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Set Notations

For a set S we denote by P(S) the set of its subsets. The set of all finite
non-empty subsets of S is denoted by F(S).

For a finite set S the number of elements of S is denoted by |S|. The
empty set is denoted by (.

We write x € S to denote the fact that x is an element of the set S. The
usual symbols are used to denote set-theoreical operations: AU B is the
union of the sets A and B, AN B is the intersection of the sets A and B,
and A — B is the difference of the sets A and B.

The symmetric difference of the sets A and B is denoted by A® B. We

have
AdB=(A-B)U(B-A).
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The Galois Field GF(2)

For set inclusion we write A C B to denote that each element x of A also
belongs to B.

Note that A= B if and only if A® B = ().
Let GF(2) be the 2-element Galois field GF(2) = {0,1}. Addition “®" and

multiplication “-" in this field are defined by the following two tables:
(efofr] [ Jof1]
001 000
110 10(1
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The Galois Field GF(2)

The set of subsets P(S) of a finite set S = {x1,...,x,} can be organized

as a GF(2)-linear space by defining the sum of two subsets U, V as their
symmetric difference

UaV=U-V)U(V-U).

Note that U 0 =0 @ U = U.
Multiplication with scalars in {0,1} is defined as

OU=0and1U=U,
for every U € P(S).
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A basis in this linear space is the collection {{x1},...,{xn}}.
Every subset U of S can be uniquely written as

U=ai{xi} ® @ an{xn},

where

5 — 1 ifx;eU,
"o ifx ge U,

for 1 < i< n. Thus, the GF(2)-linear space of subsets of S is of dimension
n.
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The Galois Field GF(2)

For U=ai{x1} & - P an{xn} and V =b1{x1} & - & bp{xn} the inner
product is be defined as

(U, V) =a1b1 ®--- D anb,.

Observe that (U, V) = 0 if and only if the set U N V contains an even
number of elements.

A non-empty set U can be orthogonal on itself if and only if it contains an
even number of elements. Such a vector is referred to as being
self-orthogonal.
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Example

Let S = {x1,x2,x3,xa, x5} and let U = {x1, x2, xa,x5}. We have
U=1{xi}®1{x}@0{x3}d1{xa}®1{xs}, hence
(U,U)=1®1®1@0®1=0. Thus, U is a self-orthogonal vector in
P(S).

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretic 7/1




A subspace of P(S) is a collection 7 of subsets of S such that U,V € T
implies U V € T.

The collection 7 that consists of subsets that are orthogonal on every set
in the subspace 7 is a subspace; we refer to 7+ as the orthogonal
subspace of T. Clearly, T+ consists of those subsets W of S whose
intersection with every set of 7 contains an even number of elements.
Suppose that 7 is a subspace of P(S) of dimension k. There are k
subsets of S, Uj,..., Uy such that every set T € 7 can be written as

T=aU & &aUy,
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Definition

Let T be a subset of the characteristic vector of T is the vector
17 € {0,1}" whose components (17)1,...,(17), are defined by:

1 ifxeT,
(1r)i = )
0 ifx&T,

forl1 <i<n.

The vector 0,, whose components are all equal to 0 is the characteristic
vector of the empty subset () of S.
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Definition

Let S be a set. A sequence of length n on S is a mapping

s:{1,...,n} — S. The set of sequences of length n on S is denoted by
Seq,(5).

An ordered pair on S is a sequence of length 2 on S; a singleton is a
sequence of length 1.

If s is a sequence of length non S and s(/) = x; for 1 </ < n, we write
s = (x1,...,%n). The elements xi,...,x, are the components of s.

The length of a sequence s is denoted by |s|.
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Example

A sequence of natural numbers of length 6 is s = (6,5,2,4,9,6). Note
that in a sequence the same element of S may occur on multiple positions.
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Counting Sequences

If S is a finite set containing m elements, then there are m"” sequences of
length n for any n > 1. We extend the definition of sequences on S be
defining the null sequence on S as the sequence A that has no
components, A = (). Note that there exists exactly one such sequence on
S and this is consistent with the fact that m® = 1 for every m > 1.

