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Preliminaries

The greatest lower bound or infimum of a function

Definition

The greatest lower bound of f on S is the largest number m (or −∞)
such that f (xxx) > m holds for all x ∈ S .

The greatest lower bound of f on S is denoted as

inf
xxx∈S

f (xxx).

A point xxx0 minimizes f if and only if xxx0 = infxxx∈S f (xxx).

Definition

The least upper bound of f on S is the smallest number M (or ∞) such
that f (xxx) 6 M holds for all x ∈ S .

The least upper bound of f on S is denoted as

sup
xxx∈S

f (xxx).

A point xxx0 maximizes f if and only if xxx0 = supxxx∈S f (xxx). 3 / 1



Preliminaries

Example

Let S = R.
for f (x) = ex we have infx∈S ex = 0 and supx∈S ex =∞;
for f (x) = ex + e−x we have infx∈S f (x) = 2;
for f (x) = e−x

2
we have supx∈S f (x) = 1.
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Preliminaries

Example

If S is the disk defined by x2 + y2 6 1 and f (x , y) = x2 + y2 then
inf(x ,y)∈S f (x , y) = 0 and sup(x ,y)∈S f (x , y) = 1.
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Preliminaries

Example

If S = (0, 1) and f : S −→ R is f (x) = x2 we have

inf
x∈S

f (x) = 0 and sup
x∈S

f (x) = 1.

However, there is no x0 in S such that f (x0) = infx∈S f (x) = 0 or
f (x0) = supx∈S f (x) = 1.

x1

x2
f (x) = x2
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Preliminaries

Recall: the norm of xxx ∈ Rn is

‖ xxx ‖=

√√√√ n∑
i=1

x2
i .

Definition

A sequence (xxxm) of Rn is bounded if there exists a constant K such that
‖ xxxm ‖6 K .

Definition

A sequence (xxxm) converges to xxx0, written as limm→∞ xxxm = xxx0 or as
xxxm → xxx0 if limm→∞ ‖ xxxm − xxx0 ‖= 0.
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Preliminaries

A set S ⊆ Rn is
bounded if there exists a constant K such that ‖ xxx ‖6 K for all xxx ∈ S ;
closed if for every convergent sequence (xxxm) in S we have
limm→∞ xxxm ∈ S .

Theorem

(Bolzano-Weierstrass Theorem) A bounded sequence of points in Rn

contains a convergent subsequence.

8 / 1



Preliminaries

Definition

A set S in Rn is compact if it is both bounded and closed.
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Preliminaries

Theorem

Let f be a continuous function on a closed set S. Suppose that there
exists a number b such that Sb = {xxx ∈ Rn | f (xxx) 6 b} is bounded and
non-empty. Then, f attains its minimum at a point xxx0 in S, that is

f (xxx0) = inf
xxx∈S

f (xxx).
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Preliminaries

Proof

Let m = infxxx∈S f (xxx). Then f (xxx) > m for all xxx ∈ S . We show that there
exists xxx0 ∈ S such that f (xxx0) = m.
If m = b, then m 6 f (xxx) = b, hence f (xxx) = m on Sb. Since Sb 6= ∅, there
exists xxx0 ∈ Sb. This point minimizes f on S .
Suppose now that b > m and let (xxxq) be a sequence such that
limq→∞ f (xxxq) = m. Since b > m the inequality f (xxxq) > b holds for at
most a finite number of qs. Deleting these points we are left with a
sequence such that f (xxxq)→ m. Since Sb is bounded, the sequence (xxxq) is
bounded and contains a convergent subsequence (yyyq). Since S is closed
the limit xxx0 = limq→∞ yyyq belongs to S . Since f is continuous,

f (xxx0) = lim
q→∞

f (yyyq) = lim
q→∞

f (xxxq) = m.

Thus, xxx0 minimizes f .
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Duality in Optimization with Inequality Constraints

Let f : S −→ R be a function and let S is a subset of Rn defined as

S = {x ∈ Rn | gi (xxx) = 0 for 1 6 i 6 m}.

S is the set of feasible points. In this context we shall refer to the
following optimization problem

minimize f (xxx)
subjected to gi (xxx) 6 0 for 1 6 j 6 m.

as the primal problem.

Definition

The associated Lagrangean of the primal problem is the function

L(xxx ,aaa) = f (xxx) +
m∑
i=1

aigi (xxx) = f (xxx) + aaa′ggg(xxx),

where a1, . . . , am are the Lagrange variables that range over the set R>0.
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Duality in Optimization with Inequality Constraints

The Dual Problem

The dual function associated to primal problem is

F (aaa) = inf
xxx∈S

L(xxx ,aaa) = inf
xxx∈S

f (xxx) +
m∑
i=1

aigi (xxx).

