The Vapnik-Chervonenkis Dimension Prof. Dan A. Simovici UMB - Growth Functions - 2 Basic Definitions for Vapnik-Chervonenkis Dimension - The Sauer-Shelah Theorem - 4 The Link between VCD and PAC Learning - 5 The VCD of Collections of Sets #### Definition Let H be a set of hypotheses and let (x_1, \ldots, x_m) be a sequence of examples of length m. A hypothesis $h \in H$ induces a classification $$(h(x_1),\ldots,h(x_m))$$ of the components of this sequence. The growth function of H is the function $\Pi_H : \mathbb{N} \longrightarrow \mathbb{N}$ gives the number of ways a sequence of examples of length m can be classified by a hypothesis in H: $$\Pi_{H}(m) = \max_{(x_{1},...,x_{m}) \in \mathcal{X}^{m}} |\{(h(x_{1}),...,h(x_{m})) \mid h \in H\}|$$ ### **Dichotomies** #### Definition A dichotomy is a hypothesis $h: \mathcal{X} \longrightarrow \{-1, 1\}$. If H consists of dichotomies, then (x_1, \ldots, x_m) can be classified in at most 2^m ways. ### Trace of a Collection of Sets ### Definition Let $\mathcal C$ be a collection of sets and let K be a set. The trace of $\mathcal C$ on K is the collection $$\mathcal{C}_K = \{K \cap C \ | \ C \in \mathcal{C}\}.$$ #### Definition Let \mathcal{C} be a collection of sets. If the trace of \mathcal{C} on K, \mathcal{C}_K equals $\mathcal{P}(K)$, then we say that K is shattered by \mathcal{C} . The Vapnik-Chervonenkis dimension of the collection \mathcal{C} (called the VC-dimension for brevity) is the largest cardinality of a set K that is shattered by \mathcal{C} and is denoted by $VCD(\mathcal{C})$. If VCD(C) = d, then there exists a set K of size d such that for each subset L of K there exists a set $C \in C$ such that $L = K \cap C$. A collection $\mathcal C$ shatters a set K if and only if $\mathcal C_K$ shatters K. This allows us to assume without loss of generality that both the sets of the collection $\mathcal C$ and a set K shattered by $\mathcal C$ are subsets of a set U. ## Collections of Sets as Sets of Hypotheses Let U be a set, K a subset, and let $\mathcal C$ be a collection of sets. Each $C \in \mathcal C$ defines a hypothesis $h_C : S \longrightarrow \{-1,1\}$ that is a dichotomy, where $$h_C(u) = \begin{cases} 1 & \text{if } u \in C, \\ -1 & \text{if } u \notin C. \end{cases}$$ K is shattered by C if and only if for every subset L of K there exists a hypothesis h_C such that Lpos consists of the positive examples of h_C . ### Finite Collections have Finite VC-Dimension Let \mathcal{C} be a collection of sets with $VCD(\mathcal{C})=d$ and let K be a set shattered by \mathcal{C} with |K|=d. Since there exist 2^d subsets of K, there are at least 2^d subsets of \mathcal{C} , so $2^d \leqslant |\mathcal{C}|$. Consequently, $VCD(\mathcal{C}) \leqslant \log_2 |\mathcal{C}|$. This shows that if \mathcal{C} is finite, then $VCD(\mathcal{C})$ is finite. The converse is false: there exist infinite collections $\mathcal C$ that have a finite VC-dimension. ## A Tabular Representation of Shattering If $U = \{u_1, \ldots, u_n\}$ is a finite set, then the trace of a collection $\mathcal{C} = \{C_1, \ldots, C_p\}$ of subsets of U on a subset K of U can be presented in an intuitive, tabular form. Let θ be a table containing the rows t_1, \ldots, t_p and the binary attributes u_1, \ldots, u_n . Each tuple t_k corresponds to a set C_k of C and is defined by $$t_k[u_i] = \begin{cases} 1 & \text{if } u_i \in C_k, \\ 0 & \text{otherwise,} \end{cases}$$ for $1 \le i \le n$. Then, C shatters K if the content of the projection r[K] consists of $2^{|K|}$ distinct rows. ### Example Let $U = \{u_1, u_2, u_3, u_4\}$ and let $$\mathcal{C} = \{\{u_2, u_3\}, \{u_1, u_3, u_4\}, \{u_2, u_4\}, \{u_1, u_2\}, \{u_2, u_3, u_4\}\} \text{ represented by: }$$ | $T_{\mathcal{C}}$ | | | | |-------------------|-------|----|----| | u_1 | u_2 | и3 | И4 | | 0 | 1 | 1 | 0 | | 1 | 0 | 1 | 1 | | 0 | 1 | 0 | 1 | | 1 | 1 | 0 | 0 | | 0 | 1 | 1 | 1 | The set $K = \{u_1, u_3\}$ is shattered by the collection C because $$r[K] = ((0,1), (1,1), (0,0), (1,0), (0,1))$$ contains the all four necessary tuples (0,1), (1,1), (0,0), and (1,0). On the other hand, it is clear that no subset K of U that contains at least three elements can be shattered by $\mathcal C$ because this would require $\boldsymbol r[K]$ to contain at least eight tuples. Thus, $VCD(\mathcal C)=2$. - every collection of sets shatters the empty set; - if C shatters a set of size n, then it shatters a set of size p, where $p \leqslant n$. For a collection of sets C and for $m \in \mathbb{N}$, let $$\Pi_{\mathcal{C}}[m] = \max\{|\mathcal{C}_K| \mid |K| = m\}$$ be the largest number of distinct subsets of a set having m elements that can be obtained as intersections of the set with members of C. - We have $\Pi_{\mathcal{C}}[m] \leqslant 2^m$; - if C shatters a set of size m, then $\Pi_C[m] = 2^m$. #### Definition A Vapnik-Chervonenkis class (or a VC class) is a collection $\mathcal C$ of sets such that $VCD(\mathcal C)$ is finite. ### Example Let \mathbb{R} be the set of real numbers and let \mathcal{S} be the collection of sets $\{(-\infty,t)\mid t\in\mathbb{R}\}.