The set of sequences of elements of S is the set

Sea(s) = J{Seq,(S) | n>0}.
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Operations with Sequences

If s = (s1,52,...,5n) is a sequence in S, we refer to the sequence
S=1(sp,...,52,51) as the reversal of the sequence s. Clearly A=A\

If s =(s1,...,5,) and t = (t1,...,tm) are two sequences on a set S, their
concatenation is the sequence st = (s1,...,Sp, t1,..., tm). For the null
sequence we define As = s\ = s for every s € Seq(S). Note that

|st| = |s| + |t| for all sequences s,t € Seq(S).

Note that sequence concatenation is not a commutative operation in
general.
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Example
Let s =(1,2,3),t = (4,5). We have

st =(1,2,3,4,5) and ts = (4,5, 1, 2,3),

so st # ts.

Sequence concatenation is an associative operation on Seq(S), that is
(st)u = s(tu) for every s, t,u € Seq(S).
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Operations with Collections of Sets

Let C ={S; | i € I} be a collection of sets. Its union is the set U defined

as
u=_Js.

i€l

Note that C C C’ implies (JC C JC'.

Unlike the union, the intersection is defined only for collections that
consist of subsets of a set S.

If C is a collection of subsets of S, that is, if C C P(S). the intersection of
C is the set of all elements of S that belong to every set of C. The
intersection of C is denoted by (C.
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If C and C' are two collections of subsets of a set S and C C C’, then
N C' CNC. If O is the empty collection of subsets of S, we define

No=s.
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Definition

A closure system on the set S is a collection C of subsets of S such that
for every collection of subsets C such that C C KC we have (C € K.

Note that if IC is a closure system on a set S, then S € K because S is the
intersection of the empty collection of subsets of .
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Definition

Let KC be a closure system on a set S and let T be a subset of S. The
closure of T relative to the closure system K is the set

K(T)={UeK | TcU.

For every set T the collection Cr = {U € £ | T C U} is non-empty
because it includes at least S. The set [Cr is denoted by K(T) and is
referred to as the closure of T.

To emphasize that the closure of T is computed relative to the closure
system K we may denote this closure by Ki(T).
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Example

A subset E of R is said to be symmetric if x € E if and only if —x € E.
Let {E; | i € I} be a collection of symmetric subsets of R. It is easy to
see that ({E; | i € I} is a symmetric set. Note that R itself is symmetric.
Thus, the collection £ of symmetric subsets of R is a closure system. For a
subset T of R the set Kg(T) is the smallest symmetric set that includes T.

v

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretic 19 /1




Definition J

A relation on the set S is a set of ordered pairs of S.

The set of relations on S is denoted by rel(S).

Since relations on S are sets of pairs on S they can be involved in the
usual set-theoretical operations: union, intersection, difference, etc. If
p,o € rel(S), the union, intersection, and difference of p and o are
denoted by pU o, pN o, and p — o, respectively.

Also, p C o denotes the inclusion of the set of pairs p into the set of pairs

g.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretic 20/1




Two important relations on S are the diagonal relation
ls = {(va) | X € S}v

and the total relation
O0s ={(x,y) | x,y € S}.
Definition
Let p,o € rel(S). The product of p and o is the relation po given by

po ={(x,z) € Seay(S) | (x,y) € pand (y,z) € o}.
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Definition

A relation p € rel(S) is:
o reflexive, if 15 C p;
e symmetric, if (x,y) € p is equivalent to (y,x) € p;
e antisymmetric, if (x,y) € p and (y, x) € p implies x = y;
e transitive, if (x,y),(y,z) € p implies (x,z) € p,
for all x,y,z € S.

