CS724: Topics in Algorithms Spectral Clustering

Prof. Dan A. Simovici

We present a treatment of clusterings starting from a finite similarity space S = (V, s) defined on the set of objects V.

Definition

The *similarity graph* associated to \mathcal{S} is the weighted graph $\mathcal{G}_{\mathcal{S}} = (V, E, s)$, where $E = \{(v, v') \in V \times V \mid s(v, v') > 0\}$ and the weight of an edge (v, v') is s(v, v') for $v, v' \in V$.

A clustering of the objects in V is a partition $\kappa = \{C_1, \ldots, C_n\}$ of V. The blocks C_i of κ are the *clusters*.

In terms of similarity spaces, the goal of any clustering algorithm is to gather in a cluster all objects that are similar to each other and to place in distinct clusters pairs of objects that have low similarities.

There are several ways to contruct a similarity space (or a similarity graph) for a set of points $V = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$.

For example, an undirected graph $G_t = (V, E_t)$ can be defined by

$$E_t = \{\{\mathbf{x}_i, \mathbf{x}_j\} \mid d(\mathbf{x}_i, \mathbf{x}_j) \leqslant t\},\$$

where t is a given threshold.

Another option is to use the k-nearest neighbor graph $G_{nn,k}$, where an edge (\mathbf{v},\mathbf{w}) exists if \mathbf{w} is among the k nearest neighbors of \mathbf{v} . This leads, of course to a directed graph; however, an undirected graph can be readily obtained by ignoring the orientation of the edges. An alternative undirected graph $G'_{nn,k}$ can be obtained by considering an edge $\{\mathbf{v},\mathbf{w}\}$ if \mathbf{w} is among the k closest neighbors of \mathbf{v} and \mathbf{v} is among the k closest of \mathbf{w} .

Finally, it is possible to use a weighted complete graph on the set V and define for each pair of objects a similarity measure $k(\mathbf{v}, \mathbf{w})$. The function k is referred in the specialized \mathbf{R} package kernlab as a kernel.

A *radial basis function* (rbf) is a real-valued function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ whose value $f(\mathbf{x})$ depends only on the distance from the origin $\|\mathbf{x}\|$, that is, $f(\mathbf{x}) = f(\|\mathbf{x}\|)$.

Examples of such kernels are $k(\mathbf{v}, \mathbf{w}) = e^{-\|\mathbf{v} - \mathbf{w}\|^2}$ named the rbfdot or $e^{-\|\mathbf{v} - \mathbf{w}\|}$ named the laplacedot, etc.

As usual, a clustering of the objects in $V = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, where $V \subseteq \mathbb{R}^m$ is a partition $\kappa = \{C_1, \dots, C_k\}$ of V. The blocks C_i of κ are the *clusters*. Let $\kappa = \{C_1, \dots, C_k\}$ be a clustering of the objects of the set $V = \{v_1, \dots, v_n\}$. For a block C_i we denote by \bar{C}_i the complement of C_i relative the set V. Clearly, $\bar{C}_i = \bigcup \{C_j \mid j \in \{1, \dots, k\} - \{i\}\}$ for every i, $1 \leq i \leq k$.

Definition

The *cut* of κ is the number

$$cut(\kappa) = \sum_{i=1}^{k} cut(C_i, \bar{C}_i)$$

$$= \sum_{p=1}^{n} \sum_{q=1}^{n} \{s(v_p, v_q) \mid v_p \text{ and } v_q \text{belong to different clusters}\}$$

Definition

Let G = (V, E) be a graph and let S be a set of vertices. The *edge* boundary of S is the set of edges of G that join S to its complement. This set is denoted by $\partial(S)$. Clearly, $\partial(V - S) = \partial(S)$.

Theorem

Let G = (V, E) be a graph with $V = \{v_1, \dots, v_n\}$ and let S be a subset of V. Then

$$\alpha(\mathcal{G}) \leq \frac{n|\partial(S)|}{|S|(n-|S|)},$$

where $\partial(S)$ is the edge boundary of the set S.

