CS724: Topics in Algorithms Set-Theoretical Preliminaries

Prof. Dan A. Simovici

< ∃ →

Set Notations

For a set S we denote by $\mathcal{P}(S)$ the set of its subsets. The set of all finite non-empty subsets of S is denoted by $\mathcal{F}(S)$.

For a finite set S the number of elements of S is denoted by |S|. The empty set is denoted by \emptyset .

We write $x \in S$ to denote the fact that x is an element of the set S. The usual symbols are used to denote set-theoretical operations: $A \cup B$ is the union of the sets A and B, $A \cap B$ is the intersection of the sets A and B, and A - B is the difference of the sets A and B.

The *symmetric difference* of the sets A and B is denoted by $A \oplus B$. We have

$$A\oplus B=(A-B)\cup (B-A).$$

↓ ∃ >

The Galois Field GF(2)

For set inclusion we write $A \subseteq B$ to denote that each element x of A also belongs to B.

Note that A = B if and only if $A \oplus B = \emptyset$.

Let GF(2) be the 2-element Galois field GF(2) = $\{0,1\}$. Addition " \oplus " and multiplication " \cdot " in this field are defined by the following two tables:

The Galois Field GF(2)

The set of subsets $\mathcal{P}(S)$ of a finite set $S = \{x_1, \ldots, x_n\}$ can be organized as a GF(2)-linear space by defining the sum of two subsets U, V as their symmetric difference

$$U\oplus V=(U-V)\cup (V-U).$$

Note that $U \oplus \emptyset = \emptyset \oplus U = U$. Multiplication with scalars in $\{0, 1\}$ is defined as

 $0 \ U = \emptyset$ and $1 \ U = U$,

for every $U \in \mathcal{P}(S)$.

↓ ∃ >

A basis in this linear space is the collection $\{\{x_1\}, \ldots, \{x_n\}\}$. Every subset U of S can be uniquely written as

$$U=a_1\{x_1\}\oplus\cdots\oplus a_n\{x_n\},$$

where

$$a_i = \begin{cases} 1 & \text{if } x_i \in U, \\ 0 & \text{if } x_i \notin \in U, \end{cases}$$

for $1 \le i \le n$. Thus, the GF(2)-linear space of subsets of S is of dimension n.

The Galois Field GF(2)

For $U = a_1\{x_1\} \oplus \cdots \oplus a_n\{x_n\}$ and $V = b_1\{x_1\} \oplus \cdots \oplus b_n\{x_n\}$ the *inner product* is be defined as

$$(U,V) = a_1b_1 \oplus \cdots \oplus a_nb_n.$$

Observe that (U, V) = 0 if and only if the set $U \cap V$ contains an even number of elements.

A non-empty set U can be orthogonal on itself if and only if it contains an even number of elements. Such a vector is referred to as being *self-orthogonal*.

Let $S = \{x_1, x_2, x_3, x_4, x_5\}$ and let $U = \{x_1, x_2, x_4, x_5\}$. We have $U = 1 \{x_1\} \oplus 1 \{x_2\} \oplus 0 \{x_3\} \oplus 1 \{x_4\} \oplus 1 \{x_5\}$, hence $(U, U) = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0$. Thus, U is a self-orthogonal vector in $\mathcal{P}(S)$.

- ∢ ≣ ▶

A subspace of $\mathcal{P}(S)$ is a collection \mathcal{T} of subsets of S such that $U, V \in \mathcal{T}$ implies $U \oplus V \in \mathcal{T}$. The collection \mathcal{T}^{\perp} that consists of subsets that are orthogonal on every set in the subspace \mathcal{T} is a subspace; we refer to \mathcal{T}^{\perp} as the *orthogonal subspace* of \mathcal{T} . Clearly, \mathcal{T}^{\perp} consists of those subsets W of S whose intersection with every set of \mathcal{T} contains an even number of elements. Suppose that \mathcal{T} is a subspace of $\mathcal{P}(S)$ of dimension k. There are ksubsets of S, U_1, \ldots, U_k such that every set $T \in \mathcal{T}$ can be written as

$$T = a_1 U_1 \oplus \cdots \oplus a_k U_k$$

3 K K 3 K 3

Definition

Let T be a subset of the *characteristic vector* of T is the vector $1_T \in \{0,1\}^n$ whose components $(1_T)_1, \ldots, (1_T)_n$ are defined by:

$$(1_T)_i = \begin{cases} 1 & \text{if } x_i \in T, \\ 0 & \text{if } x_i \notin T, \end{cases}$$

for $1 \leq i \leq n$.

The vector $\mathbf{0}_n$ whose components are all equal to 0 is the characteristic vector of the empty subset \emptyset of S.

Definition

Let S be a set. A sequence of length n on S is a mapping $\mathbf{s} : \{1, \dots, n\} \longrightarrow S$. The set of sequences of length n on S is denoted by $\mathbf{Seq}_n(S)$. An ordered pair on S is a sequence of length 2 on S; a singleton is a sequence of length 1. If \mathbf{s} is a sequence of length n on S and $\mathbf{s}(i) = x_i$ for $1 \le i \le n$, we write $\mathbf{s} = (x_1, \dots, x_n)$. The elements x_1, \dots, x_n are the components of \mathbf{s} .

The length of a sequence \mathbf{s} is denoted by $|\mathbf{s}|$.

- ∢ ≣ ▶

A sequence of natural numbers of length 6 is $\mathbf{s} = (6, 5, 2, 4, 9, 6)$. Note that in a sequence the same element of S may occur on multiple positions.