If p € rel(S), the inverse of p is the relation

pt={(y;x) €5xS | (x,y) € p}.
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The n'"" power of a relation p, where p C S x S is defined inductively as

0
p = is,

p"tt = o

for n > 0.

If p is a relation on S, then (x,x) € p° for every x € S. An easy argument
by induction on n € N shows that (x,y) € p" if and only if there exists a
sequence z = (29, z1, . .., Zp) of length n+ 1 such that x = z,

(ziyziz1) €Epfor0<i<n—1and z,=y.
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Properties of relations can be expressed using the operations just
introduced. For example, a relation p on a set S is symmetric if and only if
p~ ! = p; a relation p is transitive if p?> C p.

Definition

An equivalence relation on a set S is a relation p, p C S x S that is
reflexive, symmetric, and transitive.
The set of equivalence relations on S is denoted by EQ(S).
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Example

Both vs and fs are equivalence relations on S; moreover, for any
equivalence p € EQ(S) we have 15 C p C 0s.

Prof. Dan A. Simovici
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Example

Let m be a positive integer. Define the relation =, on Z as consisting of
those pairs (p,q) € Z X Z if p— g = km for some k € Z. In other words,
we have (p, q) €=, if p — q is divisible by m.

Note that (r,r) €=, because r — r = 0 is divisible by m. If p — g = km
for some k € Z, then g — p = (—k)m, so (p, q) €=, implies (q, p) E=n.
Finally suppose that (p, q) €=, and (q,s) €=p,. Since p — g = km and
g — s = hm, we have p — s = (k + h)m, hence (p,s) €=p. Thus, =, is
an equivalence relation on Z.
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Following common practice, for an equivalence p on a set S and for
x,y € S we write xpy for (x,y) € p.

Definition

Let p be an equivalence relation on a set S. The equivalence class of an
element x of S is the set

Xy = {u €S| (x.u)€p).

By the reflexivity of p, (x,x) € p for every x € S. Thus, x € [x],, hence
each equivalence class is non-empty.
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Lemma

Let p be an equivalence relation on a set S. We have y € [x], if and only

if[ylp = [xp-
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Proof

Suppose that y € [x], and that u € [y],. Then, we have (x,y) € p and
(v, u) € p. By transitivity, (x, u) € p, that is, u € [x],, which implies
R

If v € [x],, then (x,v) € p. Since (x,y) € p, by the symmetry and
transitivity of p we obtain (y,v) € p, hence v € [y],, so [x], C [y],. This
implies [x], = [y,

Conversely, if [y], = [x],, we have y € [x], because y € [y],,.
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Theorem

Let p be an equivalence relation on a set S. If [x], # [y],. then
[xlo N [yl = 0.

Proof.

Let x,y € S be such that [x], # [y], and suppose that z € [x], N [y],.
Since z € [x], we have [z], = [x],; similarly, since z € [y], we have

[z], = [y]p, which means that [x], = [y],. This contradicts the
hypothesis. O
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Definition

Let S be a non-emptyset. A partition on S is a non-empty collection
m={B; | i € I} such that

@ Bi#(foriel;

e i,j€landi#jimplies BiN B; =0

o Ui Bi=S.
The sets B; are the blocks of the partition 7.
The set of partitions of a set S is denoted by PART(S); the set of
partitions of S that have k blocks, where 1 < k < |S] is denoted by
PART(S).
The partitions in PART,(S) are referred to as bipartitions.

Clearly, PART(S) = U2, PART,(S).
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Example

The partition of a set S that consists of all singletons {x}, where x € S is
denoted by as; the partition of S that contains one block, namely S, is
denoted by ws. We have PART|s = {as} and PART1(S) = {ws}.
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Example

Let p be an equivalence relation on a set S. The set of equivalence classes
of p is a partition of the set S. Indeed, we saw that S = J,.s[x],, no
equivalence class is empty and, as we saw, any two equivalence classes are
disjoint.

