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Set Notations

For a set S we denote by P(S) the set of its subsets. The set of all finite
non-empty subsets of S is denoted by F(S).
For a finite set S the number of elements of S is denoted by |S |. The
empty set is denoted by ∅.
We write x ∈ S to denote the fact that x is an element of the set S . The
usual symbols are used to denote set-theoreical operations: A ∪ B is the
union of the sets A and B, A ∩ B is the intersection of the sets A and B,
and A− B is the difference of the sets A and B.
The symmetric difference of the sets A and B is denoted by A⊕ B. We
have

A⊕ B = (A− B) ∪ (B − A).
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The Galois Field GF(2)

For set inclusion we write A ⊆ B to denote that each element x of A also
belongs to B.
Note that A = B if and only if A⊕ B = ∅.
Let GF(2) be the 2-element Galois field GF(2) = {0, 1}. Addition “⊕” and
multiplication “·” in this field are defined by the following two tables:

⊕ 0 1

0 0 1

1 1 0

· 0 1

0 0 0

1 0 1
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The Galois Field GF(2)

The set of subsets P(S) of a finite set S = {x1, . . . , xn} can be organized
as a GF(2)-linear space by defining the sum of two subsets U,V as their
symmetric difference

U ⊕ V = (U − V ) ∪ (V − U).

Note that U ⊕ ∅ = ∅ ⊕ U = U.
Multiplication with scalars in {0, 1} is defined as

0 U = ∅ and 1 U = U,

for every U ∈ P(S).
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A basis in this linear space is the collection {{x1}, . . . , {xn}}.
Every subset U of S can be uniquely written as

U = a1{x1} ⊕ · · · ⊕ an{xn},

where

ai =

{
1 if xi ∈ U,

0 if xi 6∈∈ U,

for 1 6 i 6 n. Thus, the GF(2)-linear space of subsets of S is of dimension
n.
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The Galois Field GF(2)

For U = a1{x1} ⊕ · · · ⊕ an{xn} and V = b1{x1} ⊕ · · · ⊕ bn{xn} the inner
product is be defined as

(U,V ) = a1b1 ⊕ · · · ⊕ anbn.

Observe that (U,V ) = 0 if and only if the set U ∩ V contains an even
number of elements.
A non-empty set U can be orthogonal on itself if and only if it contains an
even number of elements. Such a vector is referred to as being
self-orthogonal.
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Example

Let S = {x1, x2, x3, x4, x5} and let U = {x1, x2, x4, x5}. We have
U = 1 {x1} ⊕ 1 {x2} ⊕ 0 {x3} ⊕ 1 {x4} ⊕ 1 {x5}, hence
(U,U) = 1⊕ 1⊕ 1⊕ 0⊕ 1 = 0. Thus, U is a self-orthogonal vector in
P(S).
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A subspace of P(S) is a collection T of subsets of S such that U,V ∈ T
implies U ⊕ V ∈ T .
The collection T ⊥ that consists of subsets that are orthogonal on every set
in the subspace T is a subspace; we refer to T ⊥ as the orthogonal
subspace of T . Clearly, T ⊥ consists of those subsets W of S whose
intersection with every set of T contains an even number of elements.
Suppose that T is a subspace of P(S) of dimension k. There are k
subsets of S , U1, . . . ,Uk such that every set T ∈ T can be written as

T = a1U1 ⊕ · · · ⊕ akUk ,
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Definition

Let T be a subset of the characteristic vector of T is the vector
1T ∈ {0, 1}n whose components (1T )1, . . . , (1T )n are defined by:

(1T )i =

{
1 if xi ∈ T ,

0 if xi 6∈ T ,

for 1 6 i 6 n.

The vector 0n whose components are all equal to 0 is the characteristic
vector of the empty subset ∅ of S .
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Definition

Let S be a set. A sequence of length n on S is a mapping
s : {1, . . . , n} −→ S . The set of sequences of length n on S is denoted by
Seqn(S).
An ordered pair on S is a sequence of length 2 on S ; a singleton is a
sequence of length 1.
If s is a sequence of length n on S and s(i) = xi for 1 6 i 6 n, we write
s = (x1, . . . , xn). The elements x1, . . . , xn are the components of s.