< 同 ▶

Counting Sequences

If S is a finite set containing m elements, then there are m^n sequences of length n for any $n \ge 1$. We extend the definition of sequences on S be defining the *null sequence on* S as the sequence λ that has no components, $\lambda = ()$. Note that there exists exactly one such sequence on S and this is consistent with the fact that $m^0 = 1$ for every $m \ge 1$. The set of sequences of elements of S is the set

$$\mathbf{Seq}(S) = \bigcup \{ \mathbf{Seq}_n(S) \mid n \ge 0 \}.$$

Operations with Sequences

If $\mathbf{s} = (s_1, s_2, \ldots, s_n)$ is a sequence in S, we refer to the sequence $\tilde{s} = (s_n, \ldots, s_2, s_1)$ as the *reversal* of the sequence s. Clearly $\tilde{\lambda} = \lambda$. If $\mathbf{s} = (s_1, \ldots, s_n)$ and $\mathbf{t} = (t_1, \ldots, t_m)$ are two sequences on a set S, their *concatenation* is the sequence $\mathbf{st} = (s_1, \ldots, s_n, t_1, \ldots, t_m)$. For the null sequence we define $\lambda \mathbf{s} = \mathbf{s}\lambda = \mathbf{s}$ for every $\mathbf{s} \in \mathbf{Seq}(S)$. Note that $|\mathbf{st}| = |\mathbf{s}| + |\mathbf{t}|$ for all sequences $\mathbf{s}, \mathbf{t} \in \mathbf{Seq}(S)$. Note that sequence concatenation is not a commutative operation in general.

Let
$$\mathbf{s} = (1, 2, 3), \mathbf{t} = (4, 5)$$
. We have
 $\mathbf{st} = (1, 2, 3, 4, 5) \text{ and } \mathbf{ts} = (4, 5, 1, 2, 3),$
so $\mathbf{st} \neq \mathbf{ts}$

Sequence concatenation is an associative operation on Seq(S), that is (st)u = s(tu) for every $s, t, u \in Seq(S)$.

.⊒ →

Operations with Collections of Sets

Let $C = \{S_i \mid i \in I\}$ be a collection of sets. Its union is the set U defined as

$$U=\bigcup_{i\in I}S_i.$$

Note that $\mathcal{C} \subseteq \mathcal{C}'$ implies $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{C}'$.

Unlike the union, the intersection is defined only for collections that consist of subsets of a set S.

If C is a collection of subsets of S, that is, if $C \subseteq \mathcal{P}(S)$. the intersection of C is the set of all elements of S that belong to every set of C. The intersection of C is denoted by $\bigcap C$.

If C and C' are two collections of subsets of a set S and $C \subseteq C'$, then $\bigcap C' \subseteq \bigcap C$. If \emptyset is the empty collection of subsets of S, we define $\bigcap \emptyset = S$.

Definition

A *closure system on the set* S is a collection \mathcal{K} of subsets of S such that for every collection of subsets \mathcal{C} such that $\mathcal{C} \subseteq \mathcal{K}$ we have $\bigcap \mathcal{C} \in \mathcal{K}$.

Note that if \mathcal{K} is a closure system on a set S, then $S \in \mathcal{K}$ because S is the intersection of the empty collection of subsets of \mathcal{K} .

Definition

Let \mathcal{K} be a closure system on a set S and let T be a subset of S. The closure of T relative to the closure system \mathcal{K} is the set $\mathbf{K}(T) = \bigcap \{ U \in \mathcal{K} \mid T \subseteq U \}.$

For every set T the collection $C_T = \{U \in \mathcal{K} \mid T \subseteq U\}$ is non-empty because it includes at least S. The set $\bigcap C_T$ is denoted by K(T) and is referred to as the *closure* of T.

To emphasize that the closure of T is computed relative to the closure system \mathcal{K} we may denote this closure by $\mathbf{K}_{\mathcal{K}}(T)$.

- ₹ 🖬 🕨

A subset *E* of \mathbb{R} is said to be symmetric if $x \in E$ if and only if $-x \in E$. Let $\{E_i \mid i \in I\}$ be a collection of symmetric subsets of \mathbb{R} . It is easy to see that $\bigcap \{E_i \mid i \in I\}$ is a symmetric set. Note that \mathbb{R} itself is symmetric. Thus, the collection \mathcal{E} of symmetric subsets of \mathbb{R} is a closure system. For a subset *T* of \mathbb{R} the set $\mathbf{K}_{\mathcal{E}}(T)$ is the smallest symmetric set that includes *T*.

Definition

A *relation* on the set S is a set of ordered pairs of S.

The set of relations on S is denoted by rel(S).

Since relations on *S* are sets of pairs on *S* they can be involved in the usual set-theoretical operations: union, intersection, difference, etc. If $\rho, \sigma \in \operatorname{rel}(S)$, the union, intersection, and difference of ρ and σ are denoted by $\rho \cup \sigma, \rho \cap \sigma$, and $\rho - \sigma$, respectively. Also, $\rho \subseteq \sigma$ denotes the inclusion of the set of pairs ρ into the set of pairs σ .

Two important relations on S are the *diagonal relation*

$$\iota_{\mathcal{S}} = \{(x,x) \mid x \in \mathcal{S}\},\$$

and the total relation

$$\theta_{\mathcal{S}} = \{ (x, y) \mid x, y \in \mathcal{S} \}.$$

Definition

Let $\rho, \sigma \in \operatorname{rel}(S)$. The *product* of ρ and σ is the relation $\rho\sigma$ given by

 $\rho\sigma = \{(x, z) \in \mathbf{Seq}_2(S) \mid (x, y) \in \rho \text{ and } (y, z) \in \sigma\}.$

Definition

A relation $\rho \in \mathbf{rel}(S)$ is:

- *reflexive*, if $\iota_{S} \subseteq \rho$;
- symmetric, if $(x, y) \in \rho$ is equivalent to $(y, x) \in \rho$;
- antisymmetric, if $(x, y) \in \rho$ and $(y, x) \in \rho$ implies x = y;
- *transitive*, if $(x, y), (y, z) \in \rho$ implies $(x, z) \in \rho$,

for all $x, y, z \in S$.

