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Partial Derivatives

Let S be an open subset of Rn and let f : S −→ R be a function.
The partial derivatives of f are denoted by ∂f

∂xi
for 1 66 n.

The second order partial derivatives are denoted by

∂2f

∂xi ∂xj
.

Definition

The linear form

f ′(xxx ,hhh) =
n∑

i=1

∂f

∂xi
hi

is the first differential of f at xxx .
It is also the derivative at t = 0 of the function g(t) = f (xxx + thhh).
f ′(xxx ,hhh) can be interpreted as the derivative of f at xxx in the direction hhh.
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Partial Derivatives

Definition

The gradient of f at xxx is the vector

∇f (xxx) =


∂f
∂x1

(xxx)
...

∂f
∂xn

(xxx)

 .

We have f ′(xxx ,hhh) = ∇f (xxx)′hhh.
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Partial Derivatives

The quadratic form

f ′′(xxx ,hhh) =
n∑

i=1

n∑
j=1

∂2f

∂xi ∂xj
hihj

is the second order differential of f at xxx .
It is also the second order derivative of the function g(t) = f (xxx + thhh);
accordingly, it is the second order derivative of f at xxx in the direction hhh.
The matrix of second derivatives of f is

f ′′(xxx) =

(
∂2f

∂xi ∂xj

)
is called the Hessian of f at xxx .
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The Taylor Formula

Taylor Theorem for One Argument Functions

Theorem

(Taylor’s Theorem for One-Argument Functions) Let f : [a, b] −→ R
be a function such that f together with its first n − 1 derivatives
f (1), . . . , f (n−1) are continuous on the interval [a, b]. If f (n) exists on
(a, b), then there exists c ∈ (a, b) such that

f (b) = f (a) + f (1)(a)(b − a) +
f (2)(a)

2!
(b − a)2 + · · ·

+
f (n−1)(a)

(n − 1)!
(b − a)n−1 +

f (n)(c)

n!
(b − a)n.
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The Taylor Formula

Proof

Let φ : [a, b] −→ R be the function defined by

φ(x) = f (b)− f (x)− f (1)(x)(b − x)− f (2)(x)

2!
(b − x)2 − · · ·

− f (n−1)(x)

(n − 1)!
(b − x)n−1.

The derivative of φ exists for any x ∈ (a, b) and is easily seen to be

φ′(x) = − f (n)(x)

(n − 1)!
(b − x)n−1.

Define the function g : [a, b] −→ R as

g(x) = φ(x)−
(
b − x

b − a

)n

φ(a).
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The Taylor Formula

Proof (cont’d)

Since g(a) = g(b) = 0, by Rolle’s Theorem from elementary analysis,
there exists c ∈ (a, b) such that g ′(c) = 0. Note that

g ′(x) = φ′(x) + n
(b − x)n−1

(b − a)n
φ(a),

so

φ′(c) + n
(b − c)n−1

(b − a)n
φ(a) = 0.
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The Taylor Formula

Proof (cont’d)

Since φ′(c) = − f (n)(c)
(n−1)! (b − c)n−1, it follows that

φ(a) = (b − a)nn!f (n)(c),

which implies the desired equality

f (b)− f (a)− f (1)(a)(b − a)− f (2)(a)
2! (b − a)2 − · · · − f (n−1)(a)

(n−1)! (b − a)n−1

= (b−a)n

n! f (n)(c).
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The Taylor Formula

Notations

Let f : S −→ R be a function, where S ⊆ Rn. If all partial derivatives
∂k f

∂xi1 ··· ∂xik
exist for 1 6 k 6 n and hhh ∈ Rn, define the expression

f [k](xxx ;hhh) =
n∑

i1=1

· · ·
n∑

ik=1

∂k f

∂xi1 · · · ∂xik
(xxx)hi1 · · · hik .

This notation is needed for formulating Taylor’s Theorem for functions of
n variables. Note that

f [k](xxx ;λhhh) = λk f [k](xxx ;hhh).