The length of a sequence s is denoted by |s|.
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Example

A sequence of natural numbers of length 6 is s = (6, 5, 2, 4, 9, 6). Note
that in a sequence the same element of S may occur on multiple positions.
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Counting Sequences

If S is a finite set containing m elements, then there are mn sequences of
length n for any n > 1. We extend the definition of sequences on S be
defining the null sequence on S as the sequence λ that has no
components, λ = (). Note that there exists exactly one such sequence on
S and this is consistent with the fact that m0 = 1 for every m > 1.
The set of sequences of elements of S is the set

Seq(S) =
⋃
{Seqn(S) | n > 0}.
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Operations with Sequences

If s = (s1, s2, . . . , sn) is a sequence in S , we refer to the sequence
s̃ = (sn, . . . , s2, s1) as the reversal of the sequence s. Clearly λ̃ = λ.
If s = (s1, . . . , sn) and t = (t1, . . . , tm) are two sequences on a set S , their
concatenation is the sequence st = (s1, . . . , sn, t1, . . . , tm). For the null
sequence we define λs = sλ = s for every s ∈ Seq(S). Note that
|st| = |s|+ |t| for all sequences s, t ∈ Seq(S).
Note that sequence concatenation is not a commutative operation in
general.
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Example

Let s = (1, 2, 3), t = (4, 5). We have

st = (1, 2, 3, 4, 5) and ts = (4, 5, 1, 2, 3),

so st 6= ts.

Sequence concatenation is an associative operation on Seq(S), that is
(st)u = s(tu) for every s, t,u ∈ Seq(S).
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Operations with Collections of Sets

Let C = {Si | i ∈ I} be a collection of sets. Its union is the set U defined
as

U =
⋃
i∈I

Si .

Note that C ⊆ C′ implies
⋃
C ⊆

⋃
C′.

Unlike the union, the intersection is defined only for collections that
consist of subsets of a set S .
If C is a collection of subsets of S , that is, if C ⊆ P(S). the intersection of
C is the set of all elements of S that belong to every set of C. The
intersection of C is denoted by

⋂
C.
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If C and C′ are two collections of subsets of a set S and C ⊆ C′, then⋂
C′ ⊆

⋂
C. If ∅ is the empty collection of subsets of S , we define⋂

∅ = S .
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Definition

A closure system on the set S is a collection K of subsets of S such that
for every collection of subsets C such that C ⊆ K we have

⋂
C ∈ K.

Note that if K is a closure system on a set S , then S ∈ K because S is the
intersection of the empty collection of subsets of K.
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Definition

Let K be a closure system on a set S and let T be a subset of S . The
closure of T relative to the closure system K is the set
K(T ) =

⋂
{U ∈ K | T ⊆ U}.

For every set T the collection CT = {U ∈ K | T ⊆ U} is non-empty
because it includes at least S . The set

⋂
CT is denoted by K(T ) and is

referred to as the closure of T .
To emphasize that the closure of T is computed relative to the closure
system K we may denote this closure by KK(T ).
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Example

A subset E of R is said to be symmetric if x ∈ E if and only if −x ∈ E .
Let {Ei | i ∈ I} be a collection of symmetric subsets of R. It is easy to
see that

⋂
{Ei | i ∈ I} is a symmetric set. Note that R itself is symmetric.

Thus, the collection E of symmetric subsets of R is a closure system. For a
subset T of R the set KE(T ) is the smallest symmetric set that includes T .
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Definition

A relation on the set S is a set of ordered pairs of S .

The set of relations on S is denoted by rel(S).
Since relations on S are sets of pairs on S they can be involved in the
usual set-theoretical operations: union, intersection, difference, etc. If
ρ, σ ∈ rel(S), the union, intersection, and difference of ρ and σ are
denoted by ρ ∪ σ, ρ ∩ σ, and ρ− σ, respectively.
Also, ρ ⊆ σ denotes the inclusion of the set of pairs ρ into the set of pairs
σ.
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Two important relations on S are the diagonal relation

ιS = {(x , x) | x ∈ S},

and the total relation

θS = {(x , y) | x , y ∈ S}.

Definition

Let ρ, σ ∈ rel(S). The product of ρ and σ is the relation ρσ given by

ρσ = {(x , z) ∈ Seq2(S) | (x , y) ∈ ρ and (y , z) ∈ σ}.
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Definition

A relation ρ ∈ rel(S) is:
reflexive, if ιS ⊆ ρ;
symmetric, if (x , y) ∈ ρ is equivalent to (y , x) ∈ ρ;
antisymmetric, if (x , y) ∈ ρ and (y , x) ∈ ρ implies x = y ;
transitive, if (x , y), (y , z) ∈ ρ implies (x , z) ∈ ρ,

for all x , y , z ∈ S .