If $\rho \in \operatorname{rel}(S)$, the *inverse* of ρ is the relation

$$\rho^{-1} = \{(y, x) \in S \times S \mid (x, y) \in \rho\}.$$

The *n*th *power of a relation* ρ , where $\rho \subseteq S \times S$ is defined inductively as

$$\rho^0 = \iota_S,$$

$$\rho^{n+1} = \rho^n \rho$$

for $n \ge 0$. If ρ is a relation on S, then $(x, x) \in \rho^0$ for every $x \in S$. An easy argument by induction on $n \in \mathbb{N}$ shows that $(x, y) \in \rho^n$ if and only if there exists a sequence $\mathbf{z} = (z_0, z_1, \ldots, z_n)$ of length n + 1 such that $x = z_0$, $(z_i, z_{i+1}) \in \rho$ for $0 \le i \le n - 1$ and $z_n = y$.

글 🖌 🖌 글 🛌

Properties of relations can be expressed using the operations just introduced. For example, a relation ρ on a set S is symmetric if and only if $\rho^{-1} = \rho$; a relation ρ is transitive if $\rho^2 \subseteq \rho$.

Definition

An *equivalence relation* on a set S is a relation ρ , $\rho \subseteq S \times S$ that is reflexive, symmetric, and transitive. The set of equivalence relations on S is denoted by EQ(S).

Both ι_S and θ_S are equivalence relations on S; moreover, for any equivalence $\rho \in EQ(S)$ we have $\iota_S \subseteq \rho \subset \theta_S$.

Let *m* be a positive integer. Define the relation \equiv_m on \mathbb{Z} as consisting of those pairs $(p,q) \in \mathbb{Z} \times \mathbb{Z}$ if p - q = km for some $k \in \mathbb{Z}$. In other words, we have $(p,q) \in \equiv_m$ if p - q is divisible by *m*. Note that $(r,r) \in \equiv_m$ because r - r = 0 is divisible by *m*. If p - q = km for some $k \in \mathbb{Z}$, then q - p = (-k)m, so $(p,q) \in \equiv_m$ implies $(q,p) \in \equiv_m$. Finally suppose that $(p,q) \in \equiv_m$ and $(q,s) \in \equiv_m$. Since p - q = km and q - s = hm, we have p - s = (k + h)m, hence $(p, s) \in \equiv_m$. Thus, \equiv_m is an equivalence relation on \mathbb{Z} .

↓ ∃ >

Following common practice, for an equivalence ρ on a set S and for $x, y \in S$ we write $x\rho y$ for $(x, y) \in \rho$.

Definition

Let ρ be an equivalence relation on a set S. The *equivalence class* of an element x of S is the set

$$[x]_{\rho} = \{ u \in S \mid (x, u) \in \rho \}.$$

By the reflexivity of ρ , $(x, x) \in \rho$ for every $x \in S$. Thus, $x \in [x]_{\rho}$, hence each equivalence class is non-empty.

Lemma

Let ρ be an equivalence relation on a set S. We have $y \in [x]_{\rho}$ if and only if $[y]_{\rho} = [x]_{\rho}$.

< 17 ▶

э

Proof

Suppose that $y \in [x]_{\rho}$ and that $u \in [y]_{\rho}$. Then, we have $(x, y) \in \rho$ and $(y, u) \in \rho$. By transitivity, $(x, u) \in \rho$, that is, $u \in [x]_{\rho}$, which implies $[y]_{\rho} \subseteq [x]_{\rho}$. If $v \in [x]_{\rho}$, then $(x, v) \in \rho$. Since $(x, y) \in \rho$, by the symmetry and transitivity of ρ we obtain $(y, v) \in \rho$, hence $v \in [y]_{\rho}$, so $[x]_{\rho} \subseteq [y]_{\rho}$. This implies $[x]_{\rho} = [y]_{\rho}$. Conversely, if $[y]_{\rho} = [x]_{\rho}$, we have $y \in [x]_{\rho}$ because $y \in [y]_{\rho}$.

Theorem

Let ρ be an equivalence relation on a set S. If $[x]_{\rho} \neq [y]_{\rho}$, then $[x]_{\rho} \cap [y]_{\rho} = \emptyset$.

Proof.

Let $x, y \in S$ be such that $[x]_{\rho} \neq [y]_{\rho}$ and suppose that $z \in [x]_{\rho} \cap [y]_{\rho}$. Since $z \in [x]_{\rho}$ we have $[z]_{\rho} = [x]_{\rho}$; similarly, since $z \in [y]_{\rho}$ we have $[z]_{\rho} = [y]_{\rho}$, which means that $[x]_{\rho} = [y]_{\rho}$. This contradicts the hypothesis.

Definition

Let *S* be a non-emptyset. A *partition* on *S* is a non-empty collection $\pi = \{B_i \mid i \in I\}$ such that

- $B_i \neq \emptyset$ for $i \in I$;
- $i, j \in I$ and $i \neq j$ implies $B_i \cap B_j = \emptyset$;

•
$$\bigcup_{i\in I} B_i = S$$
.

The sets B_i are the *blocks* of the partition π .

The set of partitions of a set S is denoted by PART(S); the set of partitions of S that have k blocks, where $1 \le k \le |S|$ is denoted by $PART_k(S)$.

The partitions in $PART_2(S)$ are referred to as *bipartitions*.

