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We present a treatment of clusterings starting from a finite similarity space
S = (V,s) defined on the set of objects V.

Definition

The similarity graph associated to S is the weighted graph Gs = (V, E, s),
where E = {(v,v') € V x V | s(v,V') > 0} and the weight of an edge
(v,v)is s(v,V') for v,v' € V.
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A clustering of the objects in V is a partition kK = {Cy,..., C,} of V. The
blocks C; of k are the clusters.

In terms of similarity spaces, the goal of any clustering algorithm is to
gather in a cluster all objects that are similar to each other and to place in
distinct clusters pairs of objects that have low similarities.
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There are several ways to contruct a similarity space (or a similarity graph)
for a set of points V = {x1,...,x,}.
For example, an undirected graph G; = (V/, E;) can be defined by

Ee = {{xi,xj} | d(xi,x;) < t},

where t is a given threshold.
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Another option is to use the k-nearest neighbor graph G, «, where an
edge (v, w) exists if w is among the k nearest neighbors of v. This leads,
of course to a directed graph; however, an undirected graph can be readily
obtained by ignoring the orientation of the edges. An alternative
undirected graph Gr',mk can be obtained by considering an edge {v,w} if w
is among the k closest neighbors of v and v is among the k closest of w.
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Finally, it is possible to use a weighted complete graph on the set V and
define for each pair of objects a similarity measure k(v,w). The function k
is referred in the specialized R package kernlab as a kernel.

A radial basis function (rbf) is a real-valued function f : R” — R whose
value f(x) depends only on the distance from the origin || x ||, that is,
F(x) = (| x [).

Examples of such kernels are k(v,w) = e~ Iv=wI* hamed the rbfdot or

e~ Iv=wIl hamed the laplacedot, etc.
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As usual, a clustering of the objects in V = {x1,...,X,}, where V CR™

is a partition K = {Cy,..., Cx} of V. The blocks C; of k are the clusters.
Let = {Ci,..., Ck} be a clustering of the objects of the set
V ={wi,...,vy}. For a block C; we denote by C; the complement of C;

relative the set V. Clearly, G; =J{C; | j € {L1,..., k} — {i}} for every i,
1<i<k.

Definition

The cut of k is the number
cut(k) = Z cut(G;, G;)

n n
= Z Z{S(VP’ vq) | vp and vgbelong to different clusters}
p=1qg=1
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Definition

Let G = (V, E) be a graph and let S be a set of vertices. The edge
boundary of S is the set of edges of G that join S to its complement. This
set is denoted by J(S). Clearly, 9(V — S) = 9(S).
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Theorem

Let G = (V,E) be a graph with V= {vi,...,vp} and let S be a subset of
V. Then

n|o(S)|
SI(n—1S1)’
where O(S) is the edge boundary of the set S.

a(G) <
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Proof

Recall that we have shown that
a(G) = min{X'Lgx | x € S,}
X
= min Z{(x; —x)? | x€S,,i <jand {v,v;} € E},

where S, = {x € R" | X1, =0and | x|=1}.
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Proof cont'd

Let r € R" be a vector defined by

. n—|5| ifvies,
Yl-lSs| ifviégs,

forl1 <i<n.
It is clear that ¥'1,, = 0, that is, r is orthogonal on 1,. Therefore, we have:

o(g) < Ztupeelri ~ ) a(S)| nd(S)

el [SI(n =187+ (n—=ISDISP ~ [SI(n—1S])’

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Spectral Clust 11 /34



Definition

Let G =

(V,E) be a graph. The conductance of G is the number

cd(G):min{| (5)

S V S < —
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Example

To compute the conductance of a complete graph K, note that each

vertex v is linked to n — 1 other vertices of the graph. Thus, for a set of
vertices S we have 9(S) =S x (V = 5), so |9(S)| = |S|(n—|S]). Thus,

. n n
cd(fcn) =min {n—1S| | SC V,IS| < 7} =[2].
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Example

Let G = (V, E) be a graph such that |V| = n.

If |S] < 3, then cd(G) < al(ss‘) so |0(S)| > cd(G)|S]. If cd(G) is large,
then the vertlces of S have many neighbors outside S.

Suppose that {G, = (V,, E;) | n € N} be a sequence of graphs with

| V| = n such that each graph G, is k-regular and the there exists a lower
bound b of the sequence {cd(G,) | n € N} We refer to such a sequence
of graphs as an expander. Note that |E,| = %', which means that the
graphs grow increasingly sparse.