If ρ ∈ rel(S), the inverse of ρ is the relation

ρ−1 = {(y , x) ∈ S × S | (x , y) ∈ ρ}.
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The nth power of a relation ρ, where ρ ⊆ S × S is defined inductively as

ρ0 = ιS ,

ρn+1 = ρnρ

for n > 0.
If ρ is a relation on S , then (x , x) ∈ ρ0 for every x ∈ S . An easy argument
by induction on n ∈ N shows that (x , y) ∈ ρn if and only if there exists a
sequence z = (z0, z1, . . . , zn) of length n + 1 such that x = z0,
(zi , zi+1) ∈ ρ for 0 6 i 6 n − 1 and zn = y .
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Properties of relations can be expressed using the operations just
introduced. For example, a relation ρ on a set S is symmetric if and only if
ρ−1 = ρ; a relation ρ is transitive if ρ2 ⊆ ρ.

Definition

An equivalence relation on a set S is a relation ρ, ρ ⊆ S × S that is
reflexive, symmetric, and transitive.
The set of equivalence relations on S is denoted by EQ(S).
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Example

Both ιS and θS are equivalence relations on S ; moreover, for any
equivalence ρ ∈ EQ(S) we have ιS ⊆ ρ ⊂ θS .
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Example

Let m be a positive integer. Define the relation ≡m on Z as consisting of
those pairs (p, q) ∈ Z× Z if p − q = km for some k ∈ Z. In other words,
we have (p, q) ∈≡m if p − q is divisible by m.
Note that (r , r) ∈≡m because r − r = 0 is divisible by m. If p − q = km
for some k ∈ Z, then q − p = (−k)m, so (p, q) ∈≡m implies (q, p) ∈≡m.
Finally suppose that (p, q) ∈≡m and (q, s) ∈≡m. Since p − q = km and
q − s = hm, we have p − s = (k + h)m, hence (p, s) ∈≡m. Thus, ≡m is
an equivalence relation on Z.
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Following common practice, for an equivalence ρ on a set S and for
x , y ∈ S we write xρy for (x , y) ∈ ρ.

Definition

Let ρ be an equivalence relation on a set S . The equivalence class of an
element x of S is the set

[x ]ρ = {u ∈ S | (x , u) ∈ ρ}.

By the reflexivity of ρ, (x , x) ∈ ρ for every x ∈ S . Thus, x ∈ [x ]ρ, hence
each equivalence class is non-empty.
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Lemma

Let ρ be an equivalence relation on a set S. We have y ∈ [x ]ρ if and only
if [y ]ρ = [x ]ρ.
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Proof

Suppose that y ∈ [x ]ρ and that u ∈ [y ]ρ. Then, we have (x , y) ∈ ρ and
(y , u) ∈ ρ. By transitivity, (x , u) ∈ ρ, that is, u ∈ [x ]ρ, which implies
[y ]ρ ⊆ [x ]ρ.
If v ∈ [x ]ρ, then (x , v) ∈ ρ. Since (x , y) ∈ ρ, by the symmetry and
transitivity of ρ we obtain (y , v) ∈ ρ, hence v ∈ [y ]ρ, so [x ]ρ ⊆ [y ]ρ. This
implies [x ]ρ = [y ]ρ.
Conversely, if [y ]ρ = [x ]ρ, we have y ∈ [x ]ρ because y ∈ [y ]ρ.
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Theorem

Let ρ be an equivalence relation on a set S. If [x ]ρ 6= [y ]ρ, then
[x ]ρ ∩ [y ]ρ = ∅.

Proof.

Let x , y ∈ S be such that [x ]ρ 6= [y ]ρ and suppose that z ∈ [x ]ρ ∩ [y ]ρ.
Since z ∈ [x ]ρ we have [z ]ρ = [x ]ρ; similarly, since z ∈ [y ]ρ we have
[z ]ρ = [y ]ρ, which means that [x ]ρ = [y ]ρ. This contradicts the
hypothesis.
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Definition

Let S be a non-emptyset. A partition on S is a non-empty collection
π = {Bi | i ∈ I} such that

Bi 6= ∅ for i ∈ I ;
i , j ∈ I and i 6= j implies Bi ∩ Bj = ∅;⋃

i∈I Bi = S .
The sets Bi are the blocks of the partition π.
The set of partitions of a set S is denoted by PART(S); the set of
partitions of S that have k blocks, where 1 6 k 6 |S | is denoted by
PARTk(S).
The partitions in PART2(S) are referred to as bipartitions.