The function f [1](xxx ;hhh) is f ′(xxx ,hhh), the differential of the function f .
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The Taylor Formula

Notations

For k = 2, we have

f [2](xxx ;hhh) =
n∑

i1=1

n∑
i2=1

∂2f

∂xi1 ∂xi2
(xxx)hi1hi2

= hhh′Hf (xxx)hhh,

where Hf (xxx) ∈ Rn×n, the matrix defined by

Hf (xxx) =

(
∂2f

∂xi ∂xj

)
.

is the as the Hessian matrix of the function f at xxx .
f [2](xxx ;hhh) is f ′′(xxx ,hhh) the second order differential of f at xxx .
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The Taylor Formula

Taylor’s Theorem for Functions of Several Arguments

Theorem

Let f : S −→ R be a function, where S ⊆ Rn is an open set. If f and all
its partial derivatives of order less or equal to m are differentiable on S,
aaa,bbb ∈ S such that [aaa,bbb] ⊆ S, then there exists a point ccc ∈ [aaa,bbb] such that

f (bbb) = f (aaa) +
m−1∑
k=1

1

k!
f [k](aaa,bbb − aaa) +

1

m!
f [m](ccc ,bbb − aaa).
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The Taylor Formula

Proof

Let g : R −→ R be the function defined by g(t) = f (ppp(t)), where
ppp(t) = aaa + t(bbb − aaa)) for t ∈ [0, 1]. We have g(0) = f (aaa) and g(1) = f (bbb).
The Taylor’s formula applied to g yields the existence of c ∈ (0, 1) such
that

g(1) = g(0) +
m−1∑
k=1

1

k!
g (k)(0) + g (m)(c).

We claim that
g (m)(t) = f [m](ppp(t),bbb − aaa).

Indeed, for m = 1, by applying the chain rule we have

g ′(t) =
m∑
j=1

∂f

∂xj
(ppp(t))(bj − aj) = f [1](xxx ;bbb − aaa).
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The Taylor Formula

Proof (cont’d)

Suppose that the equality holds for m. Then

g (m+1)(t) = (f [m](ppp(t),bbb − aaa))′

=

 n∑
i1=1

· · ·
n∑

im=1

∂mf

∂xi1 · · · ∂xim
(ppp(t))(bi1 − ai1) · · · (bim − aim)

′

=
n∑

i1=1

· · ·
n∑

im=1

n∑
im+1=1

∂m+1f

∂xi1 · · · ∂xim+1

(ppp(t))(bi1 − ai1) · · · (bim − aim)(bim+1 − aim+1)

= f [m+1](ppp(t),bbb − aaa).

When the values of the derivatives of g are substituted we obtain the
equality of the theorem.
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The Taylor Formula

Proof

Example

For m = 2, Taylor’s Theorem yields the existence of ccc ∈ [aaa,bbb] such that

f (bbb) = f (aaa) + f [1](aaa,bbb − aaa) +
1

2
(bbb − aaa)′Hf (ccc)(bbb − aaa)

= f (aaa) + (∇f )′aaa(bbb − aaa) +
1

2
(bbb − aaa)′Hf (ccc)(bbb − aaa).
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The Taylor Formula

Example

Let f : R3 −→ R be the function given by f (xxx) =‖ xxx ‖ for xxx ∈ R3. We
have

∂f

∂x1
=

x1√
x2

1 + x2
2 + x2

3

=
x1

‖ xxx ‖
,

and similar expressions for ∂f
∂x2

and ∂f
∂x3

and we have

(∇f )xxx0 =
1

‖ xxx0 ‖
xxx0

if xxx0 6= 0003. The gradient ∇(f )xxx0 is a unit vector for every xxx0 ∈ R3 − {0003}.
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The Taylor Formula

Example (cont’d)

The function R(xxx0,xxx) is given by

R(xxx0,xxx) =
f (xxx)− f (xxx0)− (∇f )′xxx0

(xxx − xxx0)

‖ xxx − xxx0 ‖

=
‖ xxx ‖ − ‖ xxx0 ‖ − 1

‖xxx0‖xxx
′
0(xxx − xxx0)

‖ xxx − xxx0 ‖

Therefore, the function f is differentiable in xxx0 if xxx0 6= 0003.