$ We claim that any singleton is shattered by \mathcal{S} . Indeed, if $S = \{x\}$ is a singleton, then $\mathcal{P}(\{x\}) = \{\emptyset, \{x\}\}$. Thus, if $t \geqslant x$, we have $(-\infty, t) \cap S = \{x\}$; also, if t < x, we have $(-\infty, t) \cap S = \emptyset$, so $\mathcal{S}_S = \mathcal{P}(S)$. There is no set S with |S|=2 that can be shattered by S. Indeed, suppose that $S=\{x,y\}$, where x< y. Then, any member of S that contains y includes the entire set S, so $S_S=\{\emptyset,\{x\},\{x,y\}\}\neq \mathcal{P}(S)$. This shows that S is a VC class and VCD(S)=1. ### Example Consider the collection $\mathcal{I}=\{[a,b]\mid a,b\in\mathbb{R},a\leqslant b\}$ of closed intervals. We claim that $VCD(\mathcal{I})=2$. To justify this claim, we need to show that there exists a set $S=\{x,y\}$ such that $\mathcal{I}_S=\mathcal{P}(S)$ and no three-element set can be shattered by \mathcal{I} . For the first part of the statement, consider the intersections $$[u, v] \cap S = \emptyset$$, where $v < x$, $[x - \epsilon, \frac{x+y}{2}] \cap S = \{x\}$, $[\frac{x+y}{2}, y] \cap S = \{y\}$, $[x - \epsilon, y + \epsilon] \cap S = \{x, y\}$, which show that $\mathcal{I}_{\mathcal{S}} = \mathcal{P}(\mathcal{S})$. For the second part of the statement, let $T = \{x, y, z\}$ be a set that contains three elements. Any interval that contains x and z also contains y, so it is impossible to obtain the set $\{x, z\}$ as an intersection between an interval in \mathcal{I} and the set T. ### An Example Let $\mathcal H$ be the collection of closed half-planes in $\mathbb R^2$ of the form $$\{x = (x_1, x_2) \in \mathbb{R}^2 \mid ax_1 + bx_2 - c \geqslant 0, a \neq 0 \text{ or } b \neq 0\}.$$ We claim that $VCD(\mathcal{H}) = 3$. Let P, Q, R be three non-colinear points. Each line is marked with the sets it defines; thus, it is clear that the family of half-planes shatters the set $\{P, Q, R\}$, so $VCD(\mathcal{H})$ is at least 3. # Example (cont'd) To complete the justification of the claim we need to show that no set that contains at least four points can be shattered by \mathcal{H} . Let $\{P, Q, R, S\}$ be a set that contains four points such that no three points of this set are collinear. If S is located inside the triangle P, Q, R, then every half-plane that contains P, Q, R also contains S, so it is impossible to separate the subset $\{P, Q, R\}$. Thus, we may assume that no point is inside the triangle formed by the remaining three points. Observe that any half-plane that contains two diagonally opposite points, for example, P and R, contains either Q or S, which shows that it is impossible to separate the set $\{P, R\}$. Thus, no set that contains four points may be shattered by \mathcal{H} , so $\textit{VCD}(\mathcal{H}) = 3$. A family of d+1 points in \mathbb{R}^d can be shattered by hyperplanes. Consider the points $$\mathbf{x}_0 = \mathbf{0}_d, \mathbf{x}_i = \mathbf{e}_1 \text{ for } 1 \leqslant i \leqslant d.$$ Let $y_0, y_1, \ldots, y_d \in \{-1, 1\}$ and let **w** be the vector whose i^{th} coordinate is y_i . We have $\mathbf{w}'\mathbf{x}_i = y_i$ for $1 \leqslant i \leqslant d$, so $$sign\left(\mathbf{w}'\mathbf{x}_i + \frac{y_0}{2}\right) = sign\left(y_i + \frac{y_0}{2}\right) = y_i.$$ Thus, points x_i for which $y_i = 1$ are on the positive side of the hyperplane w'x = 0; the ones for which $y_i = -1$ are on the oposite side, so any family of d+1 points in \mathbb{R}^d can be shattered by hyperplanes. To obtain an upper bound we need to show that no set of d+2 points can be shattered by half-spaces. For this we need the following result: #### **Theorem** (Radon's Theorem) Any set $X = \{x_1, \dots, x_{d+2}\}$ of d+2 points in \mathbb{R}^d can be partitioned into two sets X_1 and X_2 such that the convex hulls of X_1 and X_2 intersect. ### Proof Consider the following system with d+1 linear equations and d+2 variables $\alpha_1, \alpha_2, \ldots, \alpha_{d+2}$: $$\sum_{i=1}^{d+2} \alpha_i \mathbf{x}_i = \mathbf{0}_d, \sum_{i=1}^{d+2} \alpha_i = 0.$$ Since the number of variables (d+2) is larger than d+1, the system has a non-trivial solution $\beta_1, \ldots, \beta_{d+2}$. Since $\sum_{i=1}^{d+2} \beta_i = 0$ both sets $$I_1 = \{i | 1 \leqslant i \leqslant d + 2, \beta_i > 0\}, I_2 = \{i | 1 \leqslant i \leqslant d + 2, \beta_i < 0\}$$ are non-empty sets and $$X_1 = \{ \mathbf{x}_i \mid i \in I_1 \}, X_2 = \{ \mathbf{x}_i \mid i \in I_2 \},$$ form a partition of X. ## Proof (cont'd) Define $\beta = \sum_{i \in I_1} \beta_i$. Since $\sum_{i \in I_1} \beta_i = -\sum_{i \in I_2} \beta_i$, we have $$\sum_{i \in I_1} \frac{\beta_i}{\beta} \mathbf{x}_i = \sum_{i \in I_2} \frac{-\beta_i}{\beta} \mathbf{x}_i.$$ Also, $$\sum_{i \in I_1} \frac{\beta_i}{\beta} = \sum_{i \in I_2} \frac{-\beta_i}{\beta} = 1,$$ $\frac{\beta_i}{\beta}\geqslant 0$ for $i\in I_1$ and $\frac{-\beta_i}{\beta}\geqslant 0$ for $i\in I_2$. This implies that $$\sum_{i \in I_1} \frac{\beta_i}{\beta} \mathbf{x}_i$$ belongs both to the convex hulls of X_1 and X_2 . Let X be a set of d+2 points in \mathbb{R}^d . By Radon's Theorem it can be partitioned into X_1 and X_2 such that the two convex hulls intersect. When two sets are separated by a hyperplane, their convex hulls are also separated by the hyperplane. Thus, X_1 and X_2 cannot be separated by a hyperplane and X is not shattered. ### Example Let \mathcal{R} be the set of rectangles whose sides are parallel with the axes x and y. There is a set S with |S|=4 that is shattered by \mathcal{R} . Let S be a set of four points in \mathbb{R}^2 that contains a unique "northernmost point" P_n , a unique "southernmost point" P_s , a unique "easternmost point" P_e , and a unique "westernmost point" P_w . If $L\subseteq S$ and $L\neq\emptyset$, let R_L be the smallest rectangle that contains L. For example, we show the rectangle R_L for the set $\{P_n, P_s, P_e\}$. ## Example (cont'd) This collection cannot shatter a set of points that contains at least five points. Indeed, let S be such that $|S| \ge 5$. If the set contains more than one "northernmost" point, then we select exactly one to be P_n . Then, the rectangle that contains the set $K = \{P_n, P_e, P_s, P_w\}$ contains the entire set S, which shows the impossibility of separating S. ## The Class of Convex Polygons ### Example Consider the system of all convex polygons in the plane. For any positive integer m, place m points on the unit circle. Any subset of the points are the vertices of a convex polygon. Clearly that polygon will not contain any of the points not in the subset. This