Clearly, PART(S) =
⋃|S |

k=1 PARTk(S).
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Example

The partition of a set S that consists of all singletons {x}, where x ∈ S is
denoted by αS ; the partition of S that contains one block, namely S , is
denoted by ωS . We have PART|S| = {αS} and PART1(S) = {ωS}.
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Example

Let ρ be an equivalence relation on a set S . The set of equivalence classes
of ρ is a partition of the set S . Indeed, we saw that S =

⋃
x∈S [x ]ρ, no

equivalence class is empty and, as we saw, any two equivalence classes are
disjoint.
The set of equivalence classes of an equivalence relation is known as the
quotient set of S by ρ and is denoted by S/ρ. The partition generated by
the equivalence relation is also denoted by πρ.
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Example

Let m ∈ P and let Bi be the set of all members n of P such that the
remainder of the division of n by m equals i , where 0 6 i 6 m − 1. It is
immediate that the collection {B0,B1, . . . ,Bm−1} is a partition of the set
P. For instance, if m = 3, we have B0 = {3, 6, 9, 12 . . .},
B1 = {1, 4, 7, 10, . . .}, and B2 = {2, 5, 8, 11, . . .}.
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Theorem

Let π = {Bi | i ∈ I} be a partition of the set S. The relation ρπ defined
by

ρπ = {(x , y) ∈ S × S | {x , y} ⊆ Bi ∈ π}

is an equivalence on S.
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Proof

Each x belongs to a block Bi of π, so (x , x) ∈ ρπ for every x ∈ S , which
means that ρπ is reflexive.
If (x , y) ∈ ρπ, then {x , y} ⊆ Bi , which obviously implies (y , x) ∈ ρπ, so ρπ
is symmetric.
Finally, if (x , y) ∈ ρπ and (y , z) ∈ ρπ, there exist Bi ,Bj ∈ π such that
{x , y} ⊆ Bi and {y , z} ⊆ Bj . Thus, Bi ∩Bj 6= ∅ (because both contain y),
which implies Bi = Bj . Therefore, {x , z} ⊆ Bi = Bj , hence (x , z) ∈ ρπ,
which allows us to conclude that ρπ is an equivalence relation.
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Corollary

Let π ∈ PART(S) and let ρ ∈ EQ(S) ρ = ρπρ and π = πρπ .

Proof.

The equalities follow easily from the definitions of πρ and ρπ.
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Example

Note that πιS = αS , πθS = ωS and ραS
= ιS , ρωS

= θS .

We write x ≡ y(π) to denote that (x , y) ∈ ρπ.
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Denote by (x)n the n-degree polynomial

(x)n = x(x − 1) · · · (x − n + 1).

The coefficients of this polynomial

(x)n = s(n, n)xn + s(n, n − 1)xn−1 + · · ·+ s(n, i)x i + · · ·+ s(n, 0)

are known as the Stirling numbers of the first kind.
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Theorem

We have:

s(n, 0) = 0,

s(n, n) = 1,

s(n + 1, k) = s(n, k − 1)− ns(n, k).

Proof.

The verification of the first two equalities is immediate. The third equality
follows by observing that (x)n+1 = (x)n(x − n) and seeking the coefficient
of xk on both sides.

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretical Preliminaries 40 / 1



Let S be a set having n elements. We are interested in the number of
partitions of S that have k blocks. We begin by counting the number of
onto functions of the form f : A −→ B, where |A| = n, |B| = k , and
n > k.

Lemma

Let A and B be two sets, where |A| = n, |B| = k, and n > k. The number
of surjective functions from A to B is given by

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n.
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Proof

There are kn functions of the form f : A −→ B.
We begin by determining the number of functions that are not surjective.
Suppose that B = {b1, . . . , bk}, and let Fj = {f : A −→ B | bj 6∈ f (A)}
for 1 6 j 6 k. A function is not surjective if it belongs to one of the sets
Fj . Thus, we need to evaluate |

⋃k
j=1 Fj |. By using the inclusion-exclusion

principle, we can write:∣∣∣∣∣∣
k⋃

j=1

Fj

∣∣∣∣∣∣ =
k∑

j1=1

|Fj1 | −
k∑

j1,j2=1

|Fj1 ∩ Fj2 |

+
k∑

j1,j2,j3=1

|Fj1 ∩ Fj2 ∩ Fj3 | − · · · −+(−1)k |F1 ∩ F2 ∩ · · · ∩ Fk |.
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Proof (cont’d)

Note that the set |Fj−1 ∩ Fj2 ∩ · · · ∩ Fjp | is actually the set of functions
defined on A with values in the set B − {yj1 , yj2 , . . . , yjp}, and there are

(k − p)n such functions. Since there are
(k
p

)
choices for the set

{j1, j2, . . . , jp}, it follows that there are(
k

1

)
(k − 1)n −

(
k

2

)
(k − 2)n +

(
k

3

)
(k − 3)n − · · ·+ (−1)k

(
k

k − 1

)
functions that are not surjective.
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Proof (cont’d)