17 / 1



The Taylor Formula

Example

Let f : R3 −→ R be the function given by f (xxx) =‖ xxx ‖2= for xxx ∈ R3. We
have

∂f

∂x1
= 2x1,

∂f

∂x2
= 2x2,

∂f

∂x3
= 2x3,

so (∇f )xxx = 2xxx and this function is differentiable for all xxx ∈ R3.
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Differentiability and Optimization

Definition

Let f : Rn −→ R be a function.
A point xxx0 ∈ Rn is a local minimum for f if there exists a closed sphere
B(xxx0, ε) such that f (xxx0) 6 f (xxx) for every xxx ∈ B(xxx0, ε). If we have
f (xxx0) < f (xxx) for every xxx ∈ B(xxx0, ε)− {xxx0}, then xxx0 is a strict local
minimum.
A global minimum for f is a point xxx0 such that f (xxx0) 6 f (xxx) for xxx ∈ Rn;
xxx0 is a strict global minimum if f (xxx0) < f (xxx) for xxx ∈ Rn − {xxx0}.
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Differentiability and Optimization

Similar definitions can be formulated for local maxima, strict local
maxima, global maxima, and strict global maxima:
xxx0 ∈ Rn is a local maximum if there exists a closed sphere B(xxx0, ε) such
that f (xxx0) > f (xxx) for every xxx ∈ B(xxx0, ε). If f (xxx0) > f (xxx) for every
xxx ∈ B(xxx0, ε)− {xxx0}, then xxx0 is a strict local maximum.
A global maximum for f is a point xxx0 such that f (xxx0) > f (xxx) for xxx ∈ Rn;
xxx0 is a strict global maximum if f (xxx0) > f (xxx) for xxx ∈ Rn − {xxx0}.
A local minimum or maximum of f is said to be a local extremum.
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Differentiability and Optimization

An unconstraint optimization problem consists in finding a local minimum
or a local maximum of a function f : Rn −→ R, when such a minimum
exists. The function f is referred to as the objective function.
Finding a local minimum of a function f is equivalent to finding a local
maximum for the function −f .

Definition

Let f : Rn −→ R be a function.
An ascent direction for f in xxx0 is a vector hhh ∈ Rn such that there exists a
positive number ε for which 0 < t < ε implies f (x0 + thhh) > f (xxx0).
A descent direction for f in xxx0 is a vector hhh ∈ Rn such that exists a
positive number ε for which 0 < t < ε implies f (x0 + thhh) 6 f (xxx0).
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Differentiability and Optimization

If f : Rn −→ R is a differentiable function, the existence of the gradient
provides new instruments for computing extrema. The vector (∇f )xxx points
in the direction of increased values of the function f .

I

direction of increase of f (xxx)

I u
xxx0

(∇f )xxx0
C
CCO
uuu (ascent direction)

�
���
vvv (descent direction)

An ascent direction uuu in xxx0 makes an acute angle with the vector (∇f )xxx0 ,
while a descent direction vvv makes an obtuse angle with the same vector,
as we see in the next statement.
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Differentiability and Optimization

Theorem

Let f : Rn −→ R be a differentiable function at xxx0.
If (∇f )′xxx0

www < 0, then www is a descent direction for f in xxx0.
If (∇f )′xxx0

www > 0, then www is a ascent direction for f in xxx0.
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Differentiability and Optimization

Proof

Since f is differentiable in xxx0 we can write

f (xxx0 + twww) = f (xxx0) + t(∇f )′xxx0
www + t ‖ www ‖ R(xxx0,xxx0 + twww),

for t > 0, where limt→0 R(xxx0,xxx0 + twww) = 0. This implies

f (xxx0 + twww)− f (xxx0)

t
= (∇f )′xxx0

www+ ‖ www ‖ R(xxx0,xxx0 + twww).

