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Partial Derivatives

Let S be an open subset of R” and let f : S — R be a function.
The partial derivatives of f are denoted by % for 1 << n.
The second order partial derivatives are denoted by

Pf
Ox; Ox;

Definition
The linear form

Fllx,h)y=> ——

is the first differential of f at x.
It is also the derivative at t = 0 of the function g(t) = f(x + th).
f'(x, h) can be interpreted as the derivative of f at x in the direction h.
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Partial Derivatives

Definition
The gradient of f at x is the vector
o (%)
Vi) =
8L (x)

We have f'(x, h) = Vf(x) h.




Partial Derivatives

The quadratic form
f"(x, h) Zi o°f
i=1 j=1 a

is the second order differential of f at x.

It is also the second order derivative of the function g(t) = f(x + th);
accordingly, it is the second order derivative of f at x in the direction h.
The matrix of second derivatives of f is

92f
1" _
b= <3Xi 3Xj>

is called the Hessian of f at x.




The Taylor Formula

Taylor Theorem for One Argument Functions

Theorem

(Taylor’s Theorem for One-Argument Functions) Let f : [a,b] — R
be a function such that f together with its first n — 1 derivatives

f ..., f("=1) are continuous on the interval [a, b]. If f(") exists on

(a, b), then there exists ¢ € (a, b) such that

f(b) = f(a)+FfM(a)(b—a)+ f(zz)!(a)(b —a)’+
(n-1) (n)
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The Taylor Formula

Proof
Let ¢ : [a, b] — R be the function defined by
(2
50 = A(B)— ()~ A6 —x) — (b
f(n_l)(x) n—1
NCE (b—x)""".
The derivative of ¢ exists for any x € (a, b) and is easily seen to be
£ (x)
/ _ _ \n—1
#0) = =y (b~

Define the function g : [a, b] — R as

)=o)~ (=) o(a)



Proof (cont'd)

Since g(a) = g(b) =0, by Rolle’s Theorem from elementary analysis,
there exists ¢ € (a, b) such that g’(c) = 0. Note that

—x n—1
£ = () + ' g Do),
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Proof (cont'd)

Since ¢'(c) = —(f,i"_)(lc)), (b—c)™1, it follows that

¢(a) = (b—a)"n!fV(c),

which implies the desired equality

F(b) — f(a) — FD(a)(b — a) — "5 (b — a)? -
— (=3l () (),




Notations

Let f : S — R be a function, where S C R”. If all partial derivatives
k . . .
ﬁ exist for 1 < k < nand h € R", define the expression
n 'k

K (x;h) = Z Zax ———(x)hj, - b,
n I

=1 =1

This notation is needed for formulating Taylor's Theorem for functions of
n variables. Note that

FI (e Ah) = A<FIKl(x; ).

The function fI1(x;h) is f/(x, h), the differential of the function f.
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Notations

For k = 2, we have
n n 2
o) = S5

Oxj, OX;
i=1pp=1 "1 77"

= h,Hf‘(X)h,

(x)hil hfz

where Hr(x) € R"*", the matrix defined by

02 f
Hr(x) = <8x- 8x-) '
i 0

is the as the Hessian matrix of the function f at x.
f12(x;h) is f"(x, h) the second order differential of f at x.
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The Taylor Formula

Taylor's Theorem for Functions of Several Arguments

Theorem

Let f : S — R be a function, where S C R" is an open set. If f and all
its partial derivatives of order less or equal to m are differentiable on S,
a,b € S such that [a,b] C S, then there exists a point ¢ € [a, b] such that

m—1

1 1
- = flA] _ = flm] _
f(b) = f(a)+ kg_l k!f (a,b—a)+ !f (c,b— a).
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Proof

Let g : R — R be the function defined by g(t) = f(p(t)), where
p(t) =a+t(b—a)) for t € [0,1]. We have g(0) = f(a) and g(1) = f(b).
The Taylor's formula applied to g yields the existence of ¢ € (0, 1) such
that
m—1 1
g(1) = g(0) + ﬂg(k)(o) +g"(c).
k=1

We claim that
g™ (t) = 1" (p(t), b - a).
Indeed, for m = 1, by applying the chain rule we have
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Proof (cont'd)

Suppose that the equality holds for m. Then

g (1) = (F")(p(1), b - a))
el 3 S O T B R

=1 im=1
S S ) ba = an) - (b — a1
= p(t))(biy — aiy) - - (bip, — @iy )(Diyq —
i—1 i1 ima=1 8x,1 aX, 1 1 1 +1

Fm ) (p(t), b — a).

When the values of the derivatives of g are substituted we obtain the
equality of the theorem.
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Proof

Example

For m = 2, Taylor's Theorem yields the existence of ¢ € [a, b] such that
1
f(b) = f(a)+fl(a,b—a)+5(b—a)H(c)(b-a)

= f(a)+ (VF)y(b—a)+ %(b —a)'He(c)(b — a).
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The Taylor Formula

Example

Let f : R3 — R be the function given by f(x) =|| x || for x € R3. We
have

of - X1 X1
0% \/ X2+ X3+ X2 I 11"
1 2 3
and similar expressions for and ﬁ and we have
Vi)x, = —Xo
V0 = N

if xo # 03. The gradient V(f)x, is a unit vector for every xo € R3 — {03}.
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Example (cont'd)

The function R(xg,x) is given by

f(x) — f(x0) — (VF)x,(x — x0)

R(Xo,X) = HX X0 ”
= o | pe(x — xo)
| x = xo ||

Therefore, the function f is differentiable in xq if xg # 03.
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The Taylor Formula

Example

Let f : R3 — R be the function given by f(x) =|| x ||>= for x € R3. We

have
of 8f of

o T ox
o (Vf)x = 2x and this function is differentiable for all x € R3.