Thus, we can conclude that there are

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n

= kn −
(
k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n − · · ·+ (−1)k−1

(
k

k − 1

)
surjective functions from A to B.
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Theorem

The number of partitions of a set S that have k blocks (k ≤ n) is given by

1

k!

k−1∑
j=0

(−1)j
(
k

j

)
(k − j)n.
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Proof

Note that there are k! distinct onto functions that have the same kernel
partition. Indeed, given a surjective function f : A −→ B, one can obtain a
function g that has the same partition as f by defining g(a) = p(f (a)),
where p is a permutation of the set B, that is, a bijection p : B −→ B.
Since there are k! such bijections, it follows that the number of partitions
is 1

k!

∑k−1
j=0 (−1)j

(k
j

)
(k − j)n.
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The numbers S(n, k) defined by

S(n, k) =


1
k!

∑k−1
j=0 (−1)j

(k
j

)
(k − j)n if n > k > 0,

1 if n = k = 0,

0 in other cases.

for n, k ∈ N and are known as the Stirling numbers of the second kind.
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Example

Note that S(n, 1) = 1 and S(n, n) = 1 because only one partition of a set
with n elements, ωS , has one block, and only one partition of a set with n
elements, αS has n blocks which are singletons.
The number of partitions of a 4-element set having two blocks is

S(4, 2) =
1

2!

1∑
j=0

(
2

j

)
(2− j)4

=
1

2!

((
2

0

)
· 24 −

(
2

1

)
· 14
)

= 7.

Namely, these partitions are:

{{1}, {2, 3, 4}}, {{2}, {1, 3, 4}}, {{3}, {1, 2, 4}}, {{4}, {1, 2, 3}},
{{1, 2}, {3, 4}}, {1, 3}, {2, 4}}, {{1, 4}, {2, 3}}.
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We claim that

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1).

Indeed, observe that a partition π of the set {1, . . . , n − 1} can be
transformed into a partition of {1, . . . , n} be adjoining n to one of the
blocks of π or by increasing the number of blocks by 1 and making {n} a
block.
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Theorem

For every n > 1 we have mn =
∑n

j=1 S(n, j)(m)j .
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Proof

Let A and B be two finite sets such that |A| = n and |B| = m. There are
mn functions f : A −→ B. These functions can be classified depending on
the size of their range f (A). If g : A −→ B is a function such that
|g(A)| = j , then g can be regarded as a surjection from A to g(A). Since
there are j!S(n, j) such surjective functions and there are

(m
j

)
subsets of B

that have j elements, we can write

mn =
m∑
j=1

(
m

j

)
j!S(n, j)

=
m∑
j=1

m(m − 1) · · · (m − j + 1)S(n, j) =
m∑
j=1

(m)nS(n, j)

for every m > 1.
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The Bell number Bn is the total number of partitions of a set of n objects,
that is,

Bn =
n∑

k=1

S(n, k).

Example

For n = 4, we have shown that there exist 7 partitions having two blocks,
one partition with one block and one partition with 4 blocks. It is easy to
see that there are 6 partitions with 3 blocks, so B4 = 1 + 7 + 6 + 1 = 15.

The first 10 values of the Bell numbers are given below.
n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4140 21147 115975
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Definition

A relation ρ is a partial order on a set S if ρ is reflexive, antisymmetric and
transitive.
A partially ordered set (or, a poset) is a pair (S , ρ), where ρ is a partial
order on S .

In general, we denote partial orders using the symbol “6” or similar
symbols; furthermore, instead of writing (x , y) ∈6, we write x 6 y .
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Example

Let T be a set. The set of subsets of T , P(T ) equippeed with the set
inclusion “⊆” yields the poset (P(T ),⊆).
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Example

The pair (P, |), where “|” is the divisibility relation is a poset defined by
p|q if there exists k ∈ P such that q = pk. Indeed, we have p|p for every
p ∈ P, so “|” is reflexive. If p|q and q|p, we have q = pk and p = qh,
hence hk = 1 which implies h = k = 1. Thus, p = q, which shows that
“|” is antisymmetric. Finally, if p|q and q|r we have q = pk and r = qh
for some k, h ∈ P. Thus, r = pkh, so p|r .
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If (S , ρ) is a poset and T ⊆ S , it is easy to see that the relation
ρT = ρ ∩ (T × T ) is itself a partial order; we will refer to it as the trace of
(S , ρ) on T . Often, we will use the same symbol ρ instead of ρT to
denote the partial order on T .