Proof

Recall that we have shown that

$$\alpha(G) = \min_{\mathbf{x}} \{ \mathbf{x}' L_G \mathbf{x} \mid \mathbf{x} \in S_n \}$$

=
$$\min_{\mathbf{x}} \sum_{\mathbf{x}} \{ (x_i - x_j)^2 \mid \mathbf{x} \in S_n, i < j \text{ and } \{v_i, v_j\} \in E \},$$

where $S_n = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x}' \mathbf{1}_n = 0 \text{ and } \parallel \mathbf{x} \parallel = 1 \}.$

Proof cont'd

Let $\mathbf{r} \in \mathbb{R}^n$ be a vector defined by

$$r_i = \begin{cases} n - |S| & \text{if } v_i \in S, \\ -|S| & \text{if } v_i \notin S, \end{cases}$$

for $1 \le i \le n$.

It is clear that $\mathbf{r}'\mathbf{1}_n=0$, that is, \mathbf{r} is orthogonal on $\mathbf{1}_n$. Therefore, we have:

$$\alpha(\mathcal{G}) \leq \frac{\sum_{(v_i,v_j) \in E} (r_i - r_j)^2}{\parallel \mathbf{r} \parallel^2} = \frac{n^2 |\partial(S)|}{|S|(n - |S|)^2 + (n - |S|)|S|^2} = \frac{n\partial(S)}{|S|(n - |S|)}.$$

Definition

Let G = (V, E) be a graph. The *conductance* of G is the number

$$\operatorname{cd}(G) = \min \left\{ \frac{|\partial(S)|}{|S|} \mid S \subseteq V, |S| \leq \frac{|V|}{2} \right\}.$$

Example

To compute the conductance of a complete graph \mathcal{K}_n note that each vertex v is linked to n-1 other vertices of the graph. Thus, for a set of vertices S we have $\partial(S) = S \times (V-S)$, so $|\partial(S)| = |S|(n-|S|)$. Thus,

$$\operatorname{cd}(\mathcal{K}_n) = \min\left\{n - |S| \mid S \subseteq V, |S| \le \frac{n}{2}\right\} = \lceil \frac{n}{2} \rceil.$$

Example

Let G = (V, E) be a graph such that |V| = n.

If $|S| \leq \frac{n}{2}$, then $\operatorname{cd}(G) \leq \frac{\partial(S)}{|S|}$, so $|\partial(S)| \geq \operatorname{cd}(G)|S|$. If $\operatorname{cd}(G)$ is large, then the vertices of S have many neighbors outside S.

Suppose that $\{G_n=(V_n,E_n)\mid n\in\mathbb{N}\}$ be a sequence of graphs with $|V_n|=n$ such that each graph G_n is k-regular and the there exists a lower bound b of the sequence $\{\operatorname{cd}(G_n)\mid n\in\mathbb{N}\}$. We refer to such a sequence of graphs as an *expander*. Note that $|E_n|=\frac{kn}{2}$, which means that the graphs grow increasingly sparse.

The existence of a lower bound for conductances guarantees that there exist many neighbors for a set S of vertices.

Theorem

Let G = (V, E) be a graph. We have

$$cd(G) \geq \frac{\alpha(G)}{2}.$$

Proof

In the definition of the conductance we require $|S| \leq \frac{|V|}{2}$ so

$$\frac{|V|}{|V|-|S|} = \frac{1}{1-\frac{|S|}{|V|}} \le 2.$$

Therefore, since $\alpha(G) \leq \frac{n|\partial(S)|}{|S|(n-|S|)}$, it follows that

$$\alpha(G) \leq \frac{n|\partial(S)|}{|S|(n-|S|)} = \frac{|\partial(S)|}{|S|} \cdot \frac{n}{n-|S|} \leq 2\operatorname{cd} G.$$

This theorem shows that $\frac{\alpha(G)}{2}$ provides a lower bound for the conductance of a graph, whose computation is intractable.

There are several criteria for choosing clusterings defined on similarity spaces.

The simplest such criterion is the minimal value of $cut(\kappa)$. This will ensure that the objects of each cluster C_i are as dissimilar as possible to the objects from the other clusters.