Theorem

The function F (aaa) is concave.
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Duality in Optimization with Inequality Constraints

Proof

Note that if h1, h2 are defined on S we have:

inf
xxx∈S

(h1 + h2)(xxx) > inf
xxx∈S

h1(xxx) + inf
xxx∈S

h2(xxx).

For aaa1,aaa2 ∈ Rm we have

F (taaa1 + (1− t)aaa2) = inf
xxx∈S

L(xxx ,aaa)

= inf
xxx∈S

f (xxx) + (taaa′1 + (1− t)aaa′2)ggg(xxx)

inf
xxx∈S

t(f (xxx) + aaa′1ggg(xxx)) + (1− t)(f (xxx) + aaa′2ggg(xxx))

> t inf
xxx∈S

(f (xxx) + aaa′1ggg(xxx)) + (1− t) inf
xxx∈S

(f (xxx) + aaa′2ggg(xxx)),

which shows that F is always concave.
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Duality in Optimization with Inequality Constraints

The Dual Problem

The dual problem associated to the optimization problem is
maximize F (aaa)

subjected to aj > 0 for 1 6 j 6 m.
The dual problem is always a concave optimization problem.
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Duality in Optimization with Inequality Constraints

The Weak Duality Theorem

Theorem

Let xxx∗ be a solution of the primal problem, p∗ = f (xxx∗) and let q∗ = F (aaa∗)
be the optimal value of the dual problem. We have q∗ 6 p∗.

Since ggg(xxx∗) 6 000m it follows that

L(xxx∗,aaa) = f (xxx∗) + aaa′ggg(xxx∗) 6 p∗.

Therefore, F (aaa) = infxxx∈C L(xxx ,aaa) 6 p∗ for all aaa.
Since F∗ is the optimal value of F , the last inequality implies q∗ 6 p∗.
The difference p∗ − q∗ is the duality gap.
The situation when q∗ = p∗ is designated as the strong duality.
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Duality in Optimization with Inequality Constraints

Strong duality holds when constraints of problems satisfy constraint
qualifications.

Definition

Assume that the interior of the set S is nonempty. The function

ggg =

g1
...

gm

 satisfies the strong qualifications if there exists a point x̄xx in

the interior of S such that ggg(x̄xx) < 0.
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Duality in Optimization with Inequality Constraints

Definition

A function f : Rn −→ R is affine if there exists www ∈ Rn and b ∈ R,
f (xxx) = www ′xxx + b for xxx ∈ Rn.

Definition

The weak constraint qualification are defined as

for some interior point xxx ∈ S ,
gj(xxx) < 0
or (gi (xxx) = 0 and gi is affine) for 1 6 i 6 m.
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Duality in Optimization with Inequality Constraints

Example

minimize f (xxx) = kkk ′xxx
subject to Axxx − bbb 6 000m,
where A ∈ Rm×n and bbb ∈ Rm.

The Lagrangean L is

L(xxx ,aaa) = kkk ′xxx + aaa′(Axxx − bbb) = −aaa′bbb + (kkk ′ + aaa′A)xxx ,

which yields the dual function:

g(aaa) =

{
−aaa′bbb if kkk ′ + aaa′A = 000m,

−∞ otherwise.

and the dual problem is
maximize −bbb′aaa subject to kkk ′ + aaa′A = 000m

and aaa > 000.
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Duality in Optimization with Inequality Constraints

Example

Let kkk1, . . . ,kkkm ∈ Rn. We seek to determine a closed sphere B[xxx , r ] of
minimal radius that includes all points kkk i for 1 6 i 6 m. This is the
minimum bounding sphere problem, which amounts to solving the
following primal optimization problem:

minimize r , where r > 0,
subject to ‖ xxx − kkk i ‖6 r for 1 6 i 6 m.

An equivalent formulation requires minimizing r2 and stating the
restrictions as ‖ xxx − kkk i ‖2 −r2 6 0 for 1 6 i 6 m. The Lagrangean of this
problem is

L(r ,xxx ,aaa) = r2 +
m∑
i=1

ai (‖ xxx − kkk i ‖2 −r2)

= r2

(
1−

m∑
i=1

ai

)
+

m∑
i=1

ai ‖ xxx − kkk2
i ‖ .
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Duality in Optimization with Inequality Constraints

Example (cont’d)

The dual function is

g(aaa) = inf
r∈R>0,xxx∈Rn

L(r ,xxx ,aaa)

= inf
r∈R>0,xxx∈Rn

r2

(
1−

m∑
i=1

ai

)
+

m∑
i=1

ai ‖ xxx − kkk i |2 ‖ .
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Duality in Optimization with Inequality Constraints

Example (cont’d)

This leads to the following conditions:

∂L(r ,xxx ,aaa)

∂r
= 2r

(
1−

m∑
i=1

ai

)
= 0

∂L(r ,xxx ,aaa)

∂xp
= 2

m∑
i=1

ai (xxx − kkk i )p = 0 for 1 6 p 6 n.

