Differential Properties of Functions Defined on \mathbb{R}^n

Prof. Dan A. Simovici

UMB

Let S be an open subset of \mathbb{R}^n and let $f: S \longrightarrow \mathbb{R}$ be a function.

The partial derivatives of f are denoted by $\frac{\partial f}{\partial x_i}$ for $1 \leqslant \leqslant n$.

The second order partial derivatives are denoted by

$$\frac{\partial^2 f}{\partial x_i \ \partial x_j}.$$

Definition

The linear form

$$f'(\mathbf{x}, \mathbf{h}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} h_i$$

is the first differential of f at x.

It is also the derivative at t = 0 of the function $g(t) = f(\mathbf{x} + t\mathbf{h})$. $f'(\mathbf{x}, \mathbf{h})$ can be interpreted as the derivative of f at \mathbf{x} in the direction \mathbf{h} .

Definition

The gradient of f at x is the vector

$$\nabla f(\mathbf{x}) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_n}(\mathbf{x}) \end{pmatrix}.$$

We have $f'(\mathbf{x}, \mathbf{h}) = \nabla f(\mathbf{x})' \mathbf{h}$.

The quadratic form

$$f''(\mathbf{x}, \mathbf{h}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} h_{i} h_{j}$$

is the second order differential of f at x.

It is also the second order derivative of the function g(t) = f(x + th); accordingly, it is the second order derivative of f at x in the direction h.

The matrix of second derivatives of f is

$$f''(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \ \partial x_j}\right)$$

is called the *Hessian* of f at x.

Taylor Theorem for One Argument Functions

Theorem

(Taylor's Theorem for One-Argument Functions) Let $f:[a,b] \longrightarrow \mathbb{R}$ be a function such that f together with its first n-1 derivatives $f^{(1)}, \ldots, f^{(n-1)}$ are continuous on the interval [a,b]. If $f^{(n)}$ exists on (a,b), then there exists $c \in (a,b)$ such that

$$f(b) = f(a) + f^{(1)}(a)(b-a) + \frac{f^{(2)}(a)}{2!}(b-a)^2 + \cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + \frac{f^{(n)}(c)}{n!}(b-a)^n.$$

Proof

Let $\phi : [a, b] \longrightarrow \mathbb{R}$ be the function defined by

$$\phi(x) = f(b) - f(x) - f^{(1)}(x)(b - x) - \frac{f^{(2)}(x)}{2!}(b - x)^2 - \cdots$$
$$-\frac{f^{(n-1)}(x)}{(n-1)!}(b - x)^{n-1}.$$

The derivative of ϕ exists for any $x \in (a, b)$ and is easily seen to be

$$\phi'(x) = -\frac{f^{(n)}(x)}{(n-1)!}(b-x)^{n-1}.$$

Define the function $g:[a,b]\longrightarrow \mathbb{R}$ as

$$g(x) = \phi(x) - \left(\frac{b-x}{b-a}\right)^n \phi(a).$$

Proof (cont'd)

Since g(a) = g(b) = 0, by Rolle's Theorem from elementary analysis, there exists $c \in (a, b)$ such that g'(c) = 0. Note that

$$g'(x) = \phi'(x) + n \frac{(b-x)^{n-1}}{(b-a)^n} \phi(a),$$

SO

$$\phi'(c) + n \frac{(b-c)^{n-1}}{(b-a)^n} \phi(a) = 0.$$

Proof (cont'd)

Since
$$\phi'(c) = -\frac{f^{(n)}(c)}{(n-1)!}(b-c)^{n-1}$$
, it follows that

$$\phi(a) = (b-a)^n n! f^{(n)}(c),$$

which implies the desired equality

$$f(b) - f(a) - f^{(1)}(a)(b-a) - \frac{f^{(2)}(a)}{2!}(b-a)^2 - \dots - \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1}$$

= $\frac{(b-a)^n}{n!}f^{(n)}(c)$.