The set of equivalence classes of an equivalence relation is known as the
quotient set of S by p and is denoted by S/p. The partition generated by
the equivalence relation is also denoted by m,,.
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Example

Let m € P and let B; be the set of all members n of P such that the
remainder of the division of n by m equals i, where 0 < /i< m—1. It is
immediate that the collection {By, By, ..., Bm—1} is a partition of the set

P. For instance, if m = 3, we have By = {3,6,9,12...},
By = {1,4,7,10,...}, and B, = {2,5,8,11,...}.

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretic
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Theorem

Let m = {B; | i € I} be a partition of the set S. The relation p, defined
by
pr={(x,y) €S xS | {xy} CBien}

is an equivalence on S.
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Proof

Each x belongs to a block B; of 7, so (x, x) € pr for every x € S, which
means that p; is reflexive.

If (x,y) € px, then {x,y} C B;, which obviously implies (y, x) € pr, S0 px
is symmetric.

Finally, if (x,y) € pr and (y, z) € pr, there exist B;, B; € 7 such that
{x,¥y} € Bjand {y,z} C B;. Thus, BiN B; # () (because both contain y),
which implies B; = B;. Therefore, {x,z} C B; = B;, hence (x, z) € pr,
which allows us to conclude that p, is an equivalence relation.
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Corollary

Let m € PART(S) and let p € EQ(S) p = pr, and m = 7,,_.

Proof.

The equalities follow easily from the definitions of 7, and pr. O
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Example

Note that 7,3 = as, mgs = ws and pas = ts, puws = bs.

We write x = y(m) to denote that (x,y) € pr.
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Denote by (x), the n-degree polynomial
(X)n=x(x—1)--(x —n+1).
The coefficients of this polynomial
(X)n = s(n,nM)x" +s(n,n—1)x""t 4.+ s(n,i)x" + -+ s(n,0)

are known as the Stirling numbers of the first kind.
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Theorem
We have:

s(n,0) = 0,

s(n,n) = 1,

s(n+1,k) = s(n,k—1)— ns(n,k).

Proof.
The verification of the first two equalities is immediate. The third equality
follows by observing that (x),+1 = (x)n(x — n) and seeking the coefficient
of x on both sides. 0
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Let S be a set having n elements. We are interested in the number of
partitions of S that have k blocks. We begin by counting the number of
onto functions of the form f : A — B, where |A| = n, |B| = k, and
n> k.

Lemma

Let A and B be two sets, where |A| = n, =k, and n > k. The number
of surjective functions from A to B is given by

Z( 1y () e
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Proof

There are k" functions of the form f : A — B.

We begin by determining the number of functions that are not surjective.
Suppose that B = {b1,..., b}, and let F; ={f: A— B | b; &€ f(A)}
for 1 <j < k. A function is not surjective if it belongs to one of the sets

k . . . .
Fj. Thus, we need to evaluate |{J;_; Fj|. By using the inclusion-exclusion
principle, we can write:

k k k
Fii = Z|FJI|_ Z |Fj 0 Fjl
Jj=1 =1 J1o=1
k
+ Y R NFN Rl = =+ (D) RN RN 0 R,
J1j2J3=1
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Proof (cont'd)

Note that the set |F;_1 N Fj, N--- N Fj,| is actually the set of functions
defined on A with values in the set B — {y;, yj,,...,¥,}, and there are
(k — p)" such functions. Since there are (,';) choices for the set
{j1:42,---,Jp}, it follows that there are

(3) == (5)uw=2rm (5)w-3r - ot S )

functions that are not surjective.
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Proof (cont'd)

Thus, we can conclude that there are
k—1
-k .
>y () w0
j=0 /

- ke f (k—1)"+ ’2‘ (k=2)" =+ (=) kfl
(

surjective functions from A to B.
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Theorem