Since (∇f )′xxx0
www < 0 and limt→0 R(xxx0,xxx0 + twww) = 0, there exists ε > 0 such

that 0 < t < ε implies f (xxx0 + twww)− f (xxx0) 6 0, so www is a descent direction.
The argument for the second part of the theorem is similar.
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Differentiability and Optimization

Theorem

Let f : Rn −→ R be a function differentiable at xxx0. If xxx0 is a local
minimum or a local maximum, then (∇f )xxx0 = 000n.
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Differentiability and Optimization

Proof

Let xxx0 be a local minimum of f . Suppose that (∇f )xxx0 6= 000n and let
www = −(∇f )xxx0 . We have (∇f )′xxx0

www < 0, so, by Theorem ??, www is a descent
direction, that is, there exists a positive number ε such that 0 < t < ε
implies f (x0 + tuuu) 6 f (xxx0), which contradicts the initial assumption
concerning xxx0. Therefore, (∇f )xxx0 = 000n.
The case when xxx0 is a local maximum can be treated similarly.
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Differentiability and Optimization

Definition

A stationary point of a differentiable function f : S −→ R (where S ⊆ Rn)
is a point xxx ∈ S such that (∇f )xxx = 000n.

Observe that a stationary point of a function is not necessarily a local
extremum of the function, as the next example shows.
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Differentiability and Optimization

Example

Consider the function f : R2 −→ R defined by f (x1, x2) = x1x2 for
(x1, x2) ∈ R2. We have

(∇f )xxx =

(
x2

x1

)
,

which shows that 0002 is a stationary point of f . Note that in any sphere
B(0002, ε) there are both positive and negative numbers. Since f (0002) = 0, it
is clear that although 0002 is a stationary point of f , 0002 is not a local
extremum.
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Differentiability and Optimization

For functions that are twice differentiable it is possible to give
characterizations of local extrema.
The next theorem gives sufficient conditions for the existence of a local
minimum.

Theorem

Let f : Rn −→ R be a twice differentiable function at xxx0.
If (∇f )xxx0 = 000n, and the Hessian matrix Hf (xxx0) is positive definite, then xxx0

is a local minimum of f .
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Differentiability and Optimization

By Taylor’s Theorem,taking into account that (∇f )xxx0 = 000n, we have

f (xxx) = f (xxx0) + (xxx − xxx0)′Hf (xxx0)(xxx − xxx0)

+ ‖ xxx − xxx0 ‖2 R(xxx0,xxx − xxx0),

where limxxx→xxx0 R(xxx0,xxx − xxx0) = 0.
Suppose that xxx0 is not a minimum. Then, there exists a sequence
xxx1,xxx2, . . . ,xxxn, . . . such that limn→∞ xxxn = xxx0 such that f (xxxn) < f (xxx0) for
each n > 1. Let rrrn be the unit vector rrrn = 1

‖xxxn−xxx0‖(xxxn − xxx0).
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Differentiability and Optimization

Proof (cont’d)

We have

f (xxxn) = f (xxx0)+ ‖ xxxn − xxx0 ‖2 rrr ′nHf (xxx0)rrrn

+ ‖ xxxn − xxx0 ‖2 R(xxx0,xxxn − xxx0) < f (xxx0),

which implies
rrr ′nHf (xxx0)rrrn + R(xxx0,xxxn − xxx0) < 0.

The sequence (rrr1, . . . , rrrn, . . .) is bounded since it consists of unit vectors
and, therefore, it contains a subsequence convergent subsequence
(rrr i1 , . . . , rrr im , . . .) such that limm→∞ rrr im = rrr and ‖ rrr ‖= 1. This implies
rrr ′Hf (xxx0)rrr 6 0, which contradicts the fact that Hf (xxx0) is positive definite.
Therefore, xxx0 is a local minimum.
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