Notations

Let $f:S\longrightarrow\mathbb{R}$ be a function, where $S\subseteq\mathbb{R}^n$. If all partial derivatives $\frac{\partial^k f}{\partial x_{i_1}\cdots\partial x_{i_k}}$ exist for $1\leqslant k\leqslant n$ and $\pmb{h}\in\mathbb{R}^n$, define the expression

$$f^{[k]}(\mathbf{x};\mathbf{h}) = \sum_{i_1=1}^n \cdots \sum_{i_k=1}^n \frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}(\mathbf{x}) h_{i_1} \cdots h_{i_k}.$$

This notation is needed for formulating Taylor's Theorem for functions of n variables. Note that

$$f^{[k]}(\mathbf{x};\lambda\mathbf{h}) = \lambda^k f^{[k]}(\mathbf{x};\mathbf{h}).$$

The function $f^{[1]}(\mathbf{x};\mathbf{h})$ is $f'(\mathbf{x},\mathbf{h})$, the differential of the function f.

Notations

For k = 2, we have

$$f^{[2]}(\boldsymbol{x};\boldsymbol{h}) = \sum_{i_1=1}^n \sum_{i_2=1}^n \frac{\partial^2 f}{\partial x_{i_1} \partial x_{i_2}}(\boldsymbol{x}) h_{i_1} h_{i_2}$$
$$= \boldsymbol{h}' H_f(\boldsymbol{x}) \boldsymbol{h},$$

where $H_f(\mathbf{x}) \in \mathbb{R}^{n \times n}$, the matrix defined by

$$H_f(\mathbf{x}) = \left(\frac{\partial^2 f}{\partial x_i \ \partial x_i}\right).$$

is the as the *Hessian matrix* of the function f at \mathbf{x} . $f^{[2]}(\mathbf{x};\mathbf{h})$ is $f''(\mathbf{x},\mathbf{h})$ the second order differential of f at \mathbf{x} .

Taylor's Theorem for Functions of Several Arguments

Theorem

Let $f: S \longrightarrow \mathbb{R}$ be a function, where $S \subseteq \mathbb{R}^n$ is an open set. If f and all its partial derivatives of order less or equal to m are differentiable on S, $a, b \in S$ such that $[a, b] \subseteq S$, then there exists a point $c \in [a, b]$ such that

$$f(\mathbf{b}) = f(\mathbf{a}) + \sum_{k=1}^{m-1} \frac{1}{k!} f^{[k]}(\mathbf{a}, \mathbf{b} - \mathbf{a}) + \frac{1}{m!} f^{[m]}(\mathbf{c}, \mathbf{b} - \mathbf{a}).$$

Proof

Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $g(t) = f(\mathbf{p}(t))$, where $\mathbf{p}(t) = \mathbf{a} + t(\mathbf{b} - \mathbf{a})$ for $t \in [0,1]$. We have $g(0) = f(\mathbf{a})$ and $g(1) = f(\mathbf{b})$. The Taylor's formula applied to g yields the existence of $c \in (0,1)$ such that

$$g(1) = g(0) + \sum_{k=1}^{m-1} \frac{1}{k!} g^{(k)}(0) + g^{(m)}(c).$$

We claim that

$$g^{(m)}(t) = f^{[m]}(\mathbf{p}(t), \mathbf{b} - \mathbf{a}).$$

Indeed, for m = 1, by applying the chain rule we have

$$g'(t) = \sum_{i=1}^{m} \frac{\partial f}{\partial x_j}(\boldsymbol{p}(t))(b_j - a_j) = f^{[1]}(\boldsymbol{x}; \boldsymbol{b} - \boldsymbol{a}).$$

Proof (cont'd)

Suppose that the equality holds for m. Then

$$g^{(m+1)}(t) = (f^{[m]}(\mathbf{p}(t), \mathbf{b} - \mathbf{a}))'$$

$$= \left(\sum_{i_1=1}^n \cdots \sum_{i_m=1}^n \frac{\partial^m f}{\partial x_{i_1} \cdots \partial x_{i_m}}(\mathbf{p}(t))(b_{i_1} - a_{i_1}) \cdots (b_{i_m} - a_{i_m})\right)'$$

$$= \sum_{i_1=1}^n \cdots \sum_{i_m=1}^n \sum_{i_{m+1}=1}^n \frac{\partial^{m+1} f}{\partial x_{i_1} \cdots \partial x_{i_{m+1}}}(\mathbf{p}(t))(b_{i_1} - a_{i_1}) \cdots (b_{i_m} - a_{i_m})(b_{i_{m+1}} - \mathbf{p}(t))(b_{i_1} - a_{i_2}) \cdots (b_{i_m} - a_{i_m})(b_{i_{m+1}} - \mathbf{p}(t))(b_{i_1} - a_{i_2}) \cdots (b_{i_m} - a_{i_m})(b_{i_m} - a_{i_m})($$

When the values of the derivatives of g are substituted we obtain the equality of the theorem.

