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Convex Functions

Definition

Let S be a non-empty convex subset of Rn. A function f : S −→ R is
convex if

f (txxx + (1− t)yyy) 6 tf (xxx) + (1− t)f (yyy)

for every xxx ,yyy ∈ S and t ∈ [0, 1].
If f (txxx + (1− t)yyy) < tf (xxx) + (1− t)f (yyy) for every xxx ,yyy ∈ S and t ∈ (0, 1)
then f is said to be strictly convex.
The function g : S −→ R is concave if −g is convex.
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Convex Functions

Example

Let f : (0,∞) −→ R be defined by f (x) = x2. The definition domain of f
is clearly convex and we have

f (tx1 + (1− t)x2) = (tx1 + (1− t)x2)2

= t2x2
1 + (1− t)2x2

2 + 2(1− t)tx1x2.

Therefore,
f ((1− t)x1 + tx2)− tf (x1)− (1− t)f (x2) = −(1− t)t(x1 + x2)2 6 0,
which implies that f is indeed convex.
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Convex Functions

Example

Any norm ν on Rn is convex. Indeed, for t ∈ (0, 1) we have

ν(txxx + (1− t)yyy) 6 ν(txxx) + ν((1− t)yyy) = tν(xxx) + (1− t)ν(yyy)

for xxx ,yyy ∈ Rn.
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Convex Functions

Example

Let A ∈ Rn×n be a symmetric matrix. The function f : Rn −→ R given by
f (xxx) = xxx ′Axxx is convex if and only if A is a positive semidefinite matrix.
Indeed, suppose that f is convex. For xxx ,yyy ∈ Rn we have

(txxx + (1− t)yyy)′A(txxx + (1− t)yyy) 6 txxx ′Axxx + (1− t)yyy ′Ayyy ,

for t ∈ (0, 1), which amounts to

(t2− t)xxx ′Axxx + ((1− t)2− (1− t))yyy ′Ayyy + (1− t)tyyy ′Axxx + t(1− t)xxx ′Ayyy 6 0.

Since A is symmetric, we have (yyy ′Axxx)′ = xxx ′Ayyy and because both terms of
the last equality are scalars we have yyy ′Axxx = xxx ′Ayyy . Note that t2 − t 6 0
because t ∈ [0, 1]. Consequently,

xxx ′Axxx + yyy ′Ayyy + yyy ′Axxx + xxx ′Ayyy > 0,

which amounts to (xxx + yyy)′A(xxx + yyy) > 0, so A is positive semidefinite.
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Convex Functions

Extending the definition of convex functions

Let f : S −→ R be a convex function, where S is a convex subset of Rn.
As a notational convenience, define the function f̂ : Rn −→ R̂ as

f̂ (xxx) =

{
f (xxx) if xxx ∈ S ,

+∞ otherwise.

Then, f is convex if and only if f̂ is convex, that is, it satisfies the
inequality f̂ (txxx + (1− t)yyy) 6 tf̂ (xxx) + (1− t)f̂ (yyy) for every xxx ,yyy ∈ Rn. We
extended the usual definition of real-number operations on R by
t∞ =∞t =∞ for t > 0. If there is no risk of confusion we denote f̂
simply by f .
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Optimization and Convexity

The importance of convex functions for optimization problems stems from
the fact that every local minimum of a strictly convex function f is the
global minimum of f .
A local variant of the optimization problem is given next.

Definition

Let S be a convex subset of Rn and let f : S −→ Rn be a function. The
local minimization problem M(f ,ggg ,xxx0, δ) for f at xxx0 is:

minimize f (xxx)
where xxx ∈ S ∩ B(xxx0, δ).
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Optimization and Convexity

Theorem

If xxx0 is a solution of the minimization problem, where S is a convex set
and f is convex at xxx0, then xxx0 is also a solution of the local minimization
problem.
If S is convex and f is convex at xxx0, then a solution of the local
minimization problem M(f ,ggg ,xxx0, δ) is a solution of the minimization
problem.

9 / 21



Optimization and Convexity

Proof

Suppose that xxx0 is a solution of M(f ,ggg ,xxx0, δ), S is convex, and f is
convex at xxx0. Let y ∈ S − {xxx0}. Since S is convex, txxx0 + (1− t)yyy ∈ S for
t ∈ [0, 1). To have txxx0 + (1− t)yyy ∈ B(xxx0, δ) we need to have
‖ xxx0 − txxx0 − (1− t)yyy ‖< δ, or (1− t) ‖ xxx0 − yyy ‖< δ, which is the case if
t > 1− δ

‖xxx0−yyy‖ . With this condition satisfied by t we have

txxx0 + (1− t)yyy ∈ B(xxx0, δ) ∩ S . Therefore,

f (xxx0) 6 f (txxx0 + (1− t)yyy)

(because xxx0 is a local minimum)

6 tf (xxx0) + (1− t)f (yyy)

(because f is convex at xxx0),

so f (xxx0) 6 f (yyy). Thus, xxx0 is a solution of the minimization problem. The
converse implication is immediate.