The number of partitions of a set S that have k blocks (k < n) is given by

%f_z:(—w ()=

Prof. Dan A. Simovici
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Proof

Note that there are k! distinct onto functions that have the same kernel
partition. Indeed, given a surjective function f : A — B, one can obtain a
function g that has the same partition as f by defining g(a) = p(f(a)),
where p is a permutation of the set B, that is, a bijection p: B — B.
Since there are k! such bijections, it follows that the number of partitions

is & K (-1 () (k)
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The numbers S(n, k) defined by

LSk k>0,
S(n,k) =11 ifn=k=0,
0 in other cases.

for n, k € N and are known as the Stirling numbers of the second kind.
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Example

Note that S(n,1) =1 and S(n, n) = 1 because only one partition of a set
with n elements, ws, has one block, and only one partition of a set with n
elements, ag has n blocks which are singletons.

The number of partitions of a 4-element set having two blocks is

S4.2) = %i(i)(z—n“

Namely, these partitions are:

{{1},{2,3,4}},{{2},{1,3,4}}, {{3}, {1,2,4}}, {{4}, {1, 2,3}},
{{1,2},{3,4}},{1,3},{2,4}}, {{1,4}, {2, 3}}.
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We claim that

S(n, k) = kS(n—1,k) +S(n—1,k—1).

Indeed, observe that a partition 7 of the set {1,...,n— 1} can be
transformed into a partition of {1,..., n} be adjoining n to one of the
blocks of 7 or by increasing the number of blocks by 1 and making {n} a
block.
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Theorem

For every n > 1 we have m" = 377_; S(n, j)(m);.
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Proof

Let A and B be two finite sets such that |A| = n and |B| = m. There are

m" functions f : A — B. These functions can be classified depending on
the size of their range f(A). If g : A— B is a function such that

|lg(A)| =, then g can be regarded as a surjection from A to g(A). Since

there are j1S(n,j) such surjective functions and there are (T) subsets of B
that have j elements, we can write

o= > (")istn

j=1
= S m(m—1)---(m—j+1)S(nj) =Y (m)aS(n,))
j=1 =1

for every m > 1.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretic 51 /1



The Bell number B, is the total number of partitions of a set of n objects,
that is,

B, = i S(n, k).
k=1

Example

For n = 4, we have shown that there exist 7 partitions having two blocks,
one partition with one block and one partition with 4 blocks. It is easy to
see that there are 6 partitions with 3 blocks, so B4 =1+7+6 4+ 1 = 15.

The first 10 values of the Bell numbers are given below.
ni{1l]|2|3]| 4] 5 6 7 8 9 10
B,|1|2|5|15|52]| 203|877 | 4140 | 21147 | 115975
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Definition

A relation p is a partial order on a set S if p is reflexive, antisymmetric and

transitive.
A partially ordered set (or, a poset) is a pair (S, p), where p is a partial
order on S.

In general, we denote partial orders using the symbol “<" or similar
symbols; furthermore, instead of writing (x,y) €<, we write x < y.
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Example

inclusion “C" yields the poset (P(T), Q).

Let T be a set. The set of subsets of T, P(T) equippeed with the set

Prof. Dan A. Simovici
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Example

The pair (P, |), where “|" is the divisibility relation is a poset defined by
p|q if there exists k € P such that g = pk. Indeed, we have p|p for every
p € P, so “|" is reflexive. If p|q and q|p, we have g = pk and p = gh,
hence hk = 1 which implies h = k = 1. Thus, p = g, which shows that
“I" is antisymmetric. Finally, if p|q and g|r we have g = pk and r = gh
for some k, h € P. Thus, r = pkh, so p|r.
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If (S, p)is aposetand T C S, it is easy to see that the relation

p1T = pN(T x T) is itself a partial order; we will refer to it as the trace of
(S.p) on T. Often, we will use the same symbol p instead of pt to
denote the partial order on T.