Proof

Example

For m=2, Taylor's Theorem yields the existence of $\boldsymbol{c} \in [\boldsymbol{a}, \boldsymbol{b}]$ such that

$$f(b) = f(a) + f^{[1]}(a, b - a) + \frac{1}{2}(b - a)'H_f(c)(b - a)$$

= $f(a) + (\nabla f)'_a(b - a) + \frac{1}{2}(b - a)'H_f(c)(b - a).$

Example

Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be the function given by $f(\mathbf{x}) = ||\mathbf{x}||$ for $\mathbf{x} \in \mathbb{R}^3$. We have

$$\frac{\partial f}{\partial x_1} = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}} = \frac{x_1}{\|\mathbf{x}\|},$$

and similar expressions for $\frac{\partial f}{\partial x_2}$ and $\frac{\partial f}{\partial x_3}$ and we have

$$(\nabla f)_{\mathbf{x}_0} = \frac{1}{\parallel \mathbf{x}_0 \parallel} \mathbf{x}_0$$

if $\mathbf{x}_0 \neq \mathbf{0}_3$. The gradient $\nabla(f)_{\mathbf{x}_0}$ is a unit vector for every $\mathbf{x}_0 \in \mathbb{R}^3 - \{\mathbf{0}_3\}$.

Example (cont'd)

The function $R(x_0, x)$ is given by

$$R(\mathbf{x}_{0},\mathbf{x}) = \frac{f(\mathbf{x}) - f(\mathbf{x}_{0}) - (\nabla f)'_{\mathbf{x}_{0}}(\mathbf{x} - \mathbf{x}_{0})}{\|\mathbf{x} - \mathbf{x}_{0}\|}$$
$$= \frac{\|\mathbf{x}\| - \|\mathbf{x}_{0}\| - \frac{1}{\|\mathbf{x}_{0}\|}\mathbf{x}'_{0}(\mathbf{x} - \mathbf{x}_{0})}{\|\mathbf{x} - \mathbf{x}_{0}\|}$$

Therefore, the function f is differentiable in \mathbf{x}_0 if $\mathbf{x}_0 \neq \mathbf{0}_3$.

Example

Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be the function given by $f(\mathbf{x}) = ||\mathbf{x}||^2 = \text{for } \mathbf{x} \in \mathbb{R}^3$. We have

$$\frac{\partial f}{\partial x_1} = 2x_1, \frac{\partial f}{\partial x_2} = 2x_2, \frac{\partial f}{\partial x_3} = 2x_3,$$

so $(\nabla f)_{\mathbf{x}} = 2\mathbf{x}$ and this function is differentiable for all $\mathbf{x} \in \mathbb{R}^3$.

Definition

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function.

A point $\mathbf{x}_0 \in \mathbb{R}^n$ is a local minimum for f if there exists a closed sphere $B(\mathbf{x}_0, \epsilon)$ such that $f(\mathbf{x}_0) \leqslant f(\mathbf{x})$ for every $\mathbf{x} \in B(\mathbf{x}_0, \epsilon)$. If we have $f(\mathbf{x}_0) < f(\mathbf{x})$ for every $\mathbf{x} \in B(\mathbf{x}_0, \epsilon) - \{\mathbf{x}_0\}$, then \mathbf{x}_0 is a strict local minimum.

A global minimum for f is a point \mathbf{x}_0 such that $f(\mathbf{x}_0) \leqslant f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$; \mathbf{x}_0 is a strict global minimum if $f(\mathbf{x}_0) < f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n - \{\mathbf{x}_0\}$.

Similar definitions can be formulated for local maxima, strict local maxima, global maxima, and strict global maxima:

 $\mathbf{x}_0 \in \mathbb{R}^n$ is a local maximum if there exists a closed sphere $B(\mathbf{x}_0, \epsilon)$ such that $f(\mathbf{x}_0) \geqslant f(\mathbf{x})$ for every $\mathbf{x} \in B(\mathbf{x}_0, \epsilon)$. If $f(\mathbf{x}_0) > f(\mathbf{x})$ for every $x \in B(x_0, \epsilon) - \{x_0\}$, then x_0 is a strict local maximum.