Clearly, $PART(S) = \bigcup_{k=1}^{|S|} PART_k(S)$.

The partition of a set *S* that consists of all singletons $\{x\}$, where $x \in S$ is denoted by α_S ; the partition of *S* that contains one block, namely *S*, is denoted by ω_S . We have $PART_{|S|} = \{\alpha_S\}$ and $PART_1(S) = \{\omega_S\}$.

- ∢ ⊒ →

Let ρ be an equivalence relation on a set S. The set of equivalence classes of ρ is a partition of the set S. Indeed, we saw that $S = \bigcup_{x \in S} [x]_{\rho}$, no equivalence class is empty and, as we saw, any two equivalence classes are disjoint.

The set of equivalence classes of an equivalence relation is known as the *quotient set* of S by ρ and is denoted by S/ρ . The partition generated by the equivalence relation is also denoted by π_{ρ} .

Let $m \in \mathbb{P}$ and let B_i be the set of all members n of \mathbb{P} such that the remainder of the division of n by m equals i, where $0 \leq i \leq m-1$. It is immediate that the collection $\{B_0, B_1, \ldots, B_{m-1}\}$ is a partition of the set \mathbb{P} . For instance, if m = 3, we have $B_0 = \{3, 6, 9, 12 \ldots\}$, $B_1 = \{1, 4, 7, 10, \ldots\}$, and $B_2 = \{2, 5, 8, 11, \ldots\}$.

Theorem

Let $\pi = \{B_i \mid i \in I\}$ be a partition of the set *S*. The relation ρ_{π} defined by

$$\rho_{\pi} = \{(x, y) \in S \times S \mid \{x, y\} \subseteq B_i \in \pi\}$$

is an equivalence on S.

< 17 ▶

э

Proof

Each x belongs to a block B_i of π , so $(x, x) \in \rho_{\pi}$ for every $x \in S$, which means that ρ_{π} is reflexive.

If $(x, y) \in \rho_{\pi}$, then $\{x, y\} \subseteq B_i$, which obviously implies $(y, x) \in \rho_{\pi}$, so ρ_{π} is symmetric.

Finally, if $(x, y) \in \rho_{\pi}$ and $(y, z) \in \rho_{\pi}$, there exist $B_i, B_j \in \pi$ such that $\{x, y\} \subseteq B_i$ and $\{y, z\} \subseteq B_j$. Thus, $B_i \cap B_j \neq \emptyset$ (because both contain y), which implies $B_i = B_j$. Therefore, $\{x, z\} \subseteq B_i = B_j$, hence $(x, z) \in \rho_{\pi}$, which allows us to conclude that ρ_{π} is an equivalence relation.

Corollary

Let
$$\pi \in {\it PART}({\it S})$$
 and let $ho \in {\sf EQ}({\it S})$ $ho =
ho_{\pi_
ho}$ and $\pi = \pi_{
ho_\pi}.$

Proof.

The equalities follow easily from the definitions of π_{ρ} and ρ_{π} .

< 同 ▶

э

Note that $\pi_{\iota_S} = \alpha_S$, $\pi_{\theta_S} = \omega_S$ and $\rho_{\alpha_S} = \iota_S$, $\rho_{\omega_S} = \theta_S$.

We write $x \equiv y(\pi)$ to denote that $(x, y) \in \rho_{\pi}$.

э

Denote by $(x)_n$ the *n*-degree polynomial

$$(x)_n = x(x-1)\cdots(x-n+1).$$

The coefficients of this polynomial

$$(x)_n = s(n,n)x^n + s(n,n-1)x^{n-1} + \cdots + s(n,i)x^i + \cdots + s(n,0)$$

are known as the Stirling numbers of the first kind.

Theorem

We have:

$$s(n,0) = 0,$$

 $s(n,n) = 1,$
 $s(n+1,k) = s(n,k-1) - ns(n,k).$

Proof.

The verification of the first two equalities is immediate. The third equality follows by observing that $(x)_{n+1} = (x)_n(x - n)$ and seeking the coefficient of x^k on both sides.

< ∃⇒

Let *S* be a set having *n* elements. We are interested in the number of partitions of *S* that have *k* blocks. We begin by counting the number of onto functions of the form $f : A \longrightarrow B$, where |A| = n, |B| = k, and $n \ge k$.

Lemma

Let A and B be two sets, where |A| = n, |B| = k, and $n \ge k$. The number of surjective functions from A to B is given by

$$\sum_{j=0}^{k-1} (-1)^j \binom{k}{j} (k-j)^n.$$

Proof

There are k^n functions of the form $f : A \longrightarrow B$. We begin by determining the number of functions that are not surjective. Suppose that $B = \{b_1, \ldots, b_k\}$, and let $F_j = \{f : A \longrightarrow B \mid b_j \notin f(A)\}$ for $1 \leq j \leq k$. A function is not surjective if it belongs to one of the sets F_j . Thus, we need to evaluate $|\bigcup_{j=1}^k F_j|$. By using the inclusion-exclusion principle, we can write:

$$\begin{vmatrix} \bigcup_{j=1}^{k} F_{j} \\ = \sum_{j_{1}=1}^{k} |F_{j_{1}}| - \sum_{j_{1}, j_{2}=1}^{k} |F_{j_{1}} \cap F_{j_{2}}| \\ + \sum_{j_{1}, j_{2}, j_{3}=1}^{k} |F_{j_{1}} \cap F_{j_{2}} \cap F_{j_{3}}| - \dots - + (-1)^{k} |F_{1} \cap F_{2} \cap \dots \cap F_{k}|. \end{cases}$$

Proof (cont'd)

Note that the set $|F_{j-1} \cap F_{j_2} \cap \cdots \cap F_{j_p}|$ is actually the set of functions defined on A with values in the set $B - \{y_{j_1}, y_{j_2}, \dots, y_{j_p}\}$, and there are $(k-p)^n$ such functions. Since there are $\binom{k}{p}$ choices for the set $\{j_1, j_2, \dots, j_p\}$, it follows that there are

$$\binom{k}{1}(k-1)^n - \binom{k}{2}(k-2)^n + \binom{k}{3}(k-3)^n - \dots + (-1)^k \binom{k}{k-1}$$

functions that are not surjective.