shows that we can shatter arbitrarily large sets, so the VC-dimension is infinite. ## The Case of Convex Polygons with d Vertices ### Example Consider the class of convex polygons that have no more than d vertices in \mathbb{R}^2 and place 2d+1 points placed on the circle. - Label a subset of these points as positive, and the remaining points as negative. Since we have an odd number of points there exists a majority in one of the classes (positive or negative). - If the negative point are in majority, there are at most *d* positive points; these are contained by the convex polygon formed by joining the positive points. - If the positive are in majority, consider the polygon formed by the tangents of the negative points. # Negative Points in the Majority # Positive Points in the Majority ## Example cont'd - Since a set with 2d + 1 points can be shattered, the VC dimension of the set of convex polygons with at most d vertices is at least 2d + 1. - Note that if all labeled points are located on a circle then it is impossible for a point to be in the convex closure of a subsets of the remaining points. Thus, placing the points on a circle maximizes the number of sets required to shatter the set, so the VC-dimension is indeed 2d+1. Recall that for a collection of sets ${\mathcal C}$ the growth function $\Pi_{\mathcal C}$ was defined as $$\Pi_{\mathcal{C}}[m] = \max\{|\mathcal{C}_K| \mid |K| = m\}$$ for $m \in \mathbb{N}$. Two complely distinct situations may occur: - If a collection of sets $\mathcal C$ is not a VC class (that is, if the Vapnik-Chervonenkis dimension of $\mathcal C$ is infinite), then $\Pi_{\mathcal C}[m]=2^m$ for all $m\in\mathbb N$. - If $VCD(\mathcal{C}) = d$, then $\Pi_{\mathcal{C}}[m]$ is bounded asymptotically by a polynomial of degree d. #### Definition Let $\mathcal C$ be a collection of subsets of a finite set S, let $s \in S$, and let $\mathcal C_{(s)}$ be the collection $\mathcal C_{S-\{s\}}$. \mathcal{C} has a pair (A, B) at s if $A, B \in \mathcal{C}$, $B \subseteq A$, and $A - B = \{s\}$. Note that if (A, B) is a pair of \mathcal{C} at s, then $B = A - \{s\}$. Define $\mathcal{P}'(\mathcal{C}, s)$ and $\mathcal{P}''(\mathcal{C}, s)$ as $$\mathcal{P}'(\mathcal{C},s) = \{A \in \mathcal{C} \mid (A,B) \text{ is a pair at } s \text{ for some } B \in \mathcal{C}\}$$ $$= \{A \in \mathcal{C} \mid s \in A, A - \{s\} \in \mathcal{C}\},$$ $$\mathcal{P}''(\mathcal{C},s) = \{B \in \mathcal{C} \mid (A,B) \text{ is a pair at } s \text{ for some } A \in \mathcal{C}\}$$ $$= \{B \in \mathcal{C} \mid s \notin B, B \cup \{s\} \in \mathcal{C}\}.$$ Let C be a collection of subsets of a finite set S, let $s \in S$, and let $C_{(s)}$ be the collection $$C_{(s)} = \{C \cap (S - \{s\}) \mid C \in C\} = \{C - \{s\} \mid C \in C\},\$$ that is the trace $C_{S-\{s\}}$ of C on $S-\{s\}$. #### Lemma The following statements hold for any collection C of subsets of a set S and any $s \in S$: - (i) if (A_1, B_1) , (A_1, B_2) , (A_2, B_1) , (A_2, B_2) are pairs at s of C, then $A_1 = A_2$ and $B_1 = B_2$; - (ii) we have $|\mathcal{P}'(\mathcal{C},s)| = |\mathcal{P}''(\mathcal{C},s)|$; - (iii) $|\mathcal{C}| |\mathcal{C}_{(s)}| = |\mathcal{P}''(\mathcal{C}, s)|;$ - (iv) $C_{(s)} = \{C \in C \mid s \notin C\} \cup \{C \{s\} \mid C \in C \text{ and } s \in C\}.$ ### **Proof** For Part (i), by definition we have: $$B_1 \subseteq A_1, B_2 \subseteq A_1, B_1 \subseteq A_2, B_2 \subseteq A_2,$$ and $A_1 = B_1 \cup \{s\}$, $A_1 = B_2 \cup \{s\}$, $A_2 = B_1 \cup \{s\}$, and $A_2 = B_2 \cup \{s\}$. Therefore, $A_1 = B_1 \cup \{s\} = A_2$, which implies $B_1 = A_1 - \{s\} = A_2 - \{s\} = B_2$. For Part (ii), let $f: \mathcal{P}'(\mathcal{C}, s) \longrightarrow \mathcal{P}''(\mathcal{C}, s)$ be the function $f(A) = A - \{s\}$. It is easy to verify that f is a bijection and this implies $|\mathcal{P}'(\mathcal{C}, s)| = |\mathcal{P}''(\mathcal{C}, s)|$. # Proof (cont'd) Recall that $\mathcal{C}_{(s)}$ is the collection $\mathcal{C}_{S-\{s\}}$. To prove Part (iii), $|\mathcal{C}| - |\mathcal{C}_{(s)}| = |\mathcal{P}''(\mathcal{C}, s)|$, let $B \in \mathcal{P}''(\mathcal{C}, s)$. By the definition of $\mathcal{P}''(\mathcal{C}, s)$ we have $B \in \mathcal{C}$, $s \notin B$, and $B \cup \{s\} \in \mathcal{C}$. Define the mapping $$g: \mathcal{P}''(\mathcal{C}, s) \longrightarrow \mathcal{C} - \mathcal{C}_{(s)} \text{ as } g(B) = B \cup \{s\}.$$ Note that $B \cup \{s\} \in \mathcal{C} - \mathcal{C}_{(s)}$, so g is a well-defined function. Moreover, g is one-to one because $B_1 \cup \{s\} = B_2 \cup \{s\}$, $s \notin B_1$, and $s \notin B_2$ imply $B_1 = B_2$. Also, g is a surjection because if $D \in \mathcal{C} - \mathcal{C}_{(s)}$, then $s \in D$ and $D - \{s\} \in \mathcal{P}''(\mathcal{C}, s)$. Thus, g is a bijection, which implies $|\mathcal{C}| - |\mathcal{C}_{(s)}| = |\mathcal{C} - \mathcal{C}_{(s)}| = |\mathcal{P}''(\mathcal{C}, s)$. # Proof (cont'd) To prove Part (iv), $$\mathcal{C}_{(s)} = \{ C \in \mathcal{C} \mid s \notin C \} \cup \{ C - \{ s \} \mid C \in \mathcal{C} \text{ and } s \in C \},$$ let $C \in \mathcal{C}_{(s)}$. If $s \notin C$, then C belongs to the first collection of the union; otherwise, that is if $s \in \mathcal{C}$, $C - \{s\}$ belongs to the second collection and the equality follows. #### Lemma Let $\mathcal C$ be a collection of sets of a non-empty finite set S and let s_0 be an element of S. If $\mathcal P''(\mathcal C, s_0)$ shatters a subset T of $S - \{s_0\}$, then $\mathcal C$ shatters $T \cup \{s_0\}$. ### Proof Since $\mathcal{P}''(\mathcal{C}, s_0)$ shatters T, for every subset U of T there is $B \in \mathcal{P}''(\mathcal{C}, s_0)$ such that $U = T \cap B$. Let W be a subset of $T \cup \{s_0\}$. If $s_0 \notin W$, then $W \subseteq T$ and by the previous asumption, there exists $B \in \mathcal{P}''(\mathcal{C}, s_0)$ such that $W = (T \cup \{s_0\}) \cap B$. If $s_0 \in W$, then there exists $B_1 \in \mathcal{P}''(\mathcal{C}, s_0)$ such that for $W_1 = W - \{s_0\}$ we have $W_1 = T \cap B_1$. By the definition of $\mathcal{P}''(\mathcal{C}, s_0)$, $B_1 \cup \{s_0\} \in \mathcal{C}$ and $$(T \cup \{s_0\}) \cap (B_1 \cup \{s_0\}) = (T \cap B) \cup \{s_0\} = W_1 \cup \{s_0\} = W.