Example

Let S C P be the set {1,2,3,4,5,6}. The trace of P on S consists of the

pairs:
(1,1),(1,2),(1,3),(1,4),(1,5), (1,6),
(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),
(5,5),(6,6).
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Definition

A totally ordered set is a pair (S, p), where p is a partial order with the
additional property that for all x,y € S we have either (x, y) € p, or
(v, x) € p. The relation p is refered to as a total order.

Example

The real numbers R equipped with the standard less-than-or-equal relation
< is a totally ordered set.
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Definition

A sequence x € Seq(S) is a subsequence of a sequence y € Seq(S), if
y = uxv for some sequences u,v € Seq(S). This is denoted by x C y.

Example

Let S ={0,1}. The sequence y = 1011 is a subsequence of
x = 010110110101100.

The relation "C" is a partial order on Seq(S).
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Definition

Let (P, <) be a poset. An element y covers an element x of P if x <y
and thereisno z € P, z # x and z # y such that x < z < y.
We denote the fact that y covers x by x < y.
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Example

Let (P, |) be the poset of positive numbers equipped with the divisibility
relation. We have p < y if x is none of the largest divisors of y. For
example, we have 6 < 12 beacuse there is no number z distinct from 6
and 12 such that 6|z and z|12. Note that 3|12 but 3 £ 12.

Finite posets can be represented graphically using Hasse diagrams. Each
element is represented by a dot. If x, y are elements of a poset (P, <) and
x <y, then the dot representing y is placed at a greater height than x
and a link between the dots is drawn.
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Example

The Hasse diagram of the poset ({1,...,12},|) is given below:

12

11

Prof. Dan A. Simovici
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Definition

Let (S, <) be a poset and let T be a subset of S. The set of upper
bounds of T is the set

T°={ye€S | forall x € T we have x < y}.
The set of lower bounds of T is the set

Ti:{y65| for all x € T we have y < x}.
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If T1, T are two subsets of S, Ty C T, implies T5 C T and T5 C T,.
Theorem

Let (S,<) be a poset and let T be a subset of S. The sets T N T° and
T N T contain at most one element of S.

Proof.

Suppose that x,y € TN T°. Since x € T and y € T7, it follows that

x < y. On other hand, since x € T° and y € T we have y < x. Therefore,
x =y, which implies that the set T N T° contains at most one element.
The argument for TN T is similar. L]

v
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Definition

Let (S, <) be a poset and let T be a subset of S. If TN T° = {u}, then u
is the largest element of set T.
If TN T" = {v}, then v is the least element of set T.

Example

Not every subset of a poset has a least or a greatest element. The subset
{1,2,3,6} of the poset ({1,...,12},]) considered before has 1 as its least
element and 6 as the largest element. In contrast, the set {4,5,6} has
neither a least nor a largest element.
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If T is a subset of a poset (S, <) we will consider the sets (T°)" and (T')*
denoted by T and T, respectively.

Observe that the set TN TS = TN (T*)" may contain at most one
element, by a previous observation applied to the set T°. Similarly, the set
T/ N T may contain at most one element.
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Definition

Let (S, <) be a poset and let T be a subset of S. If TSN TS = {u}, uis
the supremum of the set T.
If T'N T = {v}, v is the infimum of T.

The supremum and infimum of a set T (if they exist) are unique and are
denoted by sup T and inf T, respectively.
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Example

In the poset (P(T), <) introduced in before, for every C € P(X) we have

infC = ﬂC and supC = UC.
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Example

In the poset (P,

), we have

inf{p, g} = gcd(p, q) and sup{p, g} = lem(p, q),

where gcd(p, q) is the greatest common divisor of p and g, and lem(p, q)

is the least common multiple of p and q.
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Definition

A poset (S, <) is a lattice if for every two elements x,y € S there exist
inf{x, y} and sup{x,y}. If (5§,<) is a lattice we use the notations

x Ay =inf{x,y} and x V y = sup{x, y}.

The element x A y is referred to as the meet of x and y; x V y is the join
of x and y.