Proof (cont'd)

Thus, we can conclude that there are

$$\sum_{j=0}^{k-1} (-1)^j \binom{k}{j} (k-j)^n$$

= $k^n - \binom{k}{1} (k-1)^n + \binom{k}{2} (k-2)^n - \dots + (-1)^{k-1} \binom{k}{k-1}$

surjective functions from A to B.

< 17 ▶

Э

Theorem

The number of partitions of a set S that have k blocks $(k \le n)$ is given by

$$\frac{1}{k!}\sum_{j=0}^{k-1}(-1)^{j}\binom{k}{j}(k-j)^{n}.$$

Proof

Note that there are k! distinct onto functions that have the same kernel partition. Indeed, given a surjective function $f : A \longrightarrow B$, one can obtain a function g that has the same partition as f by defining g(a) = p(f(a)), where p is a permutation of the set B, that is, a bijection $p : B \longrightarrow B$. Since there are k! such bijections, it follows that the number of partitions is $\frac{1}{k!} \sum_{j=0}^{k-1} (-1)^j {k \choose j} (k-j)^n$.

The numbers S(n, k) defined by

$$S(n,k) = \begin{cases} \frac{1}{k!} \sum_{j=0}^{k-1} (-1)^j {k \choose j} (k-j)^n & \text{if } n \ge k > 0, \\ 1 & \text{if } n = k = 0, \\ 0 & \text{in other cases.} \end{cases}$$

for $n, k \in \mathbb{N}$ and are known as the *Stirling numbers of the second kind*.

Note that S(n,1) = 1 and S(n,n) = 1 because only one partition of a set with *n* elements, ω_S , has one block, and only one partition of a set with *n* elements, α_S has *n* blocks which are singletons.

The number of partitions of a 4-element set having two blocks is

$$S(4,2) = \frac{1}{2!} \sum_{j=0}^{1} {\binom{2}{j}} (2-j)^{4}$$
$$= \frac{1}{2!} \left({\binom{2}{0}} \cdot 2^{4} - {\binom{2}{1}} \cdot 1^{4} \right) = 7.$$

Namely, these partitions are:

 $\{\{1\},\{2,3,4\}\},\{\{2\},\{1,3,4\}\},\{\{3\},\{1,2,4\}\},\{\{4\},\{1,2,3\}\},\\ \{\{1,2\},\{3,4\}\},\{1,3\},\{2,4\}\},\{\{1,4\},\{2,3\}\}.$

We claim that

$$S(n,k) = kS(n-1,k) + S(n-1,k-1).$$

Indeed, observe that a partition π of the set $\{1, \ldots, n-1\}$ can be transformed into a partition of $\{1, \ldots, n\}$ be adjoining *n* to one of the blocks of π or by increasing the number of blocks by 1 and making $\{n\}$ a block.

- ∢ ≣ ▶

Theorem

For every $n \ge 1$ we have $m^n = \sum_{j=1}^n S(n,j)(m)_j$.

э

Proof

Let A and B be two finite sets such that |A| = n and |B| = m. There are m^n functions $f : A \longrightarrow B$. These functions can be classified depending on the size of their range f(A). If $g : A \longrightarrow B$ is a function such that |g(A)| = j, then g can be regarded as a surjection from A to g(A). Since there are j!S(n,j) such surjective functions and there are $\binom{m}{j}$ subsets of B that have j elements, we can write

$$m^{n} = \sum_{j=1}^{m} {m \choose j} j! S(n, j)$$

=
$$\sum_{j=1}^{m} m(m-1) \cdots (m-j+1) S(n, j) = \sum_{j=1}^{m} (m)_{n} S(n, j)$$

for every $m \ge 1$.

The *Bell number* B_n is the total number of partitions of a set of *n* objects, that is,

$$B_n=\sum_{k=1}^n S(n,k).$$

Example

For n = 4, we have shown that there exist 7 partitions having two blocks, one partition with one block and one partition with 4 blocks. It is easy to see that there are 6 partitions with 3 blocks, so $B_4 = 1 + 7 + 6 + 1 = 15$.

The first 10 values of the Bell numbers are given below.

n	1	2	3	4	5	6	7	8	9	10
B _n	1	2	5	15	52	203	877	4140	21147	115975

A relation ρ is a *partial order* on a set *S* if ρ is reflexive, antisymmetric and transitive.

A *partially ordered set* (or, a *poset*) is a pair (S, ρ) , where ρ is a partial order on S.

In general, we denote partial orders using the symbol " \leq " or similar symbols; furthermore, instead of writing $(x, y) \in \leq$, we write $x \leq y$.

Let T be a set. The set of subsets of T, $\mathcal{P}(T)$ equippeed with the set inclusion " \subseteq " yields the poset ($\mathcal{P}(T), \subseteq$).

The pair $(\mathbb{P}, |)$, where "|" is the divisibility relation is a poset defined by p|q if there exists $k \in \mathbb{P}$ such that q = pk. Indeed, we have p|p for every $p \in \mathbb{P}$, so "|" is reflexive. If p|q and q|p, we have q = pk and p = qh, hence hk = 1 which implies h = k = 1. Thus, p = q, which shows that "|" is antisymmetric. Finally, if p|q and q|r we have q = pk and r = qh for some $k, h \in \mathbb{P}$. Thus, r = pkh, so p|r.