Example

Let S ⊆ P be the set {1, 2, 3, 4, 5, 6}. The trace of P on S consists of the
pairs:

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4),
(5, 5), (6, 6).
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Definition

A totally ordered set is a pair (S , ρ), where ρ is a partial order with the
additional property that for all x , y ∈ S we have either (x , y) ∈ ρ, or
(y , x) ∈ ρ. The relation ρ is refered to as a total order.

Example

The real numbers R equipped with the standard less-than-or-equal relation
6 is a totally ordered set.
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Definition

A sequence x ∈ Seq(S) is a subsequence of a sequence y ∈ Seq(S), if
y = uxv for some sequences u, v ∈ Seq(S). This is denoted by x v y.

Example

Let S = {0, 1}. The sequence y = 1011 is a subsequence of
x = 010110110101100.

The relation “v” is a partial order on Seq(S).
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Definition

Let (P,6) be a poset. An element y covers an element x of P if x 6 y
and there is no z ∈ P, z 6= x and z 6= y such that x 6 z 6 y .
We denote the fact that y covers x by x ≺ y .

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretical Preliminaries 59 / 1



Example

Let (P, |) be the poset of positive numbers equipped with the divisibility
relation. We have p ≺ y if x is none of the largest divisors of y . For
example, we have 6 ≺ 12 beacuse there is no number z distinct from 6
and 12 such that 6|z and z |12. Note that 3|12 but 3 6≺ 12.

Finite posets can be represented graphically using Hasse diagrams. Each
element is represented by a dot. If x , y are elements of a poset (P,6) and
x ≺ y , then the dot representing y is placed at a greater height than x
and a link between the dots is drawn.
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Example

The Hasse diagram of the poset ({1, . . . , 12}, |) is given below:

1

2 3

4

5

6

7

8

9 10

11

12
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Definition

Let (S ,6) be a poset and let T be a subset of S . The set of upper
bounds of T is the set

T s = {y ∈ S | for all x ∈ T we have x 6 y}.

The set of lower bounds of T is the set

T i = {y ∈ S | for all x ∈ T we have y 6 x}.
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If T1,T2 are two subsets of S , T1 ⊆ T2 implies T s
2 ⊆ T s

1 and T i
2 ⊆ T i

1.

Theorem

Let (S ,6) be a poset and let T be a subset of S. The sets T ∩ T s and
T ∩ T i contain at most one element of S.

Proof.

Suppose that x , y ∈ T ∩ T s . Since x ∈ T and y ∈ T s , it follows that
x 6 y . On other hand, since x ∈ T s and y ∈ T we have y 6 x . Therefore,
x = y , which implies that the set T ∩ T s contains at most one element.
The argument for T ∩ T i is similar.

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretical Preliminaries 63 / 1



Definition

Let (S ,6) be a poset and let T be a subset of S . If T ∩T s = {u}, then u
is the largest element of set T .
If T ∩ T i = {v}, then v is the least element of set T .

Example

Not every subset of a poset has a least or a greatest element. The subset
{1, 2, 3, 6} of the poset ({1, . . . , 12}, |) considered before has 1 as its least
element and 6 as the largest element. In contrast, the set {4, 5, 6} has
neither a least nor a largest element.
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If T is a subset of a poset (S ,6) we will consider the sets (T s)i and (T i )s

denoted by T si and T is , respectively.
Observe that the set T s ∩ T si = T s ∩ (T s)i may contain at most one
element, by a previous observation applied to the set T s . Similarly, the set
T i ∩ T is may contain at most one element.
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Definition

Let (S ,6) be a poset and let T be a subset of S . If T s ∩ T si = {u}, u is
the supremum of the set T .
If T i ∩ T is = {v}, v is the infimum of T .

The supremum and infimum of a set T (if they exist) are unique and are
denoted by supT and inf T , respectively.
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Example

In the poset (P(T ),⊆) introduced in before, for every C ∈ P(X ) we have

inf C =
⋂
C and sup C =

⋃
C.
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Example

In the poset (P, |), we have

inf{p, q} = gcd(p, q) and sup{p, q} = lcm(p, q),

where gcd(p, q) is the greatest common divisor of p and q, and lcm(p, q)
is the least common multiple of p and q.
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Definition

A poset (S ,6) is a lattice if for every two elements x , y ∈ S there exist
inf{x , y} and sup{x , y}. If (S ,6) is a lattice we use the notations

x ∧ y = inf{x , y} and x ∨ y = sup{x , y}.