For bipartitions the algorithm is based on the observation that if x,y are two vertices of a weighted graph G=(V,E,w) and $\pi=\{X,Y\}$ is a bipartition of V such that $x\in X$ and $y\in Y$, then the value of a minimum cut $cut(\pi)$ is the smaller of a minimum (x,y)-cut and a minimum cut of $G/\{x,y\}$, where $G/\{x,y\}$ is the graph obtained from G by merging X and Y and removing the edge (x,y) if such an edge exists.

Indeed, either there exists a minimum cut of G that separates x and y (and in this case a minimum (x,y)-cut is a minimum cut of G), or there is no such cut and, in this case, a minimum cut of $G/\{x,y\}$ is a minimum cut of π .

Let $\kappa = \{C_1, \dots, C_k\}$ be a partition of a set $V = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of n objects into k clusters.

Starting from a similarity matrix $S \in \mathbb{R}^{n \times n}$ for the objects of V we can define a *similarity graph* of V as G = (V, E, s), where $s(\mathbf{v}_i, \mathbf{v}_\ell) = s_{i\ell}$ for $1 \leq i, \ell \leq n$.

The *indicator vector* $\mathbf{c}_j \in \mathbb{R}^n$ of the cluster C_j is

$$(\mathbf{c}_j)_i = egin{cases} rac{1}{\sqrt{|C_j|}} & ext{if } \mathbf{v}_i \in C_j \ 0 & ext{otherwise}, \end{cases}$$

where $1 \leqslant i \leqslant n$ and $1 \leqslant j \leqslant i$.

Since κ is a partition of V, the matrix $C = (\mathbf{c}_1 \cdots \mathbf{c}_k)$ has an orthonormal set of columns, so $C'C = I_k$. Note that, in terms of the entries of C we have

$$\mathbf{c}_{j} = egin{pmatrix} c_{1j} \ c_{2j} \ dots \ c_{ij} \ dots \ c_{nj} \end{pmatrix}$$

for $1 \le j \le k$. We claim that

$$\mathbf{c}_j' L_G \mathbf{c}_j = \frac{1}{2} \frac{cut(C_j, \bar{C}_j)}{|C_j|}$$

By a previous result we have:

$$\mathbf{c}_{j}' L_{G} \mathbf{c}_{j} = \frac{1}{2} \sum_{i=1}^{k} \sum_{\ell=1}^{k} s_{i\ell} (c_{ij} - c_{\ell j})^{2}.$$

If $\mathbf{v}_i \in C_j$ and $\mathbf{v}_\ell \not\in C_j$ we have $c_{ij} = \frac{1}{\sqrt{|C_j|}}$ and $c_{\ell j} = 0$; in this case

$$s_{i\ell}(c_{ij}-c_{\ell j})^2=\frac{s_{ij}}{|C_j|}.$$

Otherwise, that is, if both \mathbf{v}_i and \mathbf{v}_ℓ belong to C_j , or neither vertex belongs to C_i we have

$$s_{i\ell}(c_{ij}-c_{\ell j})^2=0.$$

This implies

$$\mathbf{c}_j' L_G \mathbf{c}_j = \sum_{\mathbf{v}_i \in C_j} \sum_{\mathbf{v}_\ell \notin C_j} \frac{s_{ij}}{|C_j|} = \frac{1}{2} \frac{\text{cut}(C_j, \bar{C}_j)}{|C_j|}$$

and $\mathbf{c}_i' L_G \mathbf{c}_j = (C' L_G C)_{jj}$.