If (S, ρ) is a poset and $T \subseteq S$, it is easy to see that the relation $\rho_T = \rho \cap (T \times T)$ is itself a partial order; we will refer to it as the *trace of* (S, ρ) on T. Often, we will use the same symbol ρ instead of ρ_T to denote the partial order on T.

Example

Let $S \subseteq \mathbb{P}$ be the set $\{1, 2, 3, 4, 5, 6\}$. The trace of \mathbb{P} on S consists of the pairs:

$$(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),$$

 $(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4),$
 $(5, 5), (6, 6).$

A *totally ordered set* is a pair (S, ρ) , where ρ is a partial order with the additional property that for all $x, y \in S$ we have either $(x, y) \in \rho$, or $(y, x) \in \rho$. The relation ρ is refered to as a *total order*.

Example

The real numbers $\mathbb R$ equipped with the standard less-than-or-equal relation \leqslant is a totally ordered set.

A sequence $\mathbf{x} \in \mathbf{Seq}(S)$ is a *subsequence of a sequence* $\mathbf{y} \in \mathbf{Seq}(S)$, if $\mathbf{y} = \mathbf{uxv}$ for some sequences $\mathbf{u}, \mathbf{v} \in \mathbf{Seq}(S)$. This is denoted by $\mathbf{x} \sqsubseteq \mathbf{y}$.

Example

Let $S = \{0, 1\}$. The sequence y = 1011 is a subsequence of x = 010110110101100.

The relation " \sqsubseteq " is a partial order on **Seq**(S).

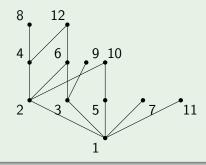
Let (P, \leq) be a poset. An element y covers an element x of P if $x \leq y$ and there is no $z \in P$, $z \neq x$ and $z \neq y$ such that $x \leq z \leq y$. We denote the fact that y covers x by $x \prec y$.

Let $(\mathbb{P}, |)$ be the poset of positive numbers equipped with the divisibility relation. We have $p \prec y$ if x is none of the largest divisors of y. For example, we have $6 \prec 12$ beacuse there is no number z distinct from 6 and 12 such that 6|z and z|12. Note that 3|12 but $3 \not\prec 12$.

Finite posets can be represented graphically using *Hasse diagrams*. Each element is represented by a dot. If x, y are elements of a poset (P, \leq) and $x \prec y$, then the dot representing y is placed at a greater height than x and a link between the dots is drawn.

- 4 ⊒ →

The Hasse diagram of the poset $(\{1, \ldots, 12\}, |)$ is given below:



Let (S, \leq) be a poset and let T be a subset of S. The set of upper bounds of T is the set

$$T^s = \{y \in S \mid \text{ for all } x \in T \text{ we have } x \leq y\}.$$

The set of lower bounds of T is the set

$$T^i = \{y \in S \mid \text{ for all } x \in T \text{ we have } y \leq x\}.$$

э

If T_1, T_2 are two subsets of S, $T_1 \subseteq T_2$ implies $T_2^s \subseteq T_1^s$ and $T_2^i \subseteq T_1^i$.

Theorem

Let (S, \leq) be a poset and let T be a subset of S. The sets $T \cap T^s$ and $T \cap T^i$ contain at most one element of S.

Proof.

Suppose that $x, y \in T \cap T^s$. Since $x \in T$ and $y \in T^s$, it follows that $x \leq y$. On other hand, since $x \in T^s$ and $y \in T$ we have $y \leq x$. Therefore, x = y, which implies that the set $T \cap T^s$ contains at most one element. The argument for $T \cap T^i$ is similar.

Let (S, \leq) be a poset and let T be a subset of S. If $T \cap T^s = \{u\}$, then u is the *largest element* of set T. If $T \cap T^i = \{v\}$, then v is the *least element* of set T.

Example

Not every subset of a poset has a least or a greatest element. The subset $\{1, 2, 3, 6\}$ of the poset $(\{1, \ldots, 12\}, |)$ considered before has 1 as its least element and 6 as the largest element. In contrast, the set $\{4, 5, 6\}$ has neither a least nor a largest element.

- 4 ⊒ →

If T is a subset of a poset (S, \leq) we will consider the sets $(T^s)^i$ and $(T^i)^s$ denoted by T^{si} and T^{is} , respectively. Observe that the set $T^s \cap T^{si} = T^s \cap (T^s)^i$ may contain at most one element, by a previous observation applied to the set T^s . Similarly, the set $T^i \cap T^{is}$ may contain at most one element.

Let (S, \leq) be a poset and let T be a subset of S. If $T^s \cap T^{si} = \{u\}$, u is the *supremum* of the set T. If $T^i \cap T^{is} = \{v\}$, v is the *infimum* of T.

The supremum and infimum of a set T (if they exist) are unique and are denoted by sup T and inf T, respectively.

In the poset $(\mathcal{P}(\mathcal{T}), \subseteq)$ introduced in before, for every $\mathcal{C} \in \mathcal{P}(X)$ we have

$$\inf \mathcal{C} = \bigcap \mathcal{C} \text{ and } \sup \mathcal{C} = \bigcup \mathcal{C}.$$

< 同 ▶

In the poset $(\mathbb{P}, |)$, we have

 $\inf\{p,q\} = \gcd(p,q) \text{ and } \sup\{p,q\} = \operatorname{lcm}(p,q),$

where gcd(p, q) is the greatest common divisor of p and q, and lcm(p, q) is the least common multiple of p and q.

