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Notations:
X is the set of possible examples or instances (also, the input space);
Y is the set of all possible labels; initially Y = {0, 1};
a concept is a mapping c : X −→ Y.

Concepts can be viewed as
mappings c : X −→ {0, 1};
subsets of C determined as {x ∈ X | c(x) = 1}.
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The Learning Problem

Basic assumption: examples in X are independently and identically
distributed (iid) random variables according to a probabilistic distribution
D. If X is a random variable having the distribution D (e.g. binomial,
normal, Poission, etc.) we write X ∼ D.

the learner considers a set of possible concepts H referred to as
hypotheses which may or not coincide with C;
learner receives a sample S = {x1, . . . , xm} drawn iid from X as well
as their labels c(x1), . . . , c(xm) which are based on the concept c to
be learned;
the task of the learner is to select a hypothesis hS ∈ H such that

P({x ∈ X , x ∼ D | hS(x) 6= c(x)})

is small.
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Samples

An X -sample of size m is a sequence of random variables
S = (x1, . . . , xm); m is also the volume of the sample.

variables x1, . . . , xm are iid according to the distribution D;
h(x1), . . . , h(xm) are iid random variables ranging over {0, 1}.
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Generalization and Empirical Errors

The number

R(h) = P({x ∈ X , x ∼ D | hS(x) 6= c(x)})

is the generalization error of the hypothesis h. This is the expected error
over D and it is not computable by the learner since D and c are unknown.
The empirical error of h is the random variable

R̂(h) =
1

m

m∑
i=1

|{xi | h(xi ) 6= c(xi )}|,

=
1

m

m∑
i=1

Ih(xi ) 6=c(xi ),

which is the average error over the sample S .
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The Relationship between the generalization and the
empirical error

Note that the empirical error is a random variable because xi in the
definition of R̂ are random variables.
By the linearity of expectations we have

E [R̂(h)] =
1

m

m∑
i=1

E [Ih(xi )6=c(xi )],

=
1

m

m∑
i=1

Ex∼D[Ih(x)6=c(x)],

(because all variables xi has the same distribution D as x)

= R(h).
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The Definition of Probably Approximately Correct Learning

Probably Approximately Correct Learning

size(c): the maximal cost of the representation of a concept c ∈ C;
O(n) an upper bound on the cost of a representation of an example
x ∈ X (e.g. if x ∈ Rn the cost of representing x is O(n));
D distribution on X .
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The Definition of Probably Approximately Correct Learning

PAC Learning Definition

Definition

A concept class C is PAC-learnable if there is an algorithm A such that
for all probability distributions D on X ,
for any target concept c ∈ C,
for any ε > 0 and δ > 0,
for representation cost n of an example in X ,

there is a polynomial p such that if the size m of the sample S is such that
m > p

(
1
ε ,

1
δ , n, size(c)

)
, then A produces a hypothesis hS such that

P(R(hS) 6 ε) > 1− δ.

If q is a polynominal such that A runs in polynomial time
q
(

1
ε ,

1
δ , n, size(c)

)
, then C is said to be efficiently PAC-learnable and A is

referred as a PAC-learning algorithm.
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The Definition of Probably Approximately Correct Learning

Comments on the PAC Definition

C is PAC-learnable if the hypothesis returned by A after observing a
number of examples polynomial in 1/ε and 1/δ is approximately
correct (with generalization error less than ε) with high probability;
δ is used to define the confidence 1− δ;
ε gives the accuracy 1− ε;

If the running time is polynomial, then the sample size m must also be
polynomial in 1/ε and 1/δ.
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The Definition of Probably Approximately Correct Learning

Other Features of the PAC Defintion

PAC-learning is distribution-free;
the training examples and the test sample used to define the error are
drawn according to the same distribution;
PAC deals with learnability for a concept class C, not a particular
example.

The parameters n and size(c) will be typically omitted.
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The Definition of Probably Approximately Correct Learning

Example

Let X = R2 and let R be the set of all rectangles in R2.
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c : concept to be learned; h: hypothesis

A concept is a particular rectangle.
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The Definition of Probably Approximately Correct Learning

Example (cont’d)
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The Definition of Probably Approximately Correct Learning

Example (cont’d)

Sample size is m, S = (xxx1, . . . ,xxxm).
Algorithm A consists in returning the tightest rectangle hS that contains
all positive examples.
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The Definition of Probably Approximately Correct Learning

We are estimating the probability that the generalization error of hS is
greater than ε, that is, that the area between c and hS has probability
greater than ε. That area is covered by four rectangles r1, r2, r3, r4 each
with probabilities ε

4 . Each of these rectangles can be obtained by starting
with an empty rectangle along a side and increasing the rectangle until the
probability equals ε

4 .

-
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c : concept to be learned; hS : hypothesis

hS
r1 r3

r2

r4
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The Definition of Probably Approximately Correct Learning

To ensure that the probability of the hypothesis hS is at least 1− ε is
equivalent to saying that the probability that the generalization error of hS
is less than ε.
If probability of the hypothesis hS is at least 1− ε, the rectangle that
corresponds to hS must intersect at least one of the rectangles r1, r2, r3, or
r4. This allows us to write

P(R(hS) > ε) 6 PS∼D

(
4⋃

i=1

[(hS ∩ ri )] = ∅

)

6
4∑

i=1

P ((hS ∩ ri ) = ∅)

6 4
(

1− ε

4

)m
6 4e−

mε
4 ,

by the inequality 1− x 6 e−x for all x ∈ R.
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The Definition of Probably Approximately Correct Learning

To ensure P(R(hS) > ε) 6 δ we impose 4e−
mε
4 6 δ, which implies

m >
4

ε
log

4

δ
.
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The Definition of Probably Approximately Correct Learning