10 / 21



Optimization and Convexity

Theorem

Let S be a convex subset of Rn, f : S −→ Rn, and ggg : S −→ Rm, where
S = {xxx ∈ Rn | ggg(xxx) 6 000m}. The set of solutions of the minimization
problem

minimize f (xxx)
subjected to the condition xxx ∈ S

is convex.
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Optimization and Convexity

Proof

Let xxx ,yyy be solutions of the minimization problem. Since S is convex,
txxx + (1− t)yyy ∈ S . Then, the convexity of f implies

f (txxx + (1− t)yyy) 6 tf (xxx) + (1− t)f (yyy) = f (xxx),

which implies f (txxx + (1− t)yyy) = f (xxx), so txxx + (1− t)yyy is also a solution.
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Optimization and Convexity

Corollary

Under the conditions of the theorem, if f is a strictly convex function,
then the solution of the optimization problem is unique.
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Optimization and Convexity

Suppose that xxx ,zzz are two solutions of the minimization problem. Since S
is convex, t ∈ (0, 1) implies txxx + (1− t)zzz ∈ S and the strict convexity of f
further implies

f (txxx + (1− t)zzz) < tf (xxx) + (1− t)f (zzz) = f (xxx),

which contradicts the fact that xxx is a solution.
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Differentiability and Convexity

Theorem

Let (a, b) be an open interval of Rn and let f : S −→ R be a differentiable
function on (a, b). Then, f is convex if and only if
f (y) > f (x) + f ′(x)(y − x) for every x , y ∈ (a, b).
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Differentiability and Convexity

Proof

Suppose that f is convex on (a, b). Then, for x , y ∈ (a, b) we have

f ((1− t)x + ty) 6 (1− t)f (x) + tf (y)

for t ∈ [0, 1]. Therefore, for t < 1 we have

f (y) > f (x) +
f (x + t(y − x))− f (x)

t(y − x)
(y − x).

When t → 0 we obtain f (y) > f (x) + f ′(x)(y − x), which is desired
inequality.
Conversely, suppose that f (y) > f (x) + f ′(x)(y − x) for every x , y ∈ (a, b)
and let z = (1− t)x + ty . We have

f (x) > f (z) + f ′(z)(x − z),

f (y) > f (z) + f ′(z)(y − z).

By multiplying the first inequality by 1− t and the second by t we obtain
(1− t)f (x) + tf (y) > f (z), which shows that f is convex.
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Differentiability and Convexity

Theorem

Let S be an open subset of Rn and let f : S −→ R be a differentiable
function on S. Then, f is convex if and only if
f (yyy) > f (xxx) + (∇f )′xxx(yyy − xxx) for every xxx ,yyy ∈ S.
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Differentiability and Convexity

Proof

Let g : R −→ R be the one-argument function defined by

g(t) = f (tyyy + (1− t)xxx).

We have g ′(t) = (∇f )(tyyy+(1−t)xxx(yyy − xxx). If f is convex, then g is convex
and we have g(1) > g(0) + g ′(0), which implies

f (yyy) > f (xxx) + (∇f )xxx(yyy − xxx),

which is the inequality we need to prove.
Conversely, suppose that for the inequality f (yyy) > f (xxx) + (∇f )′xxx(yyy − xxx)
holds for every xxx ,yyy ∈ S . If (1− t)xxx + tyyy and (1− s)xxx + syyy belong to S ,
then

f ((1− t)xxx + tyyy) > f ((1− s)xxx + syyy) + (∇f )′(1−s)xxx+syyy (yyy − xxx)(t − s),

so g(t) > g(s) + g ′(s)(t − s), so g is convex. The convexity of f follows
immediately.
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Differentiability and Convexity

For functions that are twice continuously differentiable on a convex subset
S of Rn with a non-empty interior we have the following statement:

Theorem

Let S be a convex subset of Rn with a non-empty interior. If f : S −→ R
is a function in C 2(S), then, f is convex on S if and only if the Hessian
matrix Hf (xxx) is positive semidefinite for every xxx ∈ S.
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Differentiability and Convexity

Proof

Suppose that the Hessian matrix Hf (xxx) is positive semidefinite for every
xxx ∈ S . By Taylor’s theorem,

f (xxx)− f (xxx0) = (∇f )xxx0(xxx − xxx0) +
1

2
(xxx − xxx0)′Hf (xxx0 + t(xxx − xxx0))(xxx − xxx0)

for some t ∈ [0, 1]. The positive semidefiniteness of Hf means that
1
2 (bfx − xxx0)′Hf (xxx0 + t(xxx − xxx0))(xxx − xxx0) > 0, so
f (xxx) > f (xxx0) + (∇f )xxx0(xxx − xxx0), which implies the convexity of f .
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Differentiability and Convexity

Proof (cont’d)

Suppose now that Hf (xxx0) is not positive semidefinite at some xxx0 ∈ S . We
may assume that xxx0 is an interior point of S since Hf is continuous. There
exists xxx ∈ S such that (xxx − xxx0)′Hf (xxx0)(xxx − xxx0) < 0. Applying again the
continuity of the Hessian matrix, xxx may be selected such that
(xxx − xxx0)′Hf (xxx0 + t(xxx − xxx0))(xxx − xxx0) < 0, which means that
f (xxx) < f (xxx0) + f (xxx0) + (∇f )xxx0(xxx − xxx0), thus contradicting the convexity
of f .
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