A global maximum for f is a point \mathbf{x}_0 such that $f(\mathbf{x}_0) \geqslant f(\mathbf{x})$ for $\mathbf{x} \in \mathbb{R}^n$; x_0 is a strict global maximum if $f(x_0) > f(x)$ for $x \in \mathbb{R}^n - \{x_0\}$.

A local minimum or maximum of f is said to be a local extremum.

20 / 1

An unconstraint optimization problem consists in finding a local minimum or a local maximum of a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, when such a minimum exists. The function f is referred to as the objective function. Finding a local minimum of a function f is equivalent to finding a local maximum for the function f.

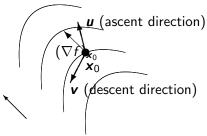
Definition

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function.

An ascent direction for f in \mathbf{x}_0 is a vector $\mathbf{h} \in \mathbb{R}^n$ such that there exists a positive number ϵ for which $0 < t < \epsilon$ implies $f(\mathbf{x}_0 + t\mathbf{h}) \geqslant f(\mathbf{x}_0)$.

A descent direction for f in \mathbf{x}_0 is a vector $\mathbf{h} \in \mathbb{R}^n$ such that exists a positive number ϵ for which $0 < t < \epsilon$ implies $f(\mathbf{x}_0 + t\mathbf{h}) \le f(\mathbf{x}_0)$.

If $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is a differentiable function, the existence of the gradient provides new instruments for computing extrema. The vector $(\nabla f)_{\mathbf{x}}$ points in the direction of increased values of the function f.



direction of increase of f(x)

An ascent direction \boldsymbol{u} in \boldsymbol{x}_0 makes an acute angle with the vector $(\nabla f)_{\boldsymbol{x}_0}$, while a descent direction \boldsymbol{v} makes an obtuse angle with the same vector, as we see in the next statement.

Theorem

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a differentiable function at \mathbf{x}_0 . If $(\nabla f)'_{\mathbf{x}_0}\mathbf{w} < 0$, then \mathbf{w} is a descent direction for f in \mathbf{x}_0 . If $(\nabla f)'_{\mathbf{x}_0}\mathbf{w} > 0$, then \mathbf{w} is a ascent direction for f in \mathbf{x}_0 .

Proof

Since f is differentiable in \mathbf{x}_0 we can write

$$f(\mathbf{x}_0 + t\mathbf{w}) = f(\mathbf{x}_0) + t(\nabla f)'_{\mathbf{x}_0}\mathbf{w} + t \parallel \mathbf{w} \parallel R(\mathbf{x}_0, \mathbf{x}_0 + t\mathbf{w}),$$

for t > 0, where $\lim_{t\to 0} R(\mathbf{x}_0, \mathbf{x}_0 + t\mathbf{w}) = 0$. This implies

$$\frac{f(\mathbf{x}_0+t\mathbf{w})-f(\mathbf{x}_0)}{t}=(\nabla f)'_{\mathbf{x}_0}\mathbf{w}+\parallel\mathbf{w}\parallel R(\mathbf{x}_0,\mathbf{x}_0+t\mathbf{w}).$$

Since $(\nabla f)'_{\mathbf{x}_0}\mathbf{w} < 0$ and $\lim_{t\to 0} R(\mathbf{x}_0,\mathbf{x}_0+t\mathbf{w}) = 0$, there exists $\epsilon > 0$ such that $0 < t < \epsilon$ implies $f(\mathbf{x}_0+t\mathbf{w}) - f(\mathbf{x}_0) \leqslant 0$, so \mathbf{w} is a descent direction. The argument for the second part of the theorem is similar.

Theorem

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a function differentiable at \mathbf{x}_0 . If \mathbf{x}_0 is a local minimum or a local maximum, then $(\nabla f)_{\mathbf{x}_0} = \mathbf{0}_n$.

Proof

Let \mathbf{x}_0 be a local minimum of f. Suppose that $(\nabla f)_{\mathbf{x}_0} \neq \mathbf{0}_n$ and let $\mathbf{w} = -(\nabla f)_{\mathbf{x}_0}$. We have $(\nabla f)'_{\mathbf{x}_0}\mathbf{w} < 0$, so, by Theorem $\ref{eq:condition}$, \mathbf{w} is a descent direction, that is, there exists a positive number ϵ such that $0 < t < \epsilon$ implies $f(\mathbf{x}_0 + t\mathbf{u}) \leqslant f(\mathbf{x}_0)$, which contradicts the initial assumption concerning \mathbf{x}_0 . Therefore, $(\nabla f)_{\mathbf{x}_0} = \mathbf{0}_n$.