= 2X37
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Differentiability and Optimization

Definition

Let f : R” — R be a function.

A point xg € R" is a local minimum for f if there exists a closed sphere
B(xo, €) such that f(xg) < f(x) for every x € B(xg,€). If we have

f(xo) < f(x) for every x € B(xo,€) — {xo}, then xq is a strict local
minimum.

A global minimum for f is a point xo such that f(xq) < f(x) for x € R";
Xo is a strict global minimum if f(x¢) < f(x) for x € R" — {xo}.
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Differentiability and Optimization

Similar definitions can be formulated for local maxima, strict local
maxima, global maxima, and strict global maxima:

Xo € R" is a local maximum if there exists a closed sphere B(xp, €) such
that f(xg) > f(x) for every x € B(xo,€). If f(xo) > f(x) for every

x € B(xo,€) — {xo}, then xq is a strict local maximum.

A global maximum for f is a point xg such that f(xq) > f(x) for x € R"
Xo is a strict global maximum if f(xg) > f(x) for x € R" — {xo}.

A local minimum or maximum of f is said to be a local extremum.



Differentiability and Optimization

An unconstraint optimization problem consists in finding a local minimum
or a local maximum of a function f : R” — R, when such a minimum
exists. The function f is referred to as the objective function.

Finding a local minimum of a function f is equivalent to finding a local
maximum for the function —f.

Definition

Let f : R” — R be a function.

An ascent direction for f in xg is a vector h € R" such that there exists a
positive number € for which 0 < t < € implies f(xo + th) > f(xo).

A descent direction for f in xq is a vector h € R" such that exists a
positive number ¢ for which 0 < t < € implies f(xg + th) < f(xo).




Differentiability and Optimization

If f:R"™ — R is a differentiable function, the existence of the gradient
provides new instruments for computing extrema. The vector (Vf)x points
in the direction of increased values of the function f.

u_(ascent direction)

escent direction)

AN

direction of increase of f(x)
An ascent direction u in xo makes an acute angle with the vector (Vf)x,,

while a descent direction v makes an obtuse angle with the same vector,
as we see in the next statement.



Differentiability and Optimization

Theorem

Let f : R" — R be a differentiable function at xg.

If (Vf)y,w <0, then w is a descent direction for f in xo.

If (V)W >0, then w is a ascent direction for f in xq.




Differentiability and Optimization
Proof

Since f is differentiable in xg we can write
f(xo + tw) = f(xo) + t(VF)y,w + t || w || R(x0,x0 + tw),
for t > 0, where lim;_,0 R(x0, X0 + tw) = 0. This implies

f(xo + tw) — f(xo)
t

= (V)W || w || R(x0,x0 + tw).

Since (Vf)y,w < 0 and lim;_o R(xo, X0 + tw) = 0, there exists ¢ > 0 such
that 0 < t < e implies f(xo + tw) — f(x0) < 0, so w is a descent direction.
The argument for the second part of the theorem is similar.



Differentiability and Optimization

Theorem

Let f : R" — R be a function differentiable at xo. If xq is a local
minimum or a local maximum, then (Vf)x, = 0p.




Differentiability and Optimization
Proof

Let xo be a local minimum of f. Suppose that (Vf)y, # 0, and let

w = —(Vf)x,. We have (Vf), w <0, so, by Theorem ??, w is a descent
direction, that is, there exists a positive number € such that 0 < t < ¢
implies f(xo + tu) < f(xo), which contradicts the initial assumption
concerning xg. Therefore, (Vf)x, = 0p.

The case when xq is a local maximum can be treated similarly.



Differentiability and Optimization

Definition
A stationary point of a differentiable function f : S — R (where S C R")
is a point x € S such that (Vf)x =0,.

Observe that a stationary point of a function is not necessarily a local
extremum of the function, as the next example shows.



Differentiability and Optimization

Example

Consider the function f : R? — R defined by f(x1, x2) = x1xo for

(X1,X2) € R2. We have
_(*x
wne=(7)

which shows that 05 is a stationary point of f. Note that in any sphere
B(02, €) there are both positive and negative numbers. Since f(02) = 0, it
is clear that although 03 is a stationary point of f, 0, is not a local
extremum.




Differentiability and Optimization

For functions that are twice differentiable it is possible to give
characterizations of local extrema.

The next theorem gives sufficient conditions for the existence of a local
minimum.

Theorem

Let f : R" — R be a twice differentiable function at xg.
If (Vf)x, =05, and the Hessian matrix Hf(xo) is positive definite, then xq
is a local minimum of f.




Differentiability and Optimization

By Taylor's Theorem,taking into account that (Vf)x, = 0,, we have

f(x) = f(xo0)+ (x —x0) Hr(x0)(x — xo)
+ || x — xo 1> R(x0,x — xo),

where limy_x, R(x0,x — xg) = 0.

Suppose that xg is not a minimum. Then, there exists a sequence
X1,X2,...,Xp, ... such that lim,_o X, = xo such that f(x,) < f(xo) for
each n > 1. Let r, be the unit vector r, = m(xn — Xp).



Proof (cont'd)

We have

f(xn) = f(xo)+ || xn —xo ||I* rHr(xo)rs

+ || xn — X0 H2 R(xo0,xn — x0) < f(x0),

which implies
I’;Hf(XQ)I'n + R(XQ,X,, —Xo) < 0.

The sequence (r1,...,rp,...) is bounded since it consists of unit vectors
and, therefore, it contains a subsequence convergent subsequence
(Figs---,Fi,,...) such that limp_o rj, = r and || r ||= 1. This implies

r'He(xo)r < 0, which contradicts the fact that Hr(xg) is positive definite.
Therefore, xq is a local minimum.