The existence of a lower bound for conductances guarantees that there
exist many neighbors for a set S of vertices.
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Theorem

Let G = (V,E) be a graph. We have

a(G)
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Proof

In the definition of the conductance we require |S| < % so

Vi1 o,
V=[] 1B =

Therefore, since a(G) < %, it follows that

oS S 0
O = Tsin—1s) IS Ta-js] =24

This theorem shows that @ provides a lower bound for the conductance

of a graph, whose computation is intractable.
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There are several criteria for choosing clusterings defined on similarity
spaces.

The simplest such criterion is the minimal value of cut(x). This will ensure
that the objects of each cluster C; are as dissimilar as possible to the
objects from the other clusters.

For bipartitions the algorithm is based on the observation that if x, y are
two vertices of a weighted graph G = (V,E,w) and 1 ={X, Y} is a
bipartition of V such that x € X and y € Y/, then the value of a minimum
cut cut(m) is the smaller of a minimum (x, y)-cut and a minimum cut of
G/{x,y}, where G/{x,y} is the graph obtained from G by merging x and
y and removing the edge (x,y) if such an edge exists.

Indeed, either there exists a minimum cut of G that separates x and y
(and in this case a minimum (x, y)-cut is a minimum cut of G), or there is
no such cut and, in this case, a minimum cut of G/{x, y} is a minimum

cut of 7.
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Let K = {Cy,..., Ck} be a partition of a set V = {v1,...,v,} of n objects
into k clusters.

Starting from a similarity matrix S € R"™" for the objects of V we can
define a similarity graph of V as G = (V, E,s), where s(v;,v;) = s for
1<il<n.

The indicator vector c; € R" of the cluster C; is

L ifvieG

0 otherwise,

wherel < i< nand 1< <.
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Since k is a partition of V/, the matrix C = (c; -+ ck) has an
orthonormal set of columns, so C'C = I,. Note that, in terms of the
entries of C we have

Clj
)
C_,' = Cij
Cnj
for 1 <j < k.
We claim that ( )
1 cut(C;, C
clgc; =~ Ei
SR T2 g
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By a previous result we have:

/
CjLch ZZS,g Cij — CgJ) .

171 /=1
If vi € C; and v, € C; we have ¢;; = \/ﬁ and ¢; = 0; in this case

Sii
S,'g(C,j — ng)z = ﬁ
J

Otherwise, that is, if both v; and v, belong to Cj, or neither vertex
belongs to C; we have
2
S,'g(C,j — ng) = O.

This implies

SU 1 CUt(Cb C_.J)
cileej= > Z ~ 27 |c
e VZQC J
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Since

we have
k k
ZC}LGCj = Z C/LGC
j=1 j=1

. _

1 G, G 1

2 = peuanets).
j=1

= trace(C'LgC) =

To minimize cutratio(k) is tantamount to seeking the matrix C such that
trace(C'L¢ C) is minimal subjected to the constraint C'C = I.
To obtain a practical solution this optimization problem is relaxed by
allowing C to range over R"*¥. By Ky Fan's Theorem the minimum is
obtained by choosing C such that its columns consist of the eigenvectors
Ci,...,Ck of Lg that correspond to the k smallest eigenvaﬁ of the
Laplacian Lg. s
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The original set of points V = {v1,...,v,} C R™ is transformed now into
aset {y1,...,y,} in a lower-dimensional space R¥, where y;, ...,y are
the rows of the matrix C € R* whose columns are the k eigenvectors
Ci,...,Ck of Lg, as shown next.
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Unnormalized Spectral Clustering

Data: Similarity matrix S € R™", number k of clusters
Result: A clustering k = {Cy,..., Ck}
let A be its weighted adjacency matrix;
compute the ordinary Laplacian L;
compute the first k eigenvectors c1,...,cx of L;
let C = (cy,...,cx) € R™K;
define yy,...,y, € R¥ such that C' = (y; --- y,);
cluster {y;,...,y,} € R¥ using the k-means algorithm into k;
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Another approach to spectral clustering uses the normalized cut of a
partition. As before, let K = {Cy, ..., Cx} be a partition of a set

V ={wvi,...,vs} of nobjects into k clusters for which we have a similarity
matrix S € R"*". Define the characteristic vector h; of C; as

