The PAC Learning Framework -I

Prof. Dan A. Simovici

UMB

1 The Definition of Probably Approximately Correct Learning

Finite Hypothesis Assumption – The Consistent Case

Second Second

Notations:

- $oldsymbol{\mathcal{X}}$ is the set of possible examples or instances (also, the input space);
- ullet ${\cal Y}$ is the set of all possible labels; initially ${\cal Y}=\{0,1\}$;
- a concept is a mapping $c: \mathcal{X} \longrightarrow \mathcal{Y}$.

Concepts can be viewed as

- mappings $c: \mathcal{X} \longrightarrow \{0,1\};$
- subsets of \mathcal{C} determined as $\{x \in \mathcal{X} \mid c(x) = 1\}$.

The Learning Problem

Basic assumption: examples in $\mathcal X$ are independently and identically distributed (iid) random variables according to a probabilistic distribution $\mathcal D$. If X is a random variable having the distribution $\mathcal D$ (e.g. binomial, normal, Poission, etc.) we write $X \sim \mathcal D$.

- the learner considers a set of possible concepts $\mathcal H$ referred to as hypotheses which may or not coincide with $\mathcal C$;
- learner receives a sample $S = \{x_1, \dots, x_m\}$ drawn iid from \mathcal{X} as well as their labels $c(x_1), \dots, c(x_m)$ which are based on the concept c to be learned;
- ullet the task of the learner is to select a hypothesis $h_S \in \mathcal{H}$ such that

$$P(\{x \in \mathcal{X}, x \sim \mathcal{D} \mid h_{\mathcal{S}}(x) \neq c(x)\})$$

is small.

Samples

An \mathcal{X} -sample of size m is a sequence of random variables $S = (x_1, \dots, x_m)$; m is also the volume of the sample.

- variables x_1, \ldots, x_m are iid according to the distribution \mathcal{D} ;
- $h(x_1), \ldots, h(x_m)$ are iid random variables ranging over $\{0, 1\}$.

Generalization and Empirical Errors

The number

$$R(h) = P(\lbrace x \in \mathcal{X}, x \sim \mathcal{D} \mid h_{\mathcal{S}}(x) \neq c(x) \rbrace)$$

is the generalization error of the hypothesis h. This is the expected error over \mathcal{D} and it is not computable by the learner since \mathcal{D} and c are unknown. The empirical error of h is the random variable

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} |\{x_i \mid h(x_i) \neq c(x_i)\}|,$$

$$= \frac{1}{m} \sum_{i=1}^{m} I_{h(x_i) \neq c(x_i)},$$

which is the average error over the sample S.

The Relationship between the generalization and the empirical error

Note that the empirical error is a random variable because x_i in the definition of \hat{R} are random variables.

By the linearity of expectations we have

$$\begin{split} E[\hat{R}(h)] &= \frac{1}{m} \sum_{i=1}^m E[I_{h(x_i) \neq c(x_i)}], \\ &= \frac{1}{m} \sum_{i=1}^m E_{x \sim \mathcal{D}}[I_{h(x) \neq c(x)}], \\ &\quad \text{(because all variables } x_i \text{ has the same distribution } \mathcal{D} \text{ as } x) \\ &= R(h). \end{split}$$

Probably Approximately Correct Learning

- size(c): the maximal cost of the representation of a concept $c \in C$;
- O(n) an upper bound on the cost of a representation of an example $x \in \mathcal{X}$ (e.g. if $x \in \mathbb{R}^n$ the cost of representing x is O(n));
- \mathcal{D} distribution on \mathcal{X} .

PAC Learning Definition

Definition

A concept class $\mathcal C$ is PAC-learnable if there is an algorithm $\mathcal A$ such that

- ullet for all probability distributions ${\mathcal D}$ on ${\mathcal X}$,
- ullet for any target concept $c\in\mathcal{C}$,
- for any $\epsilon > 0$ and $\delta > 0$,
- for representation cost n of an example in \mathcal{X} ,

there is a polynomial p such that if the size m of the sample S is such that $m \geqslant p\left(\frac{1}{\epsilon}, \frac{1}{\delta}, n, \text{size}(c)\right)$, then \mathcal{A} produces a hypothesis h_S such that

$$P(R(h_S) \leqslant \epsilon) \geqslant 1 - \delta.$$

If q is a polynominal such that $\mathcal A$ runs in polynomial time $q\left(\frac{1}{\epsilon},\frac{1}{\delta},n,\operatorname{size}(c)\right)$, then $\mathcal C$ is said to be efficiently PAC-learnable and $\mathcal A$ is referred as a PAC-learning algorithm.

Comments on the PAC Definition

- $\mathcal C$ is PAC-learnable if the hypothesis returned by $\mathcal A$ after observing a number of examples polynomial in $1/\epsilon$ and $1/\delta$ is approximately correct (with generalization error less than ϵ) with high probability;
- δ is used to define the confidence 1δ ;
- ϵ gives the accuracy 1ϵ ;

If the running time is polynomial, then the sample size m must also be polynomial in $1/\epsilon$ and $1/\delta$.

