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Hilbert Spaces

What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.
A Hilbert space is a linear space that is equipped with an inner product
such that the metric space generated by the inner product is complete.
The inner product of two elements x , y of a Hilbert space H is denoted by
(x , y). Note that in the case of Rn (which is a special case of a Hilbert
space) the inner product of xxx ,yyy was denoted by xxx ′yyy .
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Kernels

Definition

A kernel over X is a function K : X × X −→ R such that there exists a
function Φ : X −→ H that satisfies the condition

K (u, v) = 〈〈〈Φ(u),Φ(v)〉〉〉,

where H is a Hilbert space called the feature space.
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Kernels

Recall the general form of the dual optimization problem for SVMs:
maximize for aaa

∑m
i=1 ai −

1
2aiajyiyjxxx

′
ixxx j

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

Note the presence of the inner product xxx ′ixxx j . This is replaced by the inner
product (Φ(xxx i ),Φ(xxx j)), in the Hilbert feature space, that is, by K (xxx i ,xxx j),
where K is a suitable kernel function.
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Kernels

A More General SVM Formulation

maximize for aaa
∑m

i=1 ai −
1
2aiajyiyjK (xxx i ,xxx j)

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

The hypothesis returned by the SVM algorithm is now

h(xxx) = sign

(
m∑
i=1

aiyiK (xxx i ,xxx) + b

)
.

with b = yi −
∑m

j=1 ajyjK (xj , xi ) for any xxx i with 0 < ai < C .
Note that we do not work with the feature mapping Φ; instead we use the
kernel only!
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Kernels

Mercer’s Theorem

Theorem

Let X ⊆ Rn be a compact set and let K : X × X −→ R be a continuous
and symmetric function. Then K admits a uniformly convergent expression

K (u, v) =
∞∑
n=0

anφn(u)φn(v)

with an > 0 if and only if for every square integrable function c ∈ L2(X )
we have ∫ ∫

X×X
c(u)c(v)K (u, v) du dv > 0

This is qquivalent to saying that the kernel is positive definite symmetric
(PDS).
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Positive Definite Symmetric (PDS) Kernels

Definition

A kernel K : X × X −→ R is PDS if for any {x1, . . . , xm} ⊆ X the matrix
KKK = (K (xi , xj)) is symmetric and positive semidefinite.
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Positive Definite Symmetric (PDS) Kernels

A symmetric matrix KKK is positive semidefinite if one of the equivalent
conditions:

the eigenvalues of KKK are non-negative, or
for any ccc ∈ Rm, ccc ′KKKccc > 0

hold.
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Positive Definite Symmetric (PDS) Kernels

Example

For c > 0 a polynomial kernel of degree d is the kernel defined over Rn by

K (uuu,vvv) = (uuu′vvv + c)d .

As an example, consider n = 2, d = 2 and the kernel
K (uuu,vvv) = (uuu′vvv + c)2. We have

K (uuu,vvv) = (u1v1 + u2v2 + c)2

= u2
1v

2
1 + u2

2v
2
2 + c2 + 2u1v1u2v2 + 2u1v1c + 2u2v2c ,
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Positive Definite Symmetric (PDS) Kernels

Example (cont’d)

Feature space is R6

K (uuu,vvv) =



u2
1

u2
2√

2u1u2√
2cu1√
2cu2

c



′

v2
1

v2
2√

2v1v2√
2cv1√
2cv2

c

 = Φ(uuu)′Φ(vvv) and Φ(xxx) =



x2
1

x2
2√

2x1x2√
2cx1√
2cx2

c


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Positive Definite Symmetric (PDS) Kernels

In general, features associated to a polynomial kernel of degree d are all
monomials of degree d associated to the original features. It is possible to
show that polynomial kernels of degree d on Rn map the input space to a
space of dimension

(n+d
d

)
.

12 / 27



Positive Definite Symmetric (PDS) Kernels

For the kernel K (uuu,vvv) = (uuu′vvv + 1)2 we have

Φ

(
x1

x2

)
=



x2
1

x2
2√

2x1x2√
2x1√
2x2

1

 .
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Positive Definite Symmetric (PDS) Kernels

(
−1
1

)

(
−1
−1

)

(
1
1

)

(
1
−1

)

√
2x1

√
2x1x2

For the kernel K(uuu, vvv) = (uuu′vvv + 1)2 we have

Φ

(
1
1

)
=



1
1√
2√
2√
2

1

 ,Φ

(
−1
−1

)
=



1
1√
2

−
√

2

−
√

2
1

 ,Φ

(
−1
1

)
=



1
1

−
√

2

−
√

2√
2

1

 ,Φ

(
1
−1

)
=



1
1

−
√

2√
2

−
√

2
1


For this set of points differences occur in the third,fourth, and fifth features.
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Positive Definite Symmetric (PDS) Kernels

Example

For a, b > 0, a sigmoid kernel is defined as

K (xxx ,yyy) = tanh(axxx ′yyy + b)

With a, b > 0 the kernel is PDS.
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Positive Definite Symmetric (PDS) Kernels

Definition

To any kernel K we can associate a normalized kernel K ′ defined by

K ′(u, v) =

0 if K (u, u) = 0 or K (v , v) = 0,
K(u,v)√

K(u,u)
√

K(v ,v)
otherwise.