The element x ∧ y is referred to as the meet of x and y ; x ∨ y is the join
of x and y .
A poset (S ,6) is a complete lattice if for every X ∈ P(S) there exist inf X
and supX .
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Example

(P, |) is a lattice;
(P(T ),⊆) is a complete lattice.
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Note that if (S ,6) is a complete lattice and S 6= ∅, then this poset has a
least element 0S = inf S , and a greatest element 1S = supS .

Theorem

Let (S ,6) be a complete lattice and let W be a subset of S such that
1S ∈W and T ⊆W implies that inf T in S belongs to W . Then W is a
complete lattice.
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Proof

For every nonvoid subset T of W , inf T ∈W and is the infimum of T in
S . Let U be a subset of W defined as U = T s . We have U 6= ∅ because
1S ∈W . Then, inf U ∈W is also an upper bound of T , and is actually
the least upper bound of U. Thus, (W ,6) is a complete lattice.
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Corollary

Let K be a closure system on a set S. The subsets of S in K form a
complete lattice in which inf C =

⋂
C and

sup C =
⋂
{T ∈ P | C ⊆ T for every C ∈ K}.
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Let π, σ be two partitions of S . We write π 6 σ if each block B of π is
included in a block C of σ.

Theorem

The pair (PART(S),6) is a partially ordered set.
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Proof

The relation “6” is obviously reflexive.
Suppose that we have both π 6 σ and σ 6 π. Then, a block B of π is
included in a block C of σ, and C , in turn, is included in a block B ′ of C .
Thus, B ⊆ C ⊆ B ′, which implies B = C = B ′ because no block of π can
be included into another block. Thus, π ⊆ σ. In the same manner, starting
from a block C of σ we can show that σ ⊆ π, so π = σ. This shows that
the relation “6” is antisymmetric. It is immediate that “6” is transitive
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Theorem

Let π, σ ∈ PART(S) be two partitions, π = {Bi | i ∈ I} and
σ = {Cj | j ∈ J}. We have π 6 σ if and only if for each j ∈ J there exists
a subset Ij of I such that Cj =

⋃
{Bi | i ∈ Ij}.

Suppose that π 6 σ and let C ∈ σ. Suppose that B ∩ C 6= ∅. Since each
block B of π is included in a block C ′ of σ we must have C ′ = C because,
otherwise C ′ and C would have a non-empty intersection. Thus, if a block
B of π has a non-empty intersection with a block C of σ we must have
B ⊆ C . This implies that a block C of σ is a union of block of π.
The converse implication is immediate.
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Example

If π ∈ PART(S) we have αS 6 π 6 ωS . Thus, αS is the smallest element
of (PART(S),6) and ωS is its largest element.
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Definition

Let π, σ be two partitions of a set S . The partition σ covers π if π < σ
and there is no partition τ ∈ PART(S) such that π < τ < σ.
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Theorem

Let π, σ be two partitions of a set S. The partition σ covers π if and only
if there exists a block C of σ that is the union of two blocks B and B ′ of
π, and every other block of σ that is distinct of C is a block of π.
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Proof

Suppose that σ is a partition that covers the partition π. Since π 6 σ,
every block of σ is a union of blocks of π. Suppose that there exists a
block E of σ that is the union of more than two blocks of π; that is,
E =

⋃
{Bi | i ∈ I}, where |I | > 3, and let Bi1 ,Bi2 ,Bi3 be three blocks of π

included in E . Consider the partitions

σ1 = {C ∈ σ | C 6= E} ∪ {Bi1 ,Bi2 ,Bi3},
σ2 = {C ∈ σ | C 6= E} ∪ {Bi1 ∪ Bi2 ,Bi3}.

It is easy to see that π 6 σ1 < σ2 < σ, which contradicts the fact that σ
covers π. Thus, each block of σ is the union of at most two blocks of π.
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Proof (cont’d)

Suppose that σ contains two blocks C ′ and C ′′ that are unions of two
blocks of π, namely C ′ = Bi0 ∪ Bi1 and C ′′ = Bi2 ∪ Bi3 . Define the
partitions

σ′ = {C ∈ σ | C 6∈ {C ′,C ′′}} ∪ {C ′,Bi2 ,Bi3},
σ′′ = {C ∈ σ | C 6∈ {C ′,C ′′}} ∪ {Bi1 ,Bi2 ,C

′′}.

Since π < σ′, σ′′ < σ, this contradicts the fact that σ covers π. Thus, we
obtain the conclusion of the theorem.
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Hasse diagrams

Example

The Hasse diagram of (PART({1, 2, 3}),6) is given below:

{{1}, {2}, {3}}

{{1, 2}, {3}} {{1}, {2, 3}} {{1, 3}, {2}}

{{1, 2, 3}}
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Theorem

The posets (EQUIV(S),⊆) and (PART(S),6) are isomorphic.