A poset (S, \leq) is a *lattice* if for every two elements $x, y \in S$ there exist $\inf\{x, y\}$ and $\sup\{x, y\}$. If (S, \leq) is a lattice we use the notations

$$x \wedge y = \inf\{x, y\}$$
 and $x \vee y = \sup\{x, y\}$.

The element $x \wedge y$ is referred to as the *meet* of x and y; $x \vee y$ is the *join* of x and y. A poset (S, \leq) is a *complete lattice* if for every $X \in \mathcal{P}(S)$ there exist inf X and sup X.

• $(\mathbb{P}, |)$ is a lattice; • $(\mathcal{P}(\mathcal{T}), \subseteq)$ is a complete lattice.

< 同 ▶

э

Note that if (S, \leq) is a complete lattice and $S \neq \emptyset$, then this poset has a least element $0_S = \inf S$, and a greatest element $1_S = \sup S$.

Theorem

Let (S, \leq) be a complete lattice and let W be a subset of S such that $1_S \in W$ and $T \subseteq W$ implies that inf T in S belongs to W. Then W is a complete lattice.

Proof

For every nonvoid subset T of W, inf $T \in W$ and is the infimum of T in S. Let U be a subset of W defined as $U = T^s$. We have $U \neq \emptyset$ because $1_S \in W$. Then, inf $U \in W$ is also an upper bound of T, and is actually the least upper bound of U. Thus, (W, \leq) is a complete lattice.

Corollary

Let \mathcal{K} be a closure system on a set S. The subsets of S in \mathcal{K} form a complete lattice in which $\inf \mathcal{C} = \bigcap \mathcal{C}$ and $\sup \mathcal{C} = \bigcap \{T \in \mathcal{P} \mid C \subseteq T \text{ for every } C \in \mathcal{K}\}.$

- 4 🗗 ▶

Let π, σ be two partitions of *S*. We write $\pi \leq \sigma$ if each block *B* of π is included in a block *C* of σ .

Theorem

The pair $(PART(S), \leq)$ is a partially ordered set.

Proof

The relation " \leq " is obviously reflexive.

Suppose that we have both $\pi \leq \sigma$ and $\sigma \leq \pi$. Then, a block *B* of π is included in a block *C* of σ , and *C*, in turn, is included in a block *B'* of *C*. Thus, $B \subseteq C \subseteq B'$, which implies B = C = B' because no block of π can be included into another block. Thus, $\pi \subseteq \sigma$. In the same manner, starting from a block *C* of σ we can show that $\sigma \subseteq \pi$, so $\pi = \sigma$. This shows that the relation " \leq " is antisymmetric. It is immediate that " \leq " is transitive

Let $\pi, \sigma \in PART(S)$ be two partitions, $\pi = \{B_i \mid i \in I\}$ and $\sigma = \{C_j \mid j \in J\}$. We have $\pi \leq \sigma$ if and only if for each $j \in J$ there exists a subset I_j of I such that $C_j = \bigcup \{B_i \mid i \in I_j\}$.

Suppose that $\pi \leq \sigma$ and let $C \in \sigma$. Suppose that $B \cap C \neq \emptyset$. Since each block B of π is included in a block C' of σ we must have C' = C because, otherwise C' and C would have a non-empty intersection. Thus, if a block B of π has a non-empty intersection with a block C of σ we must have $B \subseteq C$. This implies that a block C of σ is a union of block of π . The converse implication is immediate.

Example

If $\pi \in PART(S)$ we have $\alpha_S \leq \pi \leq \omega_S$. Thus, α_S is the smallest element of $(PART(S), \leq)$ and ω_S is its largest element.

< ∃⇒

Definition

Let π, σ be two partitions of a set *S*. The partition σ covers π if $\pi < \sigma$ and there is no partition $\tau \in PART(S)$ such that $\pi < \tau < \sigma$.

Let π, σ be two partitions of a set *S*. The partition σ covers π if and only if there exists a block *C* of σ that is the union of two blocks *B* and *B'* of π , and every other block of σ that is distinct of *C* is a block of π .

Proof

Suppose that σ is a partition that covers the partition π . Since $\pi \leq \sigma$, every block of σ is a union of blocks of π . Suppose that there exists a block E of σ that is the union of more than two blocks of π ; that is, $E = \bigcup \{B_i \mid i \in I\}$, where $|I| \ge 3$, and let $B_{i_1}, B_{i_2}, B_{i_3}$ be three blocks of π included in E. Consider the partitions

$$\begin{aligned} \sigma_1 &= \{ C \in \sigma \mid C \neq E \} \cup \{ B_{i_1}, B_{i_2}, B_{i_3} \}, \\ \sigma_2 &= \{ C \in \sigma \mid C \neq E \} \cup \{ B_{i_1} \cup B_{i_2}, B_{i_3} \}. \end{aligned}$$

It is easy to see that $\pi \leq \sigma_1 < \sigma_2 < \sigma$, which contradicts the fact that σ covers π . Thus, each block of σ is the union of at most two blocks of π .

Proof (cont'd)

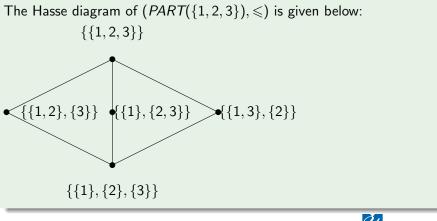
Suppose that σ contains two blocks C' and C'' that are unions of two blocks of π , namely $C' = B_{i_0} \cup B_{i_1}$ and $C'' = B_{i_2} \cup B_{i_3}$. Define the partitions

$$\begin{aligned} \sigma' &= \{ C \in \sigma \mid C \notin \{ C', C'' \} \} \cup \{ C', B_{i_2}, B_{i_3} \}, \\ \sigma'' &= \{ C \in \sigma \mid C \notin \{ C', C'' \} \} \cup \{ B_{i_1}, B_{i_2}, C'' \}. \end{aligned}$$

Since $\pi < \sigma', \sigma'' < \sigma$, this contradicts the fact that σ covers π . Thus, we obtain the conclusion of the theorem.