The case when \mathbf{x}_0 is a local maximum can be treated similarly.

Definition

A stationary point of a differentiable function $f: S \longrightarrow \mathbb{R}$ (where $S \subseteq \mathbb{R}^n$) is a point $\mathbf{x} \in S$ such that $(\nabla f)_{\mathbf{x}} = \mathbf{0}_n$.

Observe that a stationary point of a function is not necessarily a local extremum of the function, as the next example shows.

Example

Consider the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $f(x_1, x_2) = x_1 x_2$ for $(x_1, x_2) \in \mathbb{R}^2$. We have

$$(\nabla f)_{\mathbf{x}} = \begin{pmatrix} x_2 \\ x_1 \end{pmatrix},$$

which shows that $\mathbf{0}_2$ is a stationary point of f. Note that in any sphere $B(\mathbf{0}_2,\epsilon)$ there are both positive and negative numbers. Since $f(\mathbf{0}_2)=0$, it is clear that although $\mathbf{0}_2$ is a stationary point of f, $\mathbf{0}_2$ is not a local extremum.

For functions that are twice differentiable it is possible to give characterizations of local extrema.

The next theorem gives sufficient conditions for the existence of a local minimum.

Theorem

Let $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ be a twice differentiable function at \mathbf{x}_0 . If $(\nabla f)_{\mathbf{x}_0} = \mathbf{0}_n$, and the Hessian matrix $H_f(\mathbf{x}_0)$ is positive definite, then \mathbf{x}_0 is a local minimum of f. By Taylor's Theorem,taking into account that $(\nabla f)_{\mathbf{x}_0} = \mathbf{0}_n$, we have

$$f(\mathbf{x}) = f(\mathbf{x}_0) + (\mathbf{x} - \mathbf{x}_0)' H_f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0) + || \mathbf{x} - \mathbf{x}_0||^2 R(\mathbf{x}_0, \mathbf{x} - \mathbf{x}_0),$$

where $\lim_{\mathbf{x}\to\mathbf{x}_0} R(\mathbf{x}_0,\mathbf{x}-\mathbf{x}_0) = 0$.

Suppose that \mathbf{x}_0 is not a minimum. Then, there exists a sequence $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n, \dots$ such that $\lim_{n \to \infty} \mathbf{x}_n = \mathbf{x}_0$ such that $f(\mathbf{x}_n) < f(\mathbf{x}_0)$ for each $n \ge 1$. Let \mathbf{r}_n be the unit vector $\mathbf{r}_n = \frac{1}{\|\mathbf{x}_n - \mathbf{x}_0\|} (\mathbf{x}_n - \mathbf{x}_0)$.

Proof (cont'd)

We have

$$f(\mathbf{x}_n) = f(\mathbf{x}_0) + ||\mathbf{x}_n - \mathbf{x}_0||^2 r'_n H_f(\mathbf{x}_0) r_n + ||\mathbf{x}_n - \mathbf{x}_0||^2 R(\mathbf{x}_0, \mathbf{x}_n - \mathbf{x}_0) < f(\mathbf{x}_0),$$

which implies

$$\mathbf{r}_n'H_f(\mathbf{x}_0)\mathbf{r}_n+R(\mathbf{x}_0,\mathbf{x}_n-\mathbf{x}_0)<0.$$

The sequence $(\mathbf{r}_1,\ldots,\mathbf{r}_n,\ldots)$ is bounded since it consists of unit vectors and, therefore, it contains a subsequence convergent subsequence $(\mathbf{r}_{i_1},\ldots,\mathbf{r}_{i_m},\ldots)$ such that $\lim_{m\to\infty}\mathbf{r}_{i_m}=\mathbf{r}$ and $\parallel\mathbf{r}\parallel=1$. This implies $\mathbf{r}'H_f(\mathbf{x}_0)\mathbf{r}\leqslant 0$, which contradicts the fact that $H_f(\mathbf{x}_0)$ is positive definite. Therefore, \mathbf{x}_0 is a local minimum.