1
(h)); = vol( ;)
0 otherwise,

if v € Cj,

for 1 <j< k and let H=(hy --- hy) be the matrix of these vectors. We
have

n n
hiDch; => > " (h))idie(h))e.

i=1¢=1
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The non-zero terms in this sum are such that i = ¢ and v; € C;. Thus,
hiDch; = #Cj) > vec; d(v) = 1. On the other had, h;Dghy, = 0 if
Jj# m, so HDgH = I;. A similar computation yields

1
h AGh = E E S,g(h VO/(CJ') E S(V,', Vg).
i=1 ¢=1 vi,ve€C;

These computations allow us to write

1
WLch; = hi(Dg— Ac)hj =l —hiAgh; =1 ol C) > s(visw)

V,‘,VZEC_,'

vol(G)) ~ wvol(C

vol(C;) — thwecj s(vi, vj) cut(C;, G)
5

Therefore,

trace(H' LgH) = Zh’Lgh - Z‘:u‘fc(,/fféf) ()
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To minimize the normalized cut we need to minimize trace(H'LgH)
subjected to the constraint H'DH = I,.. Let M = D%H. Then, in terms of
the matrix M, the optimization problem amounts to minimizing
trace(l\/I’D_%LgD_%l\/l) = trace(M'Lg sym M) subjected to the restriction
M'M = I. By allowing M to range over R"*¥, the optimum can be
achieved by M = (my,...,my), where my, ... my are the first k
eigenvectors of the symmetric Laplacian Lg sym.
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D_%ml, e D_%mk are the first k eigenvectors of the of the random
walk Laplacian and these are exactly the columns of the matrix H. So, the
optimal value of H is obtained by choosing its columns to be equal to the
eigenvectors that correspond to the first k eigenvalues of Lg .
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Next we discuss the implementation of spectral clustering in R .
We consider a set of 41 points in R? placed into two squares and encoded
as pairs of numbers in the matrix X.

X <- matrix(c(1,1,1,2,1,3,1,4,1,5,1,6,1,7
1,1,1 1,3,11,4,11,5,11,6,11,7,
,1,3, ,1,6,1,7,1 1,9,1,10,1
7,6,7,7,7,8,7,9,7,10,7,
5,
5
5

> >

1

2,1 8
2,7,3,7,4,7,5, 8,
4,3
5,3
6,3

1,2,1

3,1,4,1,5
3,7,4,7,5
.5,4,4,4,4.
,3.5,5,4,5,4.5,
,3.5,6,4,6,4.5),

s VYo

nrow = 41, byrow=TRUE)
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The set of points in R? looks like:
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The function neighbor _graph(X,k) is used for building a k-nearest
neighbor graph G, x, where an edge (v, w) exists if w is among the k
nearest neighbors of v. The adjacency matrix K of this graph is
symmetrized (using the operation K <= K + t(K) to yield the symmetric
adjacency matrix of an undirected graph.

neighbor_graph <- function(X,k)
{
D <- as.matrix(dist (X))
K <- matrix(0,nrow=nrow(X) ,ncol=nrow(X))

for(i in 1l:nrow(X)) {
neighbor_index <- order(D[i,]) [2:k]
K[i,] [neighbor_index] <-1
}
# K is a matrix having 1s in position (i,j) if j is among
# the first k neighbors of i
K <- K + t(X)
K[K == 2] =1

return (K) m
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The function spectral_clustering makes use of the function
laplacian and the functineighbor_graph defined above. The R script
of this function is given next.

spectral_clustering <- function(X,k,num_eig)

{

G = neighbor_graph(X,k)

L = laplacian(G,FALSE)

eig = eigen(L,symmetric=TRUE)

n = nrow(L)

return(eig$vectors[,(n - num_eig): (n-1)])

# this returns the eigenvectors of the num_eig smallest eigenval
}

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Spectral Clust 31/34



Finally, the set of eigenvectors returned by spectral_clustering is
clustered using the k-means function as in:

X_sc <- spectral_clustering(X,k,num_eig)
X_final <- kmeans(X_sc,num_clust)
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A direct application of the function specc of the package kernlab

sc<- specc(X,centers=2,kernel=""rbfdot’’)
followed by a call to the pdf function

> pdf (’’squares.pdf’’)
> plot(X,pch=sc+22)
> dev.off ()

will produce the plot shown next.
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