A poset (S, <) is a complete lattice if for every X € P(S) there exist inf X
and sup X.

v
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Example

(P, ) is a lattice;

°
e (P(T),C) is a complete lattice.
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Note that if (S, <) is a complete lattice and S # (), then this poset has a
least element 0g = inf S, and a greatest element 15 = sup S.

Theorem

Let (S,<) be a complete lattice and let W be a subset of S such that
ls € W and T C W implies that inf T in S belongs to W. Then W is a
complete lattice.
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Proof

For every nonvoid subset T of W, inf T € W and is the infimum of T in
S. Let U be a subset of W defined as U = T°. We have U # () because
ls € W. Then, inf U € W is also an upper bound of T, and is actually
the least upper bound of U. Thus, (W, <) is a complete lattice.
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Corollary

Let K be a closure system on a set S. The subsets of S in K form a
complete lattice in which infC =(\C and
supC=(({T P | CCT forevery C € K}.
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Let 7,0 be two partitions of S. We write w < o if each block B of 7 is
included in a block C of o.

Theorem
The pair (PART(S), <) is a partially ordered set. J
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Proof

The relation "<" is obviously reflexive.

Suppose that we have both 7 < o and o < 7. Then, a block B of 7 is
included in a block C of o, and C, in turn, is included in a block B’ of C.
Thus, B C C C B’, which implies B = C = B’ because no block of 7 can
be included into another block. Thus, # C . In the same manner, starting
from a block C of o we can show that ¢ C 7, so m = o. This shows that
the relation “<" is antisymmetric. It is immediate that “<" is transitive
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Theorem

Let m,0 € PART(S) be two partitions, 7 = {B; | i € I} and
o={C; | j€ J}. We have m < o if and only if for each j € J there exists
a subset I|; of | such that C; = |J{B; | i € I;}.

Suppose that 7 < ¢ and let C € 0. Suppose that BN C # (). Since each
block B of 7 is included in a block C’ of ¢ we must have C’ = C because,
otherwise C’ and C would have a non-empty intersection. Thus, if a block
B of 7 has a non-empty intersection with a block C of o we must have

B C C. This implies that a block C of ¢ is a union of block of .

The converse implication is immediate.
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Example

If 7 € PART(S) we have as < m < ws. Thus, ag is the smallest element
of (PART(S), <) and ws is its largest element.
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Definition

Let 7,0 be two partitions of a set S. The partition o covers 7 if 7 < &
and there is no partition 7 € PART(S) such that 7 < 7 < 0.
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Theorem

Let 7,0 be two partitions of a set S. The partition o covers 7 if and only
if there exists a block C of o that is the union of two blocks B and B' of
7, and every other block of o that is distinct of C is a block of .
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Proof

Suppose that o is a partition that covers the partition 7. Since 7 < o,
every block of ¢ is a union of blocks of 7. Suppose that there exists a
block E of ¢ that is the union of more than two blocks of 7; that is,
E=U{Bi | i € I}, where |l| > 3, and let B, Bj,, Bj; be three blocks of 7
included in E. Consider the partitions

o1 = {CEO’ | C#E}U{Bh,B,’Q,Bb},
oy = {CEJ ‘ C#E}U{BAUBQ,B&}.

It is easy to see that m < 01 < 02 < o, which contradicts the fact that o
covers 7. Thus, each block of ¢ is the union of at most two blocks of .
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Proof (cont'd)

Suppose that o contains two blocks C’ and C” that are unions of two
blocks of m, namely C’ = Bj; U B, and C"” = B;, U Bj,. Define the
partitions

o = {Ceo | Cg{C, C"}}u{C, B, By},
0'// = {CEO’ | Cg{cl, C//}}U{BilvBipC”}‘

Since m < 0/, 0" < o, this contradicts the fact that o covers w. Thus, we
obtain the conclusion of the theorem.
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Hasse diagrams

Example

The Hasse diagram of (PART({1,2,3}),<) is given below:
{{1,2,3}}

{1,3},{2}}

{1}, {2}, {3}
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Theorem

The posets (EQUIV(S), C) and (PART(S), <) are isomorphic.