$$ Thus, C shatters $T \cup \{s_0\}$. We saw that we have $VCD(\mathcal{C}) \leq \log_2 |\mathcal{C}|$. For collections of subsets of finite sets we have a stronger result. #### **Theorem** Let $\mathcal C$ be a collection of sets of a non-empty finite set S with $VCD(\mathcal C)=d$. We have $$2^d \leqslant |\mathcal{C}| \leqslant (|\mathcal{S}|+1)^d.$$ ### Proof The first inequality, reproduced here for completeness, was discussed earlier. For the second inequality the argument is by induction on |S|. The basis case, |S|=1 is immediate. Suppose that the inequality holds for collections of subsets with no more than n elements and let S be a set containing n+1 elements. Let s_0 be an arbitrary but fixed element of S. By Part (iii) of Lemma given on slide 31, we have $$|\mathcal{C}| = |\mathcal{C}_{(s_0)}| + |\mathcal{P}''(\mathcal{C}, s_0)|.$$ The collection $C_{(s_0)}$ consists of subsets of $S - \{s_0\}$. Since VCD(C) = d, it is clear that $VCD(C_{(s_0)}) \leq d$ and, by inductive hypothesis $|C_{(s_0)}| \leq (|S - \{s_0\}| + 1)^d$. We claim that $VCD(\mathcal{P}''(\mathcal{C}, s_0)) \leqslant d - 1$. Suppose that $$\mathcal{P}''(\mathcal{C}, s_0) = \{B \in \mathcal{C} \mid s_0 \not\in B, B \cup \{s_0\} \in \mathcal{C}\}$$ shatters a set T, where $T\subseteq S$ and $|T|\geqslant d$. Then, by Lemma located on slide 35, $\mathcal C$ would shatter $T\cup\{s_0\}$; since $|T\cup\{s_0\}|\geqslant d+1$, this would lead to a contradiction. Therefore, we have $VCD(\mathcal P''(\mathcal C,s_0))\leqslant d-1$ and, by the inductive hypothesis, $|\mathcal P''(\mathcal C,s_0))|\leqslant (|S-\{s_0\}|+1)^{d-1}$. These inequalities imply $$|\mathcal{C}| = |\mathcal{C}_{(s_0)}| + |\mathcal{P}''(\mathcal{C}, s_0)|$$ $$\leq (|S - \{s_0\}| + 1)^d + (|S - \{s_0\}| + 1)^{d-1}$$ $$= (|S - \{s_0\}| + 1)^{d-1}(|S - \{s_0\}| + 2)$$ $$\leq (|S| + 1)^d.$$ #### Lemma Let $\mathcal C$ be a collection of subsets of a finite set S, let $s \in S$, and let $\mathcal C_{(s)}$ be the collection $\mathcal C_{S-\{s\}}$. If $VCD(\mathcal P''(\mathcal C,s))=n-1$ in $S-\{s\}$, then $VCD(\mathcal C)=n$. ### Proof Since $VCD(\mathcal{P}''(\mathcal{C},s)) = n-1$ in $S-\{s\}$, there exists a set $T \subseteq S-\{s\}$ with |T|=n-1 that is shattered by $\mathcal{P}''(\mathcal{C},s)$. Let \mathcal{G} be the subcollection of \mathcal{C} defined by: $$\mathcal{G} = \mathcal{P}'(\mathcal{C}, s) \cup \mathcal{P}''(\mathcal{C}, s)$$ = $\{A \in \mathcal{C} \mid A - \{s\} \in \mathcal{C}\} \cup \{B \in \mathcal{C} \mid B \cup \{s\} \in \mathcal{C}\}.$ We claim that \mathcal{G} shatters $T \cup \{s\}$. Two cases may occur for a subset W of $T \cup \{s\}$: - If $s \notin W$, then $W \subseteq T$ and, since T is shattered by by $\mathcal{P}''(\mathcal{C}, s)$ it follows that there exists $G \in \mathcal{G}$ such that $W = G \cap (T \cup \{s\})$. - If $s \in W$, let $G' \in \mathcal{P}''(\mathcal{C}, s)$ be set such that $W \{s\} = T \cap G'$, which exists by the previous argument. Then, we have $G' \in \mathcal{P}''(\mathcal{C}, s)$, so $G' \cup \{s\} \in \mathcal{P}'(\mathcal{C}, s)$ and $(G' \cap \{s\}) \cap (T \cup \{s\}) = W$. Thus, \mathcal{G} shatters $T \cup \{s\}$ and so does \mathcal{C} . For $n, k \in \mathbb{N}$ and $0 \leqslant k \leqslant n$ define the number $\binom{n}{\leqslant k}$ as $$\binom{n}{\leqslant k} = \sum_{i=0}^{k} \binom{n}{i}.$$ Clearly, $\binom{n}{\leq 0} = 1$ and $\binom{n}{\leq n} = 2^n$. ### **Theorem** Let $\phi: \mathbb{N}^2 \longrightarrow \mathbb{N}$ be the function defined by $$\phi(d,m)=egin{cases} 1 & ext{if } m=0 ext{ or } d=0 \ \phi(d,m-1)+\phi(d-1,m-1), & ext{otherwise}. \end{cases}$$ We have $$\phi(d,m) = \binom{m}{\leqslant d}$$ for $d, m \in \mathbb{N}$. ### Proof The argument is by strong induction on s=d+m. The base case, s=0, implies m=0 and d=0, and the equality is immediate. Suppose that the equality holds for $\phi(d',m')$, where d'+m'< d+m. We have $$\begin{array}{lll} \phi(d,m) & = & \phi(d,m-1) + \phi(d-1,m-1) \\ & & (\text{by definition}) \\ & = & \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d-1} \binom{m-1}{i} \\ & (\text{by inductive hypothesis}) \\ & = & \sum_{i=0}^{d} \binom{m-1}{i} + \sum_{i=0}^{d} \binom{m-1}{i-1} \\ & (\text{since } \binom{m-1}{-1} = 0) \\ & = & \sum_{i=0}^{d} \binom{m}{i} + \binom{m-1}{i-1} \\ & = & \sum_{i=0}^{d} \binom{m}{i} = \binom{m}{s}, \end{array}$$ which gives the desired conclusion. ### The Sauer-Shelah Theorem #### **Theorem** Let \mathcal{C} be a collection of sets such that $VCD(\mathcal{C})=d$. If $m\in\mathbb{N}$ is a number such that $d\leqslant m$, then $\Pi_{\mathcal{C}}[m]\leqslant\phi(d,m)$. **Proof:** The argument is by strong induction on s=d+m. For the base case, s=0 we have d=m=0 and this means that the collection $\mathcal C$ shatters only the empty set. Thus, $\Pi_{\mathcal C}[0]=|\mathcal C_\emptyset|=1$, and this implies $\Pi_{\mathcal C}[0]=1=\phi(0,0)$. Suppose that the statement holds for pairs (d', m') such that d' + m' < s, and let \mathcal{C} be a collection of subsets of S such that $VCD(\mathcal{C}) = d$ and K be a set with |K| = m. Let k_0 be a fixed (but, otherwise, arbitrary) element of K. Since $|K - \{k_0\}| = m - 1$, by inductive hypothesis, we have $|\mathcal{C}_{K - \{k_0\}}| \leq \phi(d, m - 1)$. Define $$\mathcal{D} = \mathcal{P}''(\mathcal{C}_K, k_0) = \{B \in \mathcal{C}_K \mid k_0 \not\in B \text{ and } B \cup \{k_0\} \in \mathcal{C}_K\}.