Conclusions

If u = e−x , the inequality 1− x 6 e−x is equivalent to log u 6 u − 1.
Therefore, if

m >
4

ε

(
4

δ
− 1

)
,

it follows that m > 4
ε log 4

δ . The role of the polynomial in 1
ε and 1

δ is
played by

p

(
1

ε
,

1

δ

)
=

4

ε

(
4

δ
− 1

)
,

which shows that the class of axis-aligned rectangles in PAC learnable.
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The Definition of Probably Approximately Correct Learning

Further Conclusions

For any ε > 0 and δ > 0 if the sample size m is larger than 4
ε log 4

δ ,
then P(R(hS) > ε) 6 δ.
The class of axis-aligned rectangles in PAC learnable.
There is no error on the sample S for the hypothesis hS (we say that
hS is consistent).
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Finite Hypothesis Assumption – The Consistent Case

Finite Hypothesis Space; the Consistent Case

Theorem

Let H be a finite set of functions H = YX and let A be an algorithm that
returns a consistent hypothesis hS for any target concept c ∈ H and iid
sample S.
For any ε, δ > 0 the inequality

PS∼Dm(R(hS) 6 ε) > 1− δ

holds if

m >
1

ε

(
log |H|+ log

1

δ

)
.

20 / 29



Finite Hypothesis Assumption – The Consistent Case

Proof

Note that the consistency condition that hS satisfies means that
R̂(hS) = 0.
Fix ε > 0. A can select any of the consistent hypotheses hS of H. We
need to upper bound the probability that any of the consistent hypotheses
of H (R̂(h) = 0) will have a generalization error more than ε (R(h) > ε),
that is,

P
(

(∃h ∈ H) | R̂(h) = 0 and R(h) > ε
)
.
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Finite Hypothesis Assumption – The Consistent Case

Proof (cont’d)

We have:

P
(

(∃h ∈ H) | R̂(h) = 0 and R(h) > ε
)

= P

 |H|⋃
i=1

(hi ∈ H, R̂(hi ) = 0 ∧ R(hi ) > ε)


6

|H|∑
i=1

P(hi ∈ H, R̂(hi ) = 0 ∧ R(hi ) > ε)

6
|H|∑
i=1

P(hi ∈ H, R̂(hi ) = 0|R(hi ) > ε).

because

P(hi ∈ H, R̂(hi ) = 0 ∧ R(hi ) > ε) 6 P(hi ∈ H, R̂(hi ) = 0|R(hi ) > ε),

from the definition of conditional probability.
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Finite Hypothesis Assumption – The Consistent Case

Proof (cont’d)

If h ∈ H is a consistent hypothesis (R̂(h) = 0) with R(h) > ε, then

P
(
R̂(h) = 0 | R(h) > ε

)
6 (1− ε)m,

because, h is consistent with S and the probability of this happening when
the generalization error rate of h is at least ε is smaller than (1− ε)m when
S has size m.
Therefore,

P
(

(∃h ∈ H) | R̂(h) = 0 and R(h) > ε
)
6 |H|(1− ε)m,
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Finite Hypothesis Assumption – The Consistent Case

If we require
|H|(1− ε)m 6 δ

we have
log |H|+ m log(1− ε) 6 log δ,

and taking into account that 1− ε < e−ε, it suffices to require

log |H| − εm 6 log δ,

which yields

m >
1

ε

(
log |H|+ log

1

δ

)
.
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Finite Hypothesis Assumption – The Consistent Case

Comments on the Theorem

when the hypothesis H is finite a consistent algorithm A is a
PAC-learning algorithm;
learning algorithms benefit from larger sample sizes;
growth in the sample size is only logarithmic in the size of H.
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Examples of PAC-learning

Conjunctions of Boolean Literals

Example

Cn the concept class consists of conjunctions of Boolean literals
x1, . . . , xn, x1, . . . , xn. There are 3n such conjunctions.
For n = 4, an example is x1 ∧ x3 ∧ x4.

A positive example for this concept is (1, 0, 0, 1); a negative example
is (0, 1, 0, 1).
The existence of a positive example like (1, 0, 0, 1) for a concept c
implies that c may not contain x1 or x4.
A negative example is less informative because we do not know which
of its bits is incorrect.
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Examples of PAC-learning

Conjunctions of Boolean Literals - the Algorithm

An algorithm for finding a consistent hypothesis:
algorithm is based on positive examples;
for each positive example bbb = (b1, . . . , bn) and 1 6 i 6 n, if bi = 1,
then x i is excluded; if bi = 0, then xi is ruled out;
the conjunction of all literals not ruled out is a hypothesis consitent
with the target.
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Examples of PAC-learning

Example of Algorithm Application

b1 b2 b3 b4 b5 b6

1. 0 1 1 0 1 1 +
2. 0 1 1 1 1 1 +
3. 0 0 1 1 0 1 −
4. 0 1 1 1 1 1 +
5. 1 0 0 1 1 0 −
6. 0 1 0 0 1 1 +

1. exclude x1, x2, x3, x4, x5, x6

2. exclude x1, x2, x3, x4, x5, x6

4. exclude x1, x2, x3, x4, x5, x6

6. exclude x1, x2, x3, x4, x5, x6.
Hypothesis: x1 ∧ x2 ∧ x5 ∧ x6.
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Examples of PAC-learning

Since |H| = |Cn| = 3n we have

m >
1

ε

(
n log 3 + log

1

δ

)
.

The class of conjuctions of at most n Boolean literals is PAC-learnable.
For δ = 0.02, ε = 0.1 and n = 10 the bound is m > 148.98. Thus, if
m > 149 with a probability of at least 98% the accuracy is 90%.
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