Since

$$C'L_GC = \begin{pmatrix} \mathbf{c}_1' \\ \vdots \\ \mathbf{c}_k' \end{pmatrix} L_G(\mathbf{c}_1 \cdots \mathbf{c}_k),$$

we have

$$\sum_{j=1}^{k} \mathbf{c}_{j}' L_{G} \mathbf{c}_{j} = \sum_{j=1}^{k} (C' L_{G} C)_{jj}$$

$$= trace(C' L_{G} C) = \frac{1}{2} \sum_{j=1}^{k} \frac{cut(C_{j}, \bar{C}_{j})}{|C_{j}|} = \frac{1}{2} cutratio(\kappa).$$

To minimize $cutratio(\kappa)$ is tantamount to seeking the matrix C such that $trace(C'L_GC)$ is minimal subjected to the constraint $C'C = I_k$. To obtain a practical solution this optimization problem is relaxed by allowing C to range over $\mathbb{R}^{n\times k}$. By Ky Fan's Theorem the minimum is obtained by choosing C such that its columns consist of the eigenvectors $\mathbf{c}_1,\ldots,\mathbf{c}_k$ of L_G that correspond to the k smallest eigenvalues of the Laplacian L_G .

The original set of points $V = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq \mathbb{R}^m$ is transformed now into a set $\{\mathbf{y}_1, \dots, \mathbf{y}_n\}$ in a lower-dimensional space \mathbb{R}^k , where $\mathbf{y}_1', \dots, \mathbf{y}_n'$ are the rows of the matrix $C \in \mathbb{R}^{\times}$ whose columns are the k eigenvectors $\mathbf{c}_1, \dots, \mathbf{c}_k$ of L_G , as shown next.

Unnormalized Spectral Clustering

```
Data: Similarity matrix S \in \mathbb{R}^{n \times n}, number k of clusters Result: A clustering \kappa = \{C_1, \ldots, C_k\} let A be its weighted adjacency matrix; compute the ordinary Laplacian L; compute the first k eigenvectors \mathbf{c}_1, \ldots, \mathbf{c}_k of L; let C = (\mathbf{c}_1, \ldots, \mathbf{c}_k) \in \mathbb{R}^{n \times k}; define \mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^k such that C' = (\mathbf{y}_1 \cdots \mathbf{y}_n); cluster \{\mathbf{y}_1, \ldots, \mathbf{y}_n\} \subseteq \mathbb{R}^k using the k-means algorithm into \kappa;
```


Another approach to spectral clustering uses the normalized cut of a partition. As before, let $\kappa = \{C_1, \ldots, C_k\}$ be a partition of a set $V = \{v_1, \ldots, v_n\}$ of n objects into k clusters for which we have a similarity matrix $S \in \mathbb{R}^{n \times n}$. Define the characteristic vector \mathbf{h}_j of C_j as

$$(\mathbf{h}_j)_i = \begin{cases} rac{1}{\sqrt{\textit{vol}(C_j)}} & \text{if } v_i \in C_j, \\ 0 & \text{otherwise,} \end{cases}$$

for $1 \leqslant j \leqslant k$ and let $H = (\mathbf{h}_1 \cdots \mathbf{h}_k)$ be the matrix of these vectors. We have

$$\mathbf{h}_j' D_G \mathbf{h}_j = \sum_{i=1}^n \sum_{\ell=1}^n (\mathbf{h}_j)_i d_{i\ell}(\mathbf{h}_j)_\ell.$$

The non-zero terms in this sum are such that $i=\ell$ and $v_i\in C_j$. Thus, $\mathbf{h}_j'D_G\mathbf{h}_j=\frac{1}{vol(C_j)}\sum_{v\in C_j}\mathrm{d}(v)=1$. On the other had, $\mathbf{h}_j'D_G\mathbf{h}_m=0$ if $j\neq m$, so $H'D_GH=I_k$. A similar computation yields

$$\mathbf{h}_j' A_G \mathbf{h}_j = \sum_{i=1}^n \sum_{\ell=1}^n (\mathbf{h}_j)_i s_{i\ell}(\mathbf{h}_j)_\ell = \frac{1}{vol(C_j)} \sum_{v_i, v_\ell \in C_j} s(v_i, v_\ell).$$