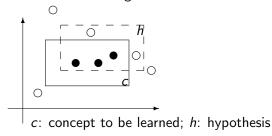
Other Features of the PAC Defintion

- PAC-learning is distribution-free;
- the training examples and the test sample used to define the error are drawn according to the same distribution;
- PAC deals with learnability for a concept class C, not a particular example.

The parameters n and size(c) will be typically omitted.

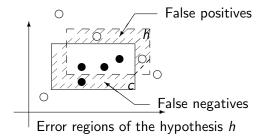
Example

Let $\mathcal{X} = \mathbb{R}^2$ and let \mathcal{R} be the set of all rectangles in \mathbb{R}^2 .



A concept is a particular rectangle.

Example (cont'd)



Example (cont'd)

Sample size is m, $S = (\mathbf{x}_1, \dots, \mathbf{x}_m)$.

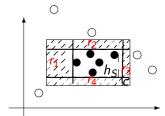
Algorithm ${\cal A}$ consists in returning the tightest rectangle h_S that contains

all positive examples.



C: concept to be learned; H: hypothesis

We are estimating the probability that the generalization error of h_S is greater than ϵ , that is, that the area between c and h_S has probability greater than ϵ . That area is covered by four rectangles r_1, r_2, r_3, r_4 each with probabilities $\frac{\epsilon}{4}$. Each of these rectangles can be obtained by starting with an empty rectangle along a side and increasing the rectangle until the probability equals $\frac{\epsilon}{4}$.



c: concept to be learned; h_S: hypothesis

To ensure that the probability of the hypothesis h_S is at least $1 - \epsilon$ is equivalent to saying that the probability that the generalization error of h_S is less than ϵ .

If probability of the hypothesis h_S is at least $1 - \epsilon$, the rectangle that corresponds to h_S must intersect at least one of the rectangles r_1, r_2, r_3 , or r_4 . This allows us to write

$$P(R(h_S) > \epsilon) \leqslant P_{S \sim \mathcal{D}} \left(\bigcup_{i=1}^{4} [(h_S \cap r_i)] = \emptyset \right)$$

$$\leqslant \sum_{i=1}^{4} P((h_S \cap r_i) = \emptyset)$$

$$\leqslant 4 \left(1 - \frac{\epsilon}{4} \right)^m \leqslant 4e^{-\frac{m\epsilon}{4}},$$

by the inequality $1 - x \leqslant e^{-x}$ for all $x \in \mathbb{R}$.

To ensure
$$P(R(h_S) > \epsilon) \leqslant \delta$$
 we impose $4e^{-\frac{m\epsilon}{4}} \leqslant \delta$, which implies

$$m\geqslant \frac{4}{\epsilon}\log\frac{4}{\delta}.$$

Conclusions

If $u = e^{-x}$, the inequality $1 - x \le e^{-x}$ is equivalent to $\log u \le u - 1$.

Therefore, if

$$m \geqslant \frac{4}{\epsilon} \left(\frac{4}{\delta} - 1 \right),$$

it follows that $m\geqslant \frac{4}{\epsilon}\log\frac{4}{\delta}$. The role of the polynomial in $\frac{1}{\epsilon}$ and $\frac{1}{\delta}$ is played by

$$p\left(\frac{1}{\epsilon}, \frac{1}{\delta}\right) = \frac{4}{\epsilon} \left(\frac{4}{\delta} - 1\right),$$

which shows that the class of axis-aligned rectangles in PAC learnable.

Further Conclusions

- For any $\epsilon > 0$ and $\delta > 0$ if the sample size m is larger than $\frac{4}{\epsilon} \log \frac{4}{\delta}$, then $P(R(h_S) > \epsilon) \leq \delta$.
- The class of axis-aligned rectangles in PAC learnable.
- There is no error on the sample S for the hypothesis h_S (we say that h_S is consistent).

Finite Hypothesis Space; the Consistent Case

Theorem

Let H be a finite set of functions $H = \mathcal{Y}^{\mathcal{X}}$ and let \mathcal{A} be an algorithm that returns a consistent hypothesis $h_{\mathcal{S}}$ for any target concept $c \in H$ and iid sample \mathcal{S} .

For any $\epsilon, \delta > 0$ the inequality

$$P_{S \sim \mathcal{D}^m}(R(h_S) \leqslant \epsilon) \geqslant 1 - \delta$$

holds if

$$m \geqslant \frac{1}{\epsilon} \left(\log |H| + \log \frac{1}{\delta} \right).$$

Proof

Note that the consistency condition that h_S satisfies means that $\hat{R}(h_S) = 0$.