The first equality yields
∑m

i=1 ai = 1. Therefore, from the second equality
we obtain xxx =

∑m
i=1 aikkk i . This shows that for xxx is a linear combination of

kkk1, . . . ,kkkm. The dual function is

g(aaa) =
m∑
i=1

ai

(
m∑

h=1

ahkkkh − kkk i

)
= 0

because
∑m

i=1 ai = 1.
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Duality in Optimization with Inequality Constraints

Definition

A pair (xxx∗,aaa∗) is a saddle point of the Lagrangian of the optimization
problem if

L(xxx∗,aaa) 6 L(xxx∗,aaa∗) 6 L(xxx ,aaa∗)

for xxx ∈ S and aaa > 000m.

Theorem

If (xxx∗,aaa∗) is a saddle point of the Lagrangean, then (xxx∗,aaa∗) is a solution
of the primal problem.
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Duality in Optimization with Inequality Constraints

Proof

Let (xxx∗,aaa∗) be a saddle point of the Lagrangean. Since
L(xxx∗,aaa) 6 L(xxx∗,aaa∗) we have

f (xxx∗) + aaa′ggg(xxx∗) 6 f (xxx∗) + (aaa∗)′ggg(xxx∗),

so aaa′ggg(xxx∗) 6 (aaa∗)′ggg(xxx∗).
By taking aaa→∞ we get g(xxx∗) 6 000m; by taking aaa→ 000m we get
(aaa∗)′ggg(xxx∗) = 0.
Thus, the inequality L(xxx∗,aaa∗) 6 L(xxx ,aaa∗) amounts to

f (xxx∗) + (aaa∗)′ggg(xxx∗) 6 f (xxx) + (aaa∗)′ggg(xxx),

hence
f (xxx∗) 6 f (xxx) + (aaa∗)′ggg(xxx),

If xxx satisfies the constraints (ggg(xxx) 6 000m) it follows that f (xxx∗) 6 f (xxx).
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Duality in Optimization with Inequality Constraints

Saddle Points for Differentiable Convex Functions

Theorem

If f and gi are convex functions, the Slater’s qualifications hold, and if xxx is
a solution of the constraind optimization problem, then there exists aaa such
that (xxx ,aaa) is a saddle point of the Lagrangean.

If differentiablity is added, Slater’s qualification may be replaced by weak
Slater qualifications:

Theorem

If f and gi are convex differentiable functions, the weak Slater’s
qualifications hold, and if xxx is a solution of the constraind optimization
problem, then there exists aaa such that (xxx ,aaa) is a saddle point of the
Lagrangean.
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Duality in Optimization with Inequality Constraints

The Karush-Kuhn-Tucker Conditions

Theorem

Let f , gi be convex and differentiable and suppose that constraints are
qualified. Then x̄xx is a solution of the constrained problem if and only if
there exist āaa > 000m such that

(∇L)xxx(x̄xx , āaa) = (∇f )xxx(x̄xx) + āaa′(∇g)xxx(x̄xx) = 0,

(∇L)aaa(x̄xx , āaa) = g(x̄xx) 6 000m,

āaa′g(x̄xx) =
m∑
i=1

(āaa)′igi (x̄xx) = 0.
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Duality in Optimization with Inequality Constraints

Proof

Suppose that x̄xx is a solution. Since the constraints are qualified, there
exists āaa such that (x̄xx , āaa) is a saddle point of the Lagrangean by the
previous theorem. The KKT conditions are implied by arguments in the
proof of the theorem on slide 22.
Conversely, suppose that the KKT conditions are satisfied and let xxx such
that g(xxx) 6 000m. We have

f (xxx)− f (x̄xx) > (∇f )′xxx(xxx − x̄xx)

(by the convexity of f )

> −āaa′(∇f )xxx(xxx − x̄xx)

(by the first condition)

> −āaa′(xxx − x̄xx)

(by the convexity of ggg)

> −āaa′ggg(xxx) > 0

(by the last two conditions),

which shows that x̄xx is a minimum.
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