Let f : EQUIV(S) — PART(S) be the mapping defined by f(p) = S/p.
We need to show that f is a monotonic bijective mapping and that its
inverse mapping f ! is also monotonic.

The bijectivity of f follows immediately from the remarks that precede the
theorem. Let pg, p1 be two equivalences such that py C p; and let
S/po=A{Bi | ie€l}, S/p1 ={C | j € J}. Let B; be a block in S/pg and
assume that B;j = [x],,. We have y € B; if and only if (x,y) € po, so
(x,y) € p1. Therefore, y € [x],,, which shows that every block B € S/pg
is included in a block C € p1. This shows that f(pg) < f(p1), so f is
indeed monotonic.
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Let {pi | i € I} C EQUIV(S) be a collection of equivalences. Then,
inf{pi | i€} =g pi

Definition

Let S be a set and let p, 7 € EQUIV(S). A (p, 7)-alternating sequence
that joins x to y is a sequence (s, 51, ..., Sp) such that x = sp, y = sp,
(si,si+1) € p for every even i and (sj, si+1) € T for every odd i, where
0<i<n—1.
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Lemma

Let S be a set and let p, 7 € EQUIV(S). Ifs and z are two
(p, 7)-alternating sequences joining x to y and y to z, respectively, then
there exists a (p, T)-alternating sequence that joins x to z.
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Proof

Let (so,-..,5n) be a (p, 7)-alternating sequences joining x to y and

(wo, ..., wm) a (p, 7)-alternating sequences joining y to z, where x = s,
sn=wp =y and wy,, = z. If (s,_1,sn) € 7, then the sequence

(S0, -y Sn, Wi,...,Wm) is a (p, 7)-alternating sequence joining x to z.

Otherwise, that is, if (s,—1,Sn) € p, then taking into account the reflexivity
of 7 we have (s,, wp) = (sn,Sp) € 7. In this case,
(S0, -+ 5Sn,Sn, Wi, ..., Wm) is a (p, T)-alternating sequence joining x to z.
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Theorem

Let S be a set and let p, 7 € EQUIV(S). If £ is the relation that consists
of all pairs (x,y) € S x S that can be joined by a (p, T)-alternating
sequence, then § = sup{p, T}.
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It is easy to verify that £ is indeed an equivalence relation. Note that we
have both p C ¢ and 7 C &. Indeed, if (x,y) € p, then (x,y,y) is a

(p, 7)-alternating sequence joining x to y. If (x,y) € 7, then (x,x,y) is
the needed alternating sequence.

Let ¢ € EQUIV(S) such that p C ( and 7 C (. If (x,y) € &, and
(s0,51,--.,5n) is a (p, 7)-alternating sequence such that x = sp, y = sp,
then each pair (s;, s;+1) belongs to (. By the transitivity property,

(x,y) € ¢, so & C (. This implies that £ = sup{p, 7}.
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If 7,0 € PART(S) both the infimum and the supremum of the set {7, o}
exist and their description follows from the corresponding results that refer
to the equivalence relations. Namely, if 7,0 € PART(S), where

n={B;j | i€l}and o ={C | je€ J}, the partition inf{7, o} exists and
is given by

inf{m,0} ={B;NC | iel,jeJand B;NC #0}.

The partition inf{m, o} will be denoted by 7 A 0.
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A block of the partition sup{m, o}, denoted by 7\ o, is an equivalence

class of the equivalence § = sup{px A p,}. We have y € [x]g if there exists
a sequence (sp, . ..,Sn) € Seq(S) such that x = sy, s, = y and successive
sets {sj, si+1} are included, alternatively, in a block of 7 or in a block of o.
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