If K (u, u) 6= 0, then K ′(u, u) = 1.
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Positive Definite Symmetric (PDS) Kernels

Example

Let K be the kernel

K (uuu,vvv) = e
uuu′vvv
σ2 ,

where σ > 0. Note that K (uuu,uuu) = e
‖uuu‖2

σ2 and K (vvv ,vvv) = e
‖vvv‖2

σ2 , hence its
normalized kernel is

K ′(uuu,vvv) =
K (u, v)√

K (u, u)
√
K (v , v)

=
e

uuu′vvv
σ2

e
‖uuu‖2

2σ2 e
‖vvv‖2

2σ2

= e−
‖uuu−vvv‖2

2σ2
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Positive Definite Symmetric (PDS) Kernels

Example

For a positive constant σ a Gaussian kernel or a radial basis function is the
function K : Rn × Rn −→ R defined by

K (uuu,vvv) = e−
‖uuu−vvv‖2

2σ2 .
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Positive Definite Symmetric (PDS) Kernels

Theorem

Let K be a PDS kernel. For any u, v ∈ X we have

K (u, v)2 6 K (u, u)K (v , v).

Proof: Consider the matrix

KKK =

(
K (u, u) K (u, v)
K (v , u) K (v , v)

)
KKK is positive semidefinite, so its eigenvalues λ1, λ2 must be non-negative.
Its characteristic equation is∣∣∣∣K (u, u)− λ K (u, v)

K (v , u) K (v , v)− λ

∣∣∣∣ = 0
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Positive Definite Symmetric (PDS) Kernels

Equivalently,

λ2 − (K (u, u) + K (v , v))λ+ det(KKK ) = 0

Therefore, λ1λ2 = det(KKK ) > 0 and this implies

K (u, u)K (v , v)− K (u, v)2 6 0.
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Positive Definite Symmetric (PDS) Kernels

Theorem

Let K be a PDS kernel. Its normalized kernel is PDS.

Proof: Let {x1, . . . , xm} ⊆ X and ccc ∈ Rm. We prove that∑
i ,j cicjK

′(xi , xj) > 0.
If K (xi , xi ) = 0, then K (xi , xj) = 0 and, thus, K ′(xi , xj) = 0 for 1 6 j 6 m.
Thus, we may assume that K (xi , xi ) > 0 for 1 6 i 6 m. We have∑

i ,j

cicjK
′(xi , xj) =

∑
i ,j

cicj
K (xi , xj)√

K (xi , xi )K (xj , xj)

=
∑
i ,j

cicj
〈〈〈Φ(xi ),Φ(xj)〉〉〉

‖ Φ(xi ) ‖H‖ Φ(xj) ‖H

=
∣∣∣∣∣∣∑

i

ciΦ(xi )

‖ Φ(xi ) ‖H

∣∣∣∣∣∣ > 0,

where Φ is the feature mapping associated to K .
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Positive Definite Symmetric (PDS) Kernels

Theorem

Let K : X × X −→ R be a PDS kernel. Then, there exists a Hilbert space
H of functions and a feature mapping Φ : X −→ H such that
K (xxx ,yyy) = (Φ(xxx),Φ(yyy)) for all xxx ,yyy ∈ X . Furthermore, H has the
reproducing property which means that for every h ∈ H we have

h(xxx) = (h,K (xxx , ·)).

The function space H is called a reproducing Hilbert space associated with
K .
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Multiclass Classification and SVMs

In the standard approach, the two-class decision functions can be extended
to k classes by constructing k decision functions for each of the k classes,
where

hi (xxx) =

{
1 if xxx ∈ Ci ,

−1 otherwise

for 1 6 i 6 k .
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Multiclass Classification and SVMs

Consider the use of linear classifiers for a three class problem.
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The lines divide the plane in seven regions.
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Multiclass Classification and SVMs

Only in the red regions exactly one decision function is 1.
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In the cyan regions two decision functions
equal 1, and in the yellow region no decision functions equals 1.
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Multiclass Classification and SVMs

The winner-takes-all approach for several classes

To break ties (as in the cyan regions) one can drop the sign from the
hyptheses and use the real input values to the sign instead.
The classification result is the index of the largest value of hypotheses

(without the signum).
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Multiclass Classification and SVMs

The pairwise classification

For the pairwise classification a decision function hkl is defined for each
pair (k , l) of classes. Since the pairwise approach is symmetric we have
hkl = −hlk . As a notational device we also define fkk = 0. Thus, we have

fkl(xxx) =

{
1 for all examples in class Ck ,

−1 for all examples in class Cl .

There exist
(k

2

)
different pairwise decision functions.

The class can be calculated by summing up the decision functions

fk =
∑
l

fkl .

The class k of xxx is given by k = arg max fk(xxx). If there are no ties, then
max fk = K − 1.
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