Fix $\epsilon>0$. $\mathcal A$ can select any of the consistent hypotheses $h_{\mathcal S}$ of H. We need to upper bound the probability that any of the consistent hypotheses of H ($\hat R(h)=0$) will have a generalization error more than ϵ ($R(h)>\epsilon$), that is,

$$P\left((\exists h \in H) \mid \hat{R}(h) = 0 \text{ and } R(h) > \epsilon\right).$$

Proof (cont'd)

We have:

$$P\left((\exists h \in H) \mid \hat{R}(h) = 0 \text{ and } R(h) > \epsilon\right)$$

$$= P\left(\bigcup_{i=1}^{|H|} (h_i \in H, \hat{R}(h_i) = 0 \land R(h_i) > \epsilon)\right)$$

$$\leqslant \sum_{i=1}^{|H|} P(h_i \in H, \hat{R}(h_i) = 0 \land R(h_i) > \epsilon)$$

$$\leqslant \sum_{i=1}^{|H|} P(h_i \in H, \hat{R}(h_i) = 0 | R(h_i) > \epsilon).$$

because

$$P(h_i \in H, \hat{R}(h_i) = 0 \land R(h_i) > \epsilon) \leqslant P(h_i \in H, \hat{R}(h_i) = 0 | R(h_i) > \epsilon),$$

from the definition of conditional probability.

Proof (cont'd)

If $h \in H$ is a consistent hypothesis $(\hat{R}(h) = 0)$ with $R(h) > \epsilon$, then

$$P\left(\hat{R}(h)=0 \mid R(h)>\epsilon\right) \leqslant (1-\epsilon)^m,$$

because, h is consistent with S and the probability of this happening when the generalization error rate of h is at least ϵ is smaller than $(1 - \epsilon)^m$ when S has size m.

Therefore,

$$P\left((\exists h \in H) \mid \hat{R}(h) = 0 \text{ and } R(h) > \epsilon\right) \leqslant |H|(1 - \epsilon)^m,$$

If we require

$$|H|(1-\epsilon)^m \leqslant \delta$$

we have

$$\log |H| + m \log(1 - \epsilon) \leqslant \log \delta,$$

and taking into account that $1 - \epsilon < e^{-\epsilon}$, it suffices to require

$$\log |H| - \epsilon m \leqslant \log \delta,$$

which yields

$$m\geqslant rac{1}{\epsilon}\left(\log|H|+\lograc{1}{\delta}
ight).$$

Comments on the Theorem

- when the hypothesis H is finite a consistent algorithm \mathcal{A} is a PAC-learning algorithm;
- learning algorithms benefit from larger sample sizes;
- growth in the sample size is only logarithmic in the size of *H*.

Conjunctions of Boolean Literals

Example

 C_n the concept class consists of conjunctions of Boolean literals $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$. There are 3^n such conjunctions.

For n = 4, an example is $x_1 \wedge \overline{x}_3 \wedge x_4$.

- A positive example for this concept is (1,0,0,1); a negative example is (0,1,0,1).
- The existence of a positive example like (1,0,0,1) for a concept c implies that c may not contain \overline{x}_1 or \overline{x}_4 .
- A negative example is less informative because we do not know which
 of its bits is incorrect.

Conjunctions of Boolean Literals - the Algorithm

An algorithm for finding a consistent hypothesis:

- algorithm is based on positive examples;
- for each positive example $\boldsymbol{b}=(b_1,\ldots,b_n)$ and $1\leqslant i\leqslant n$, if $b_i=1$, then \overline{x}_i is excluded; if $b_i=0$, then x_i is ruled out;
- the conjunction of all literals not ruled out is a hypothesis consitent with the target.

Example of Algorithm Application

	b_1	b_2	<i>b</i> ₃	b_4	b_5	b_6	
1.	0	1	1	0	1	1	+
2.	0	1	1	1	1	1	+
3.	0	0	1	1	0	1	
4.	0	1	1	1	1	1	+
5.	1	0	0	1	1	0	
6.	0	1	0	0	1	1	+

- 1. exclude $x_1, \overline{x}_2, \overline{x}_3, x_4, \overline{x}_5, \overline{x}_6$
- 2. exclude $x_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{x}_5, \overline{x}_6$
- 4. exclude $x_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{x}_5, \overline{x}_6$
- 6. exclude $x_1, \overline{x}_2, x_3, x_4, \overline{x}_5, \overline{x}_6$.

Hypothesis: $\overline{x}_1 \wedge x_2 \wedge x_5 \wedge x_6$.

Since $|H| = |C_n| = 3^n$ we have

$$m \geqslant \frac{1}{\epsilon} \left(n \log 3 + \log \frac{1}{\delta} \right).$$

The class of conjuctions of at most n Boolean literals is PAC-learnable. For $\delta=0.02$, $\epsilon=0.1$ and n=10 the bound is $m\geqslant 148.98$. Thus, if $m\geqslant 149$ with a probability of at least 98% the accuracy is 90%.