex. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have

$$(t\mathbf{x} + (1-t)\mathbf{y})'A(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant t\mathbf{x}'A\mathbf{x} + (1-t)\mathbf{y}'A\mathbf{y},$$

for $t \in (0,1)$, which amounts to

$$(t^2-t)x'Ax + ((1-t)^2-(1-t))y'Ay + (1-t)ty'Ax + t(1-t)x'Ay \le 0.$$

Since A is symmetric, we have $(\mathbf{y}'A\mathbf{x})' = \mathbf{x}'A\mathbf{y}$ and because both terms of the last equality are scalars we have $\mathbf{y}'A\mathbf{x} = \mathbf{x}'A\mathbf{y}$. Note that $t^2 - t \leq 0$ because $t \in [0,1]$. Consequently,

$$x'Ax + y'Ay + y'Ax + x'Ay \geqslant 0$$
,

which amounts to $(\mathbf{x} + \mathbf{y})'A(\mathbf{x} + \mathbf{y}) \ge 0$, so A is positive semidefinite.

Extending the definition of convex functions

Let $f: S \longrightarrow \mathbb{R}$ be a convex function, where S is a convex subset of \mathbb{R}^n . As a notational convenience, define the function $\hat{f}: \mathbb{R}^n \longrightarrow \hat{\mathbb{R}}$ as

$$\hat{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \in S, \\ +\infty & \text{otherwise.} \end{cases}$$

Then, f is convex if and only if \hat{f} is convex, that is, it satisfies the inequality $\hat{f}(t\mathbf{x}+(1-t)\mathbf{y})\leqslant t\hat{f}(\mathbf{x})+(1-t)\hat{f}(\mathbf{y})$ for every $\mathbf{x},\mathbf{y}\in\mathbb{R}^n$. We extended the usual definition of real-number operations on \mathbb{R} by $t\infty=\infty t=\infty$ for t>0. If there is no risk of confusion we denote \hat{f} simply by f.

The importance of convex functions for optimization problems stems from the fact that every local minimum of a strictly convex function f is the global minimum of f.

A local variant of the optimization problem is given next.

Definition

Let S be a convex subset of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}^n$ be a function. The *local minimization problem* $\mathcal{M}(f, \mathbf{g}, \mathbf{x}_0, \delta)$ for f at \mathbf{x}_0 is:

minimize
$$f(\mathbf{x})$$

where $\mathbf{x} \in S \cap B(\mathbf{x}_0, \delta)$.

Theorem

If \mathbf{x}_0 is a solution of the minimization problem, where S is a convex set and f is convex at \mathbf{x}_0 , then \mathbf{x}_0 is also a solution of the local minimization problem.

If S is convex and f is convex at \mathbf{x}_0 , then a solution of the local minimization problem $\mathcal{M}(f, \mathbf{g}, \mathbf{x}_0, \delta)$ is a solution of the minimization problem.

Suppose that \mathbf{x}_0 is a solution of $\mathcal{M}(f,\mathbf{g},\mathbf{x}_0,\delta)$, S is convex, and f is convex at \mathbf{x}_0 . Let $y \in S - \{\mathbf{x}_0\}$. Since S is convex, $t\mathbf{x}_0 + (1-t)\mathbf{y} \in S$ for $t \in [0,1)$. To have $t\mathbf{x}_0 + (1-t)\mathbf{y} \in B(\mathbf{x}_0,\delta)$ we need to have $\parallel \mathbf{x}_0 - t\mathbf{x}_0 - (1-t)\mathbf{y} \parallel < \delta$, or $(1-t) \parallel \mathbf{x}_0 - \mathbf{y} \parallel < \delta$, which is the case if $t > 1 - \frac{\delta}{\parallel \mathbf{x}_0 - \mathbf{y} \parallel}$. With this condition satisfied by t we have $t\mathbf{x}_0 + (1-t)\mathbf{y} \in B(\mathbf{x}_0,\delta) \cap S$. Therefore,

$$f(\mathbf{x}_0) \leqslant f(t\mathbf{x}_0 + (1-t)\mathbf{y})$$

(because \mathbf{x}_0 is a local minimum)
 $\leqslant tf(\mathbf{x}_0) + (1-t)f(\mathbf{y})$
(because f is convex at \mathbf{x}_0),

so $f(\mathbf{x}_0) \leq f(\mathbf{y})$. Thus, \mathbf{x}_0 is a solution of the minimization problem. The converse implication is immediate.

Theorem

```
Let S be a convex subset of \mathbb{R}^n, f:S\longrightarrow\mathbb{R}^n, and \mathbf{g}:S\longrightarrow\mathbb{R}^m, where S=\{\mathbf{x}\in\mathbb{R}^n\mid \mathbf{g}(\mathbf{x})\leqslant \mathbf{0}_m\}. The set of solutions of the minimization problem minimize f(\mathbf{x}) subjected to the condition \mathbf{x}\in S is convex.
```

Let x, y be solutions of the minimization problem. Since S is convex, $tx + (1 - t)y \in S$. Then, the convexity of f implies

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \leqslant tf(\mathbf{x}) + (1-t)f(\mathbf{y}) = f(\mathbf{x}),$$

which implies $f(t\mathbf{x} + (1-t)\mathbf{y}) = f(\mathbf{x})$, so $t\mathbf{x} + (1-t)\mathbf{y}$ is also a solution.

Corollary

Under the conditions of the theorem, if f is a strictly convex function, then the solution of the optimization problem is unique.