Hasse diagrams

Example



The posets $(EQUIV(S), \subseteq)$ and $(PART(S), \leqslant)$ are isomorphic.

Let $f : EQUIV(S) \longrightarrow PART(S)$ be the mapping defined by $f(\rho) = S/\rho$. We need to show that f is a monotonic bijective mapping and that its inverse mapping f^{-1} is also monotonic. The bijectivity of f follows immediately from the remarks that precede the theorem. Let ρ_0, ρ_1 be two equivalences such that $\rho_0 \subseteq \rho_1$ and let $S/\rho_0 = \{B_i \mid i \in I\}, S/\rho_1 = \{C_j \mid j \in J\}$. Let B_i be a block in S/ρ_0 and assume that $B_i = [x]_{\rho_0}$. We have $y \in B_i$ if and only if $(x, y) \in \rho_0$, so $(x, y) \in \rho_1$. Therefore, $y \in [x]_{\rho_1}$, which shows that every block $B \in S/\rho_0$ is included in a block $C \in \rho_1$. This shows that $f(\rho_0) \leq f(\rho_1)$, so f is indeed monotonic.

Let $\{\rho_i \mid i \in I\} \subseteq \text{EQUIV}(S)$ be a collection of equivalences. Then, $\inf\{\rho_i \mid i \in I\} = \bigcap_{i \in I} \rho_i$.

Definition

Let S be a set and let $\rho, \tau \in EQUIV(S)$. A (ρ, τ) -alternating sequence that joins x to y is a sequence (s_0, s_1, \ldots, s_n) such that $x = s_0, y = s_n$, $(s_i, s_{i+1}) \in \rho$ for every even i and $(s_i, s_{i+1}) \in \tau$ for every odd i, where $0 \leq i \leq n-1$.

- ∢ ≣ ▶

Lemma

Let S be a set and let $\rho, \tau \in EQUIV(S)$. If **s** and **z** are two (ρ, τ) -alternating sequences joining x to y and y to z, respectively, then there exists a (ρ, τ) -alternating sequence that joins x to z.

▶ < ∃ ▶

Proof

Let (s_0, \ldots, s_n) be a (ρ, τ) -alternating sequences joining x to y and (w_0, \ldots, w_m) a (ρ, τ) -alternating sequences joining y to z, where $x = s_0$, $s_n = w_0 = y$ and $w_m = z$. If $(s_{n-1}, s_n) \in \tau$, then the sequence $(s_0, \ldots, s_n, w_1, \ldots, w_m)$ is a (ρ, τ) -alternating sequence joining x to z. Otherwise, that is, if $(s_{n-1}, s_n) \in \rho$, then taking into account the reflexivity of τ we have $(s_n, w_0) = (s_n, s_n) \in \tau$. In this case, $(s_0, \ldots, s_n, s_n, w_1, \ldots, w_m)$ is a (ρ, τ) -alternating sequence joining x to z.

Let S be a set and let $\rho, \tau \in EQUIV(S)$. If ξ is the relation that consists of all pairs $(x, y) \in S \times S$ that can be joined by a (ρ, τ) -alternating sequence, then $\xi = \sup\{\rho, \tau\}$.

- ∢ ≣ ▶

It is easy to verify that ξ is indeed an equivalence relation. Note that we have both $\rho \subseteq \xi$ and $\tau \subseteq \xi$. Indeed, if $(x, y) \in \rho$, then (x, y, y) is a (ρ, τ) -alternating sequence joining x to y. If $(x, y) \in \tau$, then (x, x, y) is the needed alternating sequence.

Let $\zeta \in \text{EQUIV}(S)$ such that $\rho \subseteq \zeta$ and $\tau \subseteq \zeta$. If $(x, y) \in \xi$, and (s_0, s_1, \ldots, s_n) is a (ρ, τ) -alternating sequence such that $x = s_0, y = s_n$, then each pair (s_i, s_{i+1}) belongs to ζ . By the transitivity property, $(x, y) \in \zeta$, so $\xi \subseteq \zeta$. This implies that $\xi = \sup\{\rho, \tau\}$.

If $\pi, \sigma \in PART(S)$ both the infimum and the supremum of the set $\{\pi, \sigma\}$ exist and their description follows from the corresponding results that refer to the equivalence relations. Namely, if $\pi, \sigma \in PART(S)$, where $\pi = \{B_i \mid i \in I\}$ and $\sigma = \{C_j \mid j \in J\}$, the partition $\inf\{\pi, \sigma\}$ exists and is given by

$$\inf\{\pi,\sigma\} = \{B_i \cap C_j \mid i \in I, j \in J \text{ and } B_i \cap C_j \neq \emptyset\}.$$

The partition $\inf\{\pi, \sigma\}$ will be denoted by $\pi \wedge \sigma$.

A block of the partition $\sup\{\pi, \sigma\}$, denoted by $\pi \vee \sigma$, is an equivalence class of the equivalence $\theta = \sup\{\rho_{\pi} \wedge \rho_{\sigma}\}$. We have $y \in [x]_{\theta}$ if there exists a sequence $(s_0, \ldots, s_n) \in \mathbf{Seq}(S)$ such that $x = s_0$, $s_n = y$ and successive sets $\{s_i, s_{i+1}\}$ are included, alternatively, in a block of π or in a block of σ .