$$ By a previous Lemma, $VCD(\mathcal{D})\leqslant d-1$, so $|\mathcal{D}|\leqslant \phi(d-1,m-1)$. By Part (ii) of another Lemma, $$|\mathcal{C}_K| = |\mathcal{C}_{K-\{k_0\}}| + |\mathcal{D}| \leqslant \phi(d, m-1) + \phi(d-1, m-1) = \phi(d, m).$$ ### Lemma For $d \in \mathbb{N}$ and $d \geqslant 2$ we have $$2^{d-1} \leqslant \frac{d^d}{d!}.$$ **Proof:** The argument is by induction on d. In the basis step, d=2 both members are equal to 2. Suppose the inequality holds for d. We have because $$\left(1+\frac{1}{d}\right)^d\geqslant 1+d\frac{1}{d}=2.$$ This concludes the proof of the inequality. ### Lemma We have $\phi(d, m) \leq 2 \frac{m^d}{d!}$ for every $m \geq d$ and $d \geq 1$. **Proof:** The argument is by induction on d and n. If d=1, then $\phi(1,m)=m+1\leqslant 2m$ for $m\geqslant 1$, so the inequality holds for every $m\geqslant 1$, when d=1. If $m = d \ge 2$, then $\phi(d, m) = \phi(d, d) = 2^d$ and the desired inequality follows immediately from a previous Lemma. Suppose that the inequality holds for $m > d \geqslant 1$. We have $$\begin{array}{rcl} \phi(d,m+1) & = & \phi(d,m) + \phi(d-1,m) \\ & & (\text{by the definition of } \phi) \\ & \leqslant & 2\frac{m^d}{d!} + 2\frac{m^{d-1}}{(d-1)!} \\ & & (\text{by inductive hypothesis}) \\ & = & 2\frac{m^{d-1}}{(d-1)!} \left(1 + \frac{m}{d}\right). \end{array}$$ It is easy to see that the inequality $$2\frac{m^{d-1}}{(d-1)!}\left(1+\frac{m}{d}\right) \leqslant 2\frac{(m+1)^d}{d!}$$ is equivalent to $$\frac{d}{m} + 1 \leqslant \left(1 + \frac{1}{m}\right)^d$$ and, therefore, is valid. This yields immediately the inequality of the lemma. ## The Asymptotic Behavior of the Function ϕ #### **Theorem** The function ϕ satisfies the inequality: $$\phi(d,m) < \left(\frac{em}{d}\right)^d$$ for every $m \ge d$ and $d \ge 1$. **Proof:** By a previous Lemma, $\phi(d, m) \leq 2 \frac{m^d}{d!}$. Therefore, we need to show only that $$2\left(\frac{d}{e}\right)^d < d!.$$ The argument is by induction on $d \ge 1$. The basis case, d = 1 is immediate. Suppose that $2\left(\frac{d}{a}\right)^d < d!$. We have $$2\left(\frac{d+1}{e}\right)^{d+1} = 2\left(\frac{d}{e}\right)^{d} \left(\frac{d+1}{d}\right)^{d} \frac{d+1}{e}$$ $$= \left(1 + \frac{1}{d}\right)^{d} \frac{1}{e} \cdot 2\left(\frac{d}{e}\right)^{d} (d+1) < 2\left(\frac{d}{e}\right)^{d} (d+1),$$ because $$\left(1+\frac{1}{d}\right)^d < e.$$ The last inequality holds because the sequence $\left(\left(1+\frac{1}{d}\right)^d\right)_{d\in\mathbb{N}}$ is an increasing sequence whose limit is e. Since $2\left(\frac{d+1}{e}\right)^{d+1}<2\left(\frac{d}{e}\right)^d(d+1)$, by inductive hypothesis we obtain: $$2\left(\frac{d+1}{e}\right)^{d+1}<(d+1)!.$$ ### Corollary If m is sufficiently large we have $\phi(d, m) = O(m^d)$. The statement is a direct consequence of the previous theorem. Denote by \oplus the symmetric difference of two sets. #### **Theorem** Let \mathcal{C} a family of sets and $C_0 \in \mathcal{C}$. Define the family Δ_{C_0} as $$\Delta_{C_0}(\mathcal{C}) = \{ \textit{T} \mid \textit{T} = \textit{C}_0 \oplus \textit{C} \textit{ where } \textit{C} \in \mathcal{C} \}.$$ We have $VCD(C) = VCD(\Delta_{C_0}(C))$. ### Proof Let S be a set, $S = \mathcal{C}_S$ and $S_0 = (\Delta_{C_0}(\mathcal{C}))_S$. Define $\psi : S \longrightarrow S_0$ as $\psi(S \cap C) = S \cap (C_0 \oplus C)$. We claim that ψ is a bijection. If $\psi(S \cap C) = \psi(S \cap C')$ for $C, C' \in \mathcal{C}$, then $S \cap (C_0 \oplus C) = S \cap (C_0 \oplus C')$. Therefore, $$(S \cap C_0) \oplus (S \cap C) = (S \cap C_0) \oplus (S \cap C'),$$ which implies $S \cap C = S \cap C'$, so ψ is injective. On the other hand, if $U \in \mathcal{S}_0$ we have $U = S \cap (C_0 \oplus C)$, so $U = \psi(S \cap C)$, hence ψ is a surjection. Thus, \mathcal{S} and \mathcal{S}_0 have the same number of sets, which implies that a set S is shattered by \mathcal{C} if and only if it is shattered by $\Delta_{C_0}(\mathcal{C})$. ### Classes with Infinte VCDs Are not PAC-learnable ### **Theorem** A concept class C with $VCD(C) = \infty$ is not PAC-learnable. **Proof:** Assume that $\mathcal C$ is PAC-learnable. Let $\mathcal A$ be a training algorithm and let m be the sample size needed to learn $\mathcal C$ with accuracy ϵ and certainty $1-\delta$. In other words, after seeing m examples, $\mathcal A$ produces a hypothesis h with $P(\hat R(h) \leqslant \epsilon) \geqslant 1-\delta$. Since $VCD(\mathcal{C}) = \infty$, there exists a sample S of length 2m that is shattered by \mathcal{C} . Define the probability distribution \mathcal{D} such that the probability of each example x_i of S is $\frac{1}{2m}$ and the probability of other examples is S. Since S is shattered, we can choose a target concept C such that $$P(c_t(x_i) = 0) = P(c_t(x_i) = 1) = \frac{1}{2}$$ for every x_i in S (as if the labels $c_t(x_i)$ are determined by a coin flip). \mathcal{A} selects an iid sample of m instances S' such that $S' \subseteq S$ and outputs a consistent hypothesis h. The probability of error for each $x_i \notin S'$ is $$P(c_t(x_i) \neq h(x_i)) = \frac{1}{2}$$ because we could select the labels of the points not seen by $\mathcal A$ arbitrarily. Regardless of h we have $$E(\hat{R}(h)) = m \cdot 0 \cdot \frac{1}{2m} + m \cdot \frac{1}{2} \cdot \frac{1}{2m} = \frac{1}{4}.