These computations allow us to write

$$\mathbf{h}'_{j}L_{G}\mathbf{h}_{j} = \mathbf{h}'_{j}(D_{G} - A_{G})\mathbf{h}_{j} = I_{k} - \mathbf{h}'_{j}A_{G}\mathbf{h}_{j} = 1 - \frac{1}{vol(C_{j})}\sum_{v_{i},v_{\ell} \in C_{j}} s(v_{i},v_{\ell})$$

$$= \frac{vol(C_{j}) - \sum_{v_{i},v_{\ell} \in C_{j}} s(v_{i},v_{j})}{vol(C_{j})} = \frac{cut(C_{j},\bar{C}_{j})}{vol(C_{j})}.$$

Therefore,

$$trace(H'L_GH) = \sum_{j=1}^k \mathbf{h}_j' L_G \mathbf{h}_j = \sum_{j=1}^k \frac{cut(C_j, \bar{C}_j)}{vol(C_j)} = \operatorname{ncut}_{unass}(\kappa).$$

To minimize the normalized cut we need to minimize $trace(H'L_GH)$ subjected to the constraint $H'DH = I_k$. Let $M = D^{\frac{1}{2}}H$. Then, in terms of the matrix M, the optimization problem amounts to minimizing $trace(M'D^{-\frac{1}{2}}L_GD^{-\frac{1}{2}}M) = trace(M'L_{G,\text{sym}}M)$ subjected to the restriction $M'M = I_k$. By allowing M to range over $\mathbb{R}^{n \times k}$, the optimum can be achieved by $M = (\mathbf{m}_1, \dots, \mathbf{m}_k)$, where $\mathbf{m}_1, \dots, \mathbf{m}_k$ are the first k eigenvectors of the symmetric Laplacian $L_{G,\text{sym}}$.

 $D^{-\frac{1}{2}}\mathbf{m}_1,\ldots,D^{-\frac{1}{2}}\mathbf{m}_k$ are the first k eigenvectors of the of the random walk Laplacian and these are exactly the columns of the matrix H. So, the optimal value of H is obtained by choosing its columns to be equal to the eigenvectors that correspond to the first k eigenvalues of $L_{G,\mathrm{rw}}$.

Next we discuss the implementation of spectral clustering in $\, {f R} \,$. We consider a set of 41 points in ${\Bbb R}^2$ placed into two squares and encoded as pairs of numbers in the matrix X.

The set of points in \mathbb{R}^2 looks like:

The function neighbor_graph(X,k) is used for building a k-nearest neighbor graph $G_{nn,k}$, where an edge (\mathbf{v},\mathbf{w}) exists if \mathbf{w} is among the k nearest neighbors of \mathbf{v} . The adjacency matrix K of this graph is symmetrized (using the operation $K < K + \mathbf{t}(K)$) to yield the symmetric adjacency matrix of an undirected graph.

```
neighbor_graph <- function(X,k)</pre>
{
   D <- as.matrix(dist(X))</pre>
   K <- matrix(0,nrow=nrow(X),ncol=nrow(X))</pre>
   for(i in 1:nrow(X)) {
     neighbor_index <- order(D[i,])[2:k]</pre>
     K[i,][neighbor_index] <-1</pre>
   # K is a matrix having 1s in position (i,j) if j is among
   # the first k neighbors of i
   K \leftarrow K + t(K)
   K[K == 2] = 1
   return(K)
```

The function spectral_clustering makes use of the function laplacian and the functineighbor_graph defined above. The **R** script of this function is given next.

```
spectral_clustering <- function(X,k,num_eig)
{
   G = neighbor_graph(X,k)
   L = laplacian(G,FALSE)
   eig = eigen(L,symmetric=TRUE)
   n = nrow(L)
   return(eig$vectors[,(n - num_eig):(n-1)])
   # this returns the eigenvectors of the num_eig smallest eigenval:
}</pre>
```


Finally, the set of eigenvectors returned by spectral_clustering is clustered using the *k*-means function as in:

```
X_sc <- spectral_clustering(X,k,num_eig)
X_final <- kmeans(X_sc,num_clust)</pre>
```


A direct application of the function specc of the package kernlab sc<- specc(X,centers=2,kernel=''rbfdot'') followed by a call to the pdf function > pdf(''squares.pdf'') > plot(X,pch=sc+22)

will produce the plot shown next.

> dev.off()