Suppose that \mathbf{x}, \mathbf{z} are two solutions of the minimization problem. Since S is convex, $t \in (0,1)$ implies $t\mathbf{x} + (1-t)\mathbf{z} \in S$ and the strict convexity of f further implies

$$f(tx + (1-t)z) < tf(x) + (1-t)f(z) = f(x),$$

which contradicts the fact that x is a solution.

Theorem

Let (a, b) be an open interval of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}$ be a differentiable function on (a, b). Then, f is convex if and only if $f(y) \ge f(x) + f'(x)(y-x)$ for every $x, y \in (a, b)$.

Suppose that f is convex on (a, b). Then, for $x, y \in (a, b)$ we have

$$f((1-t)x+ty)\leqslant (1-t)f(x)+tf(y)$$

for $t \in [0,1]$. Therefore, for t < 1 we have

$$f(y) \geqslant f(x) + \frac{f(x + t(y - x)) - f(x)}{t(y - x)}(y - x).$$

When $t \to 0$ we obtain $f(y) \ge f(x) + f'(x)(y - x)$, which is desired inequality.

Conversely, suppose that $f(y) \ge f(x) + f'(x)(y-x)$ for every $x, y \in (a, b)$ and let z = (1-t)x + ty. We have

$$f(x) \geqslant f(z) + f'(z)(x - z),$$

$$f(y) \geqslant f(z) + f'(z)(y - z).$$

By multiplying the first inequality by 1-t and the second by t we obtain $(1-t)f(x)+tf(y)\geqslant f(z)$, which shows that f is convex.

Theorem

Let S be an open subset of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}$ be a differentiable function on S. Then, f is convex if and only if $f(\mathbf{y}) \geqslant f(\mathbf{x}) + (\nabla f)'_{\mathbf{x}}(\mathbf{y} - \mathbf{x})$ for every $\mathbf{x}, \mathbf{y} \in S$.

Let $g:\mathbb{R}\longrightarrow\mathbb{R}$ be the one-argument function defined by

$$g(t) = f(t\mathbf{y} + (1-t)\mathbf{x}).$$

We have $g'(t) = (\nabla f)_{(t\mathbf{y}+(1-t)\mathbf{x}}(\mathbf{y}-\mathbf{x})$. If f is convex, then g is convex and we have $g(1) \geqslant g(0) + g'(0)$, which implies

$$f(\mathbf{y}) \geqslant f(\mathbf{x}) + (\nabla f)_{\mathbf{x}}(\mathbf{y} - \mathbf{x}),$$

which is the inequality we need to prove.

Conversely, suppose that for the inequality $f(y) \ge f(x) + (\nabla f)'_x(y - x)$ holds for every $x, y \in S$. If (1 - t)x + ty and (1 - s)x + sy belong to S, then

$$f((1-t)\mathbf{x}+t\mathbf{y})\geqslant f((1-s)\mathbf{x}+s\mathbf{y})+(\nabla f)'_{(1-s)\mathbf{x}+s\mathbf{y}}(\mathbf{y}-\mathbf{x})(t-s),$$

so $g(t) \ge g(s) + g'(s)(t-s)$, so g is convex. The convexity of f follows immediately.

For functions that are twice continuously differentiable on a convex subset S of \mathbb{R}^n with a non-empty interior we have the following statement:

Theorem

Let S be a convex subset of \mathbb{R}^n with a non-empty interior. If $f: S \longrightarrow \mathbb{R}$ is a function in $C^2(S)$, then, f is convex on S if and only if the Hessian matrix $H_f(\mathbf{x})$ is positive semidefinite for every $\mathbf{x} \in S$.

Suppose that the Hessian matrix $H_f(x)$ is positive semidefinite for every $x \in S$. By Taylor's theorem,

$$f(\mathbf{x}) - f(\mathbf{x}_0) = (\nabla f)_{\mathbf{x}_0}(\mathbf{x} - \mathbf{x}_0) + \frac{1}{2}(\mathbf{x} - \mathbf{x}_0)'H_f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0))(\mathbf{x} - \mathbf{x}_0)$$

for some $t \in [0,1]$. The positive semidefiniteness of H_f means that $\frac{1}{2}(bfx-x_0)'H_f(x_0+t(x-x_0))(x-x_0)\geqslant 0$, so $f(x)\geqslant f(x_0)+(\nabla f)_{x_0}(x-x_0)$, which implies the convexity of f.

Proof (cont'd)

Suppose now that $H_f(\mathbf{x}_0)$ is not positive semidefinite at some $\mathbf{x}_0 \in S$. We may assume that \mathbf{x}_0 is an interior point of S since H_f is continuous. There exists $\mathbf{x} \in S$ such that $(\mathbf{x} - \mathbf{x}_0)'H_f(\mathbf{x}_0)(\mathbf{x} - \mathbf{x}_0) < 0$. Applying again the continuity of the Hessian matrix, \mathbf{x} may be selected such that $(\mathbf{x} - \mathbf{x}_0)'H_f(\mathbf{x}_0 + t(\mathbf{x} - \mathbf{x}_0))(\mathbf{x} - \mathbf{x}_0) < 0$, which means that $f(\mathbf{x}) < f(\mathbf{x}_0) + f(\mathbf{x}_0) + (\nabla f)_{\mathbf{x}_0}(\mathbf{x} - \mathbf{x}_0)$, thus contradicting the convexity of f.