$$ (We have 2m points to sample such that the error of half of them is 0 as h is consistent on S'). Thus, for any sample size m, if \mathcal{A} produces a consistent hypothesis, then the expectation of the error will be $\frac{1}{4}$. However, since with probability at least $1 - \delta$ we have that $\hat{R}(h) \leqslant \epsilon$, it follows that $$E(\hat{R}(h)) \leqslant (1-\delta)\epsilon + \delta \cdot \beta,$$ where $\epsilon < \beta \leqslant 1$. Note that $$(1 - \delta)\epsilon + \delta \cdot \beta \le (1 - \delta)\epsilon + \delta = \epsilon + \delta - \epsilon\delta < \epsilon + \delta$$ It suffices to take $$\epsilon + \delta < \frac{1}{4}$$ to obtain a contradition! ## Hypothesis Consistency in Set-Theoretical Terms Let C be a concept over the set of examples \mathcal{X} and let S be a sample drawn from \mathcal{X} according to a probability distribution \mathcal{D} . - A hypothesis C_0 regarded here as a set, is consistent with S if $C_0 \cap S = C \cap S$. Equivalently, $S \cap (C_0 \oplus C) = \emptyset$. - C_0 is inconsistent with S if $S \cap (C_0 \oplus C) \neq \emptyset$, that is, S hits the error region $C_0 \oplus S$. On slide 54 we established that $VCD(C) = VCD(\Delta_{C_0}(C))$, where $$\Delta_{C_0}(\mathcal{C}) = \{ T \mid T = C_0 \oplus C \mid C \in \mathcal{C} \}.$$ Define now $$\begin{array}{lcl} \Delta_{C_0,\epsilon}(\mathcal{C}) & = & \{T \mid T \in \Delta_{C_0}(\mathcal{C}) \mid P(T) \geqslant \epsilon\} \\ & = & \{T \mid T = C_0 \oplus C, C \in \mathcal{C} \text{ and } P(T) \geqslant \epsilon\}. \end{array}$$ - $\Delta_{C_0}(\mathcal{C})$ is the set of error regions relative to the hypothesis C_0 ; - $\Delta_{C_0,\epsilon}(\mathcal{C})$ is the set of error regions relative to the hypothesis C_0 having the probability at least equal to ϵ . ### Definition A set S is an ϵ -net for $\Delta_{C_0}(\mathcal{C})$ if every set T in $\Delta_{C_0,\epsilon}(\mathcal{C})$ is hit by S, that is, for every error region $T \in \Delta_{C_0,\epsilon}(\mathcal{C})$ we have $S \cap T \neq \emptyset$. #### Claim: If the sample S forms an ϵ -net for $\Delta_{C_0}(\mathcal{C})$ and the learning algorithm outputs a hypothesis (represented here by a set $C_0 \in \mathcal{C}$) that is consistent with S, then this hypothesis must have error less than ϵ . ### Indeed, since - $C_0 \oplus C \in \Delta_{C_0}(C)$ was not hit by S (otherwise, C_0 would not be consistent with S), and - S is an ϵ -net for $\Delta_{C_0}(\mathcal{C})$, we must have $C_0 \oplus C \not\in \Delta_{C_0,\epsilon}(\mathcal{C})$ and therefore $\hat{R}(C_0) \leqslant \epsilon$. Thus, if we can bound the probability that a random sample S does not form an ϵ -net for $\Delta_{C_0,\epsilon}(\mathcal{C})$, then we have bounded the probability that for a hypothesis C_0 consistent with S we have $\hat{R}(C_0) > \epsilon$. ### Example Suppose that \mathcal{C} is finite. For any fixed set $C_0 \oplus C \in \Delta_{C_0,\epsilon}(\mathcal{C})$, the probability that we fail to hit $C_0 \oplus C$ in m random examples is at most $(1-\epsilon)^m$. Thus, the probability that we fail to hit some $C_0 \oplus C \in \Delta_{C_0,\epsilon}(\mathcal{C})$ is bounded above by $|\mathcal{C}|(1-\epsilon)^m$. ## The Double Sample Theorem #### **Theorem** Let C be a concept class with VCD(C) = d. Let \mathcal{A} be any algorithm that given a set S of m labeled examples $\{(x_i,c(x_i))\mid 1\leqslant i\leqslant m\}$ sampled iid according to some fixed but unknown distribution \mathcal{D} over the instance space \mathcal{X} produces as output a hypothesis h that is consistent with c. Then, \mathcal{A} is a PAC algorithm and $$m \geqslant k_0 \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{d}{\epsilon} \log \frac{1}{\epsilon} \right).$$ for some positive constant k_0 . ### Proof - Draw a sample S_1 of size m from \mathcal{D} and let A be the event that the elements of S_1 fail to form an ϵ -net for $\Delta_{C_0,\epsilon}(\mathcal{C})$. - If A occurs, then S_1 misses some region T, where $$T \in \Delta_{C_0,\epsilon}(\mathcal{C}).$$ Fix this region T and draw an additional sample S_2 of size m from \mathcal{D} . Let V be a binomial random variable that gives the number of hits of T by the sample S_2 . We have $E(V) = m\epsilon$ and $var(V) = m\epsilon(1 - \epsilon)$ because the probability of an element of S_2 hitting T is ϵ . By Chebyshev's Inequality applied to V we have $$P(|V-m\epsilon|\geqslant a)\leqslant \frac{m\epsilon(1-\epsilon)}{a^2}.$$ Taking $a = \frac{\epsilon m}{2}$ it follows that $$P(|V - m\epsilon| \geqslant \frac{\epsilon m}{2}) \leqslant \frac{4(1 - \epsilon)}{\epsilon m}$$ $\leqslant \frac{4}{\epsilon m} \leqslant \frac{1}{2},$ provided that $m \geqslant \frac{8}{\epsilon}$. Thus, if $$m \geqslant \frac{8}{\epsilon}$$, $$P\left(|V-\epsilon m|\leqslant \frac{\epsilon m}{2}\right)\geqslant \frac{1}{2}.$$ The inequality $$|V - \epsilon m| \leqslant \frac{\epsilon m}{2}$$ is equivalent to $\frac{\epsilon m}{2} \leqslant V \leqslant \frac{3\epsilon m}{2}$, which implies $P(V \geqslant \frac{\epsilon m}{2}) \geqslant \frac{1}{2}$. To summarize: we have calculated the probability that S_2 will hit T many times given that T was fixed using the previous sampling, that is, given that S_1 does not form an ϵ -net. Let B be the event that S_1 does not form an ϵ -net and that S_2 hits T at least $\frac{\epsilon m}{2}$ times. Then, we have shown that for $m = O(1/\epsilon)$ we have $P(B|A) \geqslant \frac{1}{2}$. Since $P(B|A) \geqslant \frac{1}{2}$ we have $$P(B) = P(B|A)P(A) \geqslant \frac{1}{2}P(A).$$ Our goal of bounding P(A) is equivalent to finding δ such that $P(B) \leq \frac{\delta}{2}$ because this would imply $P(A) \leq \delta$. Let $S=S_1\cup S_2$ be a random sample of 2m. Note that since the samples are iid obtaining S is equivalent of sampling S_1 and S_2 separately and let T be a fixed set such that $|T|\geqslant \frac{\epsilon m}{2}$. Consider a random partition of S into S_1 and S_2 and consider the probability that $S_1 \cap T = \emptyset$. An Equivalent Problem: we have 2m balls each colored red or blue with exactly ℓ red balls, where $\ell \geqslant \frac{\epsilon m}{2}$. Divide the 2m balls into groups of equal size m, namely S_1 and S_2 . Find an upper bound on the probability that all ℓ red balls fall in S_2 (that is, the probability that $S_1 \cap R = \emptyset$). Yet Another Equivalent Problem: Divide 2m non-colored balls into S_1 and S_2 , choose ℓ to be colored red, and compute the probability that all red balls fall in S_2 . The probability of this taking place is: $$\frac{\binom{m}{l}}{\binom{2m}{\ell}}$$ Note that $$\frac{\binom{m}{l}}{\binom{2m}{\ell}} = \prod_{i=0}^{\ell-1} \frac{m-i}{2m-i} \leqslant \prod_{i=0}^{\ell-1} \frac{1}{2} = \frac{1}{2^{\ell}} = 2^{-\frac{\epsilon m}{2}}.