Let f : EQUIV(S) −→ PART(S) be the mapping defined by f (ρ) = S/ρ.
We need to show that f is a monotonic bijective mapping and that its
inverse mapping f −1 is also monotonic.
The bijectivity of f follows immediately from the remarks that precede the
theorem. Let ρ0, ρ1 be two equivalences such that ρ0 ⊆ ρ1 and let
S/ρ0 = {Bi | i ∈ I}, S/ρ1 = {Cj | j ∈ J}. Let Bi be a block in S/ρ0 and
assume that Bi = [x ]ρ0 . We have y ∈ Bi if and only if (x , y) ∈ ρ0, so
(x , y) ∈ ρ1. Therefore, y ∈ [x ]ρ1 , which shows that every block B ∈ S/ρ0
is included in a block C ∈ ρ1. This shows that f (ρ0) 6 f (ρ1), so f is
indeed monotonic.
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Let {ρi | i ∈ I} ⊆ EQUIV(S) be a collection of equivalences. Then,
inf{ρi | i ∈ I} =

⋂
i∈I ρi .

Definition

Let S be a set and let ρ, τ ∈ EQUIV(S). A (ρ, τ)-alternating sequence
that joins x to y is a sequence (s0, s1, . . . , sn) such that x = s0, y = sn,
(si , si+1) ∈ ρ for every even i and (si , si+1) ∈ τ for every odd i , where
0 6 i 6 n − 1.
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Lemma

Let S be a set and let ρ, τ ∈ EQUIV(S). If s and z are two
(ρ, τ)-alternating sequences joining x to y and y to z, respectively, then
there exists a (ρ, τ)-alternating sequence that joins x to z.
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Proof

Let (s0, . . . , sn) be a (ρ, τ)-alternating sequences joining x to y and
(w0, . . . ,wm) a (ρ, τ)-alternating sequences joining y to z , where x = s0,
sn = w0 = y and wm = z . If (sn−1, sn) ∈ τ , then the sequence
(s0, . . . , sn,w1, . . . ,wm) is a (ρ, τ)-alternating sequence joining x to z .
Otherwise, that is, if (sn−1, sn) ∈ ρ, then taking into account the reflexivity
of τ we have (sn,w0) = (sn, sn) ∈ τ . In this case,
(s0, . . . , sn, sn,w1, . . . ,wm) is a (ρ, τ)-alternating sequence joining x to z .
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Theorem

Let S be a set and let ρ, τ ∈ EQUIV(S). If ξ is the relation that consists
of all pairs (x , y) ∈ S × S that can be joined by a (ρ, τ)-alternating
sequence, then ξ = sup{ρ, τ}.

Prof. Dan A. Simovici CS724: Topics in Algorithms Set-Theoretical Preliminaries 87 / 1



It is easy to verify that ξ is indeed an equivalence relation. Note that we
have both ρ ⊆ ξ and τ ⊆ ξ. Indeed, if (x , y) ∈ ρ, then (x , y , y) is a
(ρ, τ)-alternating sequence joining x to y . If (x , y) ∈ τ , then (x , x , y) is
the needed alternating sequence.
Let ζ ∈ EQUIV(S) such that ρ ⊆ ζ and τ ⊆ ζ. If (x , y) ∈ ξ, and
(s0, s1, . . . , sn) is a (ρ, τ)-alternating sequence such that x = s0, y = sn,
then each pair (si , si+1) belongs to ζ. By the transitivity property,
(x , y) ∈ ζ, so ξ ⊆ ζ. This implies that ξ = sup{ρ, τ}.
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If π, σ ∈ PART(S) both the infimum and the supremum of the set {π, σ}
exist and their description follows from the corresponding results that refer
to the equivalence relations. Namely, if π, σ ∈ PART(S), where
π = {Bi | i ∈ I} and σ = {Cj | j ∈ J}, the partition inf{π, σ} exists and
is given by

inf{π, σ} = {Bi ∩ Cj | i ∈ I , j ∈ J and Bi ∩ Cj 6= ∅}.

The partition inf{π, σ} will be denoted by π ∧ σ.
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A block of the partition sup{π, σ}, denoted by π ∨ σ, is an equivalence
class of the equivalence θ = sup{ρπ ∧ ρσ}. We have y ∈ [x ]θ if there exists
a sequence (s0, . . . , sn) ∈ Seq(S) such that x = s0, sn = y and successive
sets {si , si+1} are included, alternatively, in a block of π or in a block of σ.
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