$$ This is the probability for a fixed S and T. The probability that this occurs for some $T \in \Delta_{C_0,\epsilon}(S)$ such that $|T| \geqslant \frac{\epsilon m}{2}$ can be computed by summing over all T and applying the union bound: $$P(B) \leqslant |\Pi_{\Delta_{C_0,\epsilon}(S)}\left(\frac{\epsilon m}{2}\right)|2^{-\frac{\epsilon m}{2}} \leqslant |\Pi_{\Delta_{C_0}(S)}\left(\frac{\epsilon m}{2}\right)|2^{-\frac{\epsilon m}{2}}$$ $$\leqslant \left(\frac{2\epsilon m}{d}\right)^d 2^{-\frac{\epsilon m}{2}} \leqslant \frac{\delta}{2}.$$ # Proof (cont'd) The last inequality implies $$m \geqslant k_0 \left(\frac{1}{\epsilon} \log \frac{1}{\delta} + \frac{d}{\epsilon} \log \frac{1}{\epsilon} \right).$$ for some positive constant k_0 . Let $u: B_2^k \longrightarrow B_2$ be a Boolean function of k arguments and let C_1, \ldots, C_k be k subsets of a set U. Define the set $u(C_1, \ldots, C_k)$ as the subset C of U whose indicator function is $I_C = u(I_{C_1}, \ldots, I_{C_k})$. ## Example If $u: B_2^2 \longrightarrow B_2$ is the Boolean function $u(a_1, a_2) = a_1 \lor a_2$, then $u(C_1, C_2)$ is $C_1 \cup C_2$; similarly, if $u(x_1, x_2) = x_1 \oplus x_2$, then $u(C_1, C_2)$ is the symmetric difference $C_1 \oplus C_2$ for every $C_1, C_2 \in \mathcal{P}(U)$. Let $u: B_2^k \longrightarrow B_2$ and C_1, \dots, C_k are k family of subsets of U, the family of sets $u(C_1, \dots, C_k)$ is $$u(\mathcal{C}_1,\ldots,\mathcal{C}_k) = \{u(\mathcal{C}_1,\ldots,\mathcal{C}_k) \mid \mathcal{C}_1 \in \mathcal{C}_1,\ldots,\mathcal{C}_k \in \mathcal{C}_k\}.$$ #### **Theorem** Let $\alpha(k)$ be the least integer a such that $\frac{a}{\log(ea)} > k$. If $\mathcal{C}_1, \ldots, \mathcal{C}_k$ are k collections of subsets of the set U such that $d = \max\{VCD(\mathcal{C}_i) \mid 1 \leqslant i \leqslant k\}$ and $u: B_2^2 \longrightarrow B_2$ is a Boolean function, then $$VCD(u(C_1,\ldots,C_k)) \leq \alpha(k) \cdot d.$$ # Proof Let S be a subset of U that consists of m elements. The collection $(C_i)_S$ is not larger than $\phi(d,m)$. For a set in the collection $W \in u(C_1,\ldots,C_k)_S$ we can write $W = S \cap u(C_1,\ldots,C_k)$, or, equivalently, $1_W = 1_S \cdot u(1_{C_1},\ldots,1_{C_k})$. There exists a Boolean function g_S such that $$1_{S} \cdot u(1_{C_{1}}, \ldots, 1_{C_{k}}) = g_{S}(1_{S} \cdot 1_{C_{1}}, \ldots, 1_{S} \cdot 1_{C_{k}}) = g_{S}(1_{S \cap C_{1}}, \ldots, 1_{S \cap C_{k}}).$$ Since there are at most $\phi(d,m)$ distinct sets of the form $S \cap C_i$ for every i, $1 \le i \le k$, it follows that there are at most $(\phi(d,m))^k$ distinct sets W, hence $u(C_1,\ldots,C_k)[m] \le (\phi(d,m))^k$. # Proof (cont'd) By a previous theorem, $$u(\mathcal{C}_1,\ldots,\mathcal{C}_k)[m] \leqslant \left(\frac{em}{d}\right)^{kd}$$. We observed that if $\Pi_{\mathcal{C}}[m] < 2^m$, then $VCD(\mathcal{C}) < m$. Therefore, to limit the Vapnik-Chervonenkis dimension of the collection $u(\mathcal{C}_1,\ldots,\mathcal{C}_k)$ it suffices to require that $\left(\frac{em}{d}\right)^{kd} < 2^m$. Let $a=\frac{m}{d}$. The last inequality can be written as $(ea)^{kd}<2^{ad}$; equivalently, we have $(ea)^k<2^a$, which yields $k<\frac{a}{\log(ea)}$. If $\alpha(k)$ is the least integer a such that $k<\frac{a}{\log(ea)}$, then $m\leqslant\alpha(k)d$, which gives our conclusion. ## Example If k=2, the least integer a such that $\frac{a}{\log(ea)}>2$ is k=10, as it can be seen by graphing this function; thus, if $\mathcal{C}_1,\mathcal{C}_2$ are two collection of concepts with $VCD(\mathcal{C}_1)=VCD(\mathcal{C}_2)=d$, the Vapnik-Chervonenkis dimension of the collections $\mathcal{C}_1\vee\mathcal{C}_2$ or $\mathcal{C}_1\wedge\mathcal{C}_2$ is not larger than 10d. #### Lemma Let S, T be two sets and let $f: S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T, U is a finite subset of S and $C = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $|\mathcal{C}_U| \leq |\mathcal{D}_{f(U)}|$. **Proof:** Let V = f(U) and denote $f \upharpoonright_U$ by g. For $D, D' \in \mathcal{D}$ we have $$(U \cap f^{-1}(D)) \oplus (U \cap f^{-1}(D'))$$ = $U \cap (f^{-1}(D) \oplus f^{-1}(D')) = U \cap (f^{-1}(D \oplus D'))$ = $g^{-1}(V \cap (D \oplus D')) = g^{-1}(V \cap D) \oplus g^{-1}(V \oplus D').$ Thus, $C = U \cap f^{-1}(D)$ and $C' = U \cap f^{-1}(D')$ are two distinct members of \mathcal{C}_U , then $V \cap D$ and $V \cap D'$ are two distinct members of $\mathcal{D}_{f(U)}$. This implies $|\mathcal{C}_U| \leq |\mathcal{D}_{f(U)}|$. Let S, T be two sets and let $f: S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T and $\mathcal{C} = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $VCD(\mathcal{C}) \leqslant VCD(\mathcal{D})$. Moreover, if f is a surjection, then $VCD(\mathcal{C}) = VCD(\mathcal{D})$. # Proof Suppose that $\mathcal C$ shatters an n-element subset $K=\{x_1,\ldots,x_n\}$ of S, so $|\mathcal C_K|=2^n$ By a previous Lemma we have $|\mathcal C_K|\leqslant |\mathcal D_{f(U)}|$, so $|\mathcal D_{f(U)}|\geqslant 2^n$, which implies |f(U)|=n and $|\mathcal D_{f(U)}|=2^n$, because f(U) cannot have more than n elements. Thus, $\mathcal D$ shatters f(U), so $VCD(\mathcal C)\leqslant VCD(\mathcal C)$. Suppose now that f is surjective and $H=\{t_1,\ldots,t_m\}$ is an m element set that is shattered by $\mathcal D$. Consider the set $L=\{u_1,\ldots,u_m\}$ such that $u_i\in f^{-1}(t_i)$ for $1\leqslant i\leqslant m$. Let U be a subset of L. Since H is shattered by $\mathcal D$, there is a set $D\in \mathcal D$ such that $f(U)=H\cap D$, which implies $U=L\cap f^{-1}(D)$. Thus, L is shattered by $\mathcal C$ and this means that $VCD(\mathcal C)=VCD(\mathcal D)$. ### Definition The *density* of C is the number $$\mathsf{dens}(\mathcal{C}) = \mathsf{inf}\{s \in \mathbb{R}_{>0} \mid \Pi_{\mathcal{C}}[m] \leqslant c \cdot m^s \text{ for every } m \in \mathbb{N}\},\$$ for some positive constant c. Let S, T be two sets and let $f: S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T and $\mathcal{C} = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $dens(\mathcal{C}) \leqslant dens(\mathcal{D})$. Moreover, if f is a surjection, then $dens(\mathcal{C}) = dens(\mathcal{D})$. **Proof:** Let L be a subset of S such that |L|=m. Then, $|\mathcal{C}_L|\leqslant |\mathcal{D}_{f(L)}|$. In general, we have $|f(L)|\leqslant m$, so $|\mathcal{D}_{f(L)}|\leqslant \mathcal{D}[m]\leqslant cm^s$. Therefore, we have $|\mathcal{C}_L|\leqslant |\mathcal{D}_{f(L)}|\leqslant \mathcal{D}[m]\leqslant cm^s$, which implies $\mathrm{dens}(\mathcal{C})\leqslant \mathrm{dens}(\mathcal{D})$. If f is a surjection, then, for every finite subset M of T such that |M|=m there is a subset L of S such that |L|=|M| and f(L)=M. Therefore, $\mathcal{D}[m]\leqslant \Pi_{\mathcal{C}}[m]$ and this implies $\mathrm{dens}(\mathcal{C})=\mathrm{dens}(\mathcal{D})$. If \mathcal{C}, \mathcal{D} are two collections of sets such that $\mathcal{C} \subseteq \mathcal{D}$, then $VCD(\mathcal{C}) \leqslant VCD(\mathcal{D})$ and $dens(\mathcal{C}) \leqslant dens(\mathcal{D})$. #### **Theorem** Let $\mathcal C$ be a collection of subsets of a set S and let $\mathcal C' = \{S - C \mid C \in \mathcal C\}$. Then, for every $K \in \mathcal P(S)$ we have $|\mathcal C_K| = |\mathcal C_K'|$. # Proof We prove the statement by showing the existence of a bijection $f:\mathcal{C}_K\longrightarrow\mathcal{C}'_K$. If $U\in\mathcal{C}_K$, then $U=K\cap C$, where $C\in\mathcal{C}$. Then $S-C\in\mathcal{C}'$ and we define $f(U)=K\cap (S-C)=K-C\in\mathcal{C}'_K$. The function f is well-defined because if $K\cap C_1=K\cap C_2$, then $K-C_1=K-(K\cap C_1)=K-(K\cap C_2)=K-C_2$. It is clear that if f(U)=f(V) for $U,V\in\mathcal{C}_K$, $U=K\cap C_1$, and $V=K\cap C_2$, then $K-C_1=K-C_2$, so $K\cap C_1=K\cap C_2$ and this means that U=V. Thus, f is injective. If $W\in\mathcal{C}'_K$, then $W=K\cap C'$ for some $C'\in\mathcal{C}$. Since C'=S-C for some $C\in\mathcal{C}$, it follows that W=K-C, so W=f(U), where $U=K\cap C$. # Corollary Let $\mathcal C$ be a collection of subsets of a set S and let $\mathcal C' = \{S - C \mid C \in \mathcal C\}$. We have $dens(\mathcal C) = dens(\mathcal C')$ and $VCD(\mathcal C) = VCD(\mathcal C')$. For every collection of sets we have $dens(C) \leq VCD(C)$. Furthermore, if dens(C) is finite, then C is a VC-class. **Proof:** If \mathcal{C} is not a VC-class the inequality dens $(\mathcal{C}) \leqslant VCD(\mathcal{C})$ is clearly satisfied. Suppose now that \mathcal{C} is a VC-class and $VCD(\mathcal{C}) = d$. By Sauer-Shelah Theorem we have $\Pi_{\mathcal{C}}[m] \leqslant \phi(d,m)$; then, we obtain $\Pi_{\mathcal{C}}[m] \leqslant \left(\frac{em}{d}\right)^d$, so dens $(\mathcal{C}) \leqslant d$. Suppose now that dens (\mathcal{C}) is finite. Since $\Pi_{\mathcal{C}}[m] \leqslant cm^s \leqslant 2^m$ for m sufficiently large, it follows that $VCD(\mathcal{C})$ is finite, so \mathcal{C} is a VC-class. Let \mathcal{D} be a finite collection of subsets of a set S. The partition $\pi_{\mathcal{D}}$ was defined as consisting of the nonempty sets of the form $\{D_1^{a_1}\cap D_2^{a_2}\cap\cdots\cap D_r^{a_r}, \text{ where } (a_1,a_2,\ldots,a_r)\in\{0,1\}^r.$ #### Definition A collection $\mathcal{D} = \{D_1, \dots, D_r\}$ of subsets of a set S is *independent* if the partition $\pi_{\mathcal{D}}$ has the maximum numbers of blocks, that is, it consists of 2^r blocks. If $\mathcal D$ is independent, then the Boolean subalgebra generated by $\mathcal D$ in the Boolean algebra $(\mathcal P(S),\{\cap,\cup,{}^-,\emptyset,S\})$ contains 2^{2^r} sets, because this subalgebra has 2^r atoms. Thus, if $\mathcal D$ shatters a subset T with |T|=p, then the collection $\mathcal D_T$ contains 2^p sets, which implies $2^p\leqslant 2^{2^r}$, or $p\leqslant 2^r$. ## Definition Let C be a collection of subsets of a set S. The independence number of C I(C) is: $$I(\mathcal{C}) = \sup\{r \mid \{C_1, \dots, C_r\} \}$$ is independent for some finite $\{C_1, \dots, C_r\} \subseteq \mathcal{C}\}.$ Let S, T be two sets and let $f: S \longrightarrow T$ be a function. If \mathcal{D} is a collection of subsets of T and $\mathcal{C} = f^{-1}(\mathcal{D})$ is the collection $\{f^{-1}(D) \mid D \in \mathcal{D}\}$, then $I(\mathcal{C}) \leqslant I(\mathcal{D})$. Moreover, if f is a surjection, then $I(\mathcal{C}) = I(\mathcal{D})$. **Proof:** Let $\mathcal{E} = \{D_1, \dots, D_p\}$ be an independent finite subcollection of \mathcal{D} . The partition $\pi_{\mathcal{E}}$ contains 2^r blocks. The number of atoms of the subalgebra generated by $\{f^{-1}(D_1), \dots, f^{-1}(D_p)\}$ is not greater than 2^r . Therefore, $I(\mathcal{C}) \leq I(\mathcal{D})$; from the same supplement it follows that if f is surjective, then $I(\mathcal{C}) = I(\mathcal{D})$. If C is a collection of subsets of a set S such that $VCD(C) \geqslant 2^n$, then $I(C) \geqslant n$. **Proof:** Suppose that $VCD(\mathcal{C}) \geqslant 2^n$, that is, there exists a subset T of S that is shattered by \mathcal{C} and has at least 2^n elements. Then, the collection \mathcal{C}_T contains at least 2^{2^n} sets, which means that the Boolean subalgebra of $\mathcal{P}(T)$ generated by \mathcal{T}_C contains at least 2^n atoms. This implies that the subalgebra of $\mathcal{P}(S)$ generated by \mathcal{C} contains at least this number of atoms, so $I(\mathcal{C}) \geqslant n$.