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We present a treatment of clusterings starting from a finite similarity space
S = (V , s) defined on the set of objects V .

Definition

The similarity graph associated to S is the weighted graph GS = (V ,E , s),
where E = {(v , v ′) ∈ V × V | s(v , v ′) > 0} and the weight of an edge
(v , v ′) is s(v , v ′) for v , v ′ ∈ V .
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A clustering of the objects in V is a partition κ = {C1, . . . ,Cn} of V . The
blocks Ci of κ are the clusters.
In terms of similarity spaces, the goal of any clustering algorithm is to
gather in a cluster all objects that are similar to each other and to place in
distinct clusters pairs of objects that have low similarities.
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There are several ways to contruct a similarity space (or a similarity graph)
for a set of points V = {x1, . . . , xn}.
For example, an undirected graph Gt = (V ,Et) can be defined by

Et = {{xi , xj} | d(xi , xj) 6 t},

where t is a given threshold.
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Another option is to use the k-nearest neighbor graph Gnn,k , where an
edge (v,w) exists if w is among the k nearest neighbors of v. This leads,
of course to a directed graph; however, an undirected graph can be readily
obtained by ignoring the orientation of the edges. An alternative
undirected graph G ′nn,k can be obtained by considering an edge {v,w} if w
is among the k closest neighbors of v and v is among the k closest of w.
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Finally, it is possible to use a weighted complete graph on the set V and
define for each pair of objects a similarity measure k(v,w). The function k
is referred in the specialized R package kernlab as a kernel.
A radial basis function (rbf) is a real-valued function f : Rn −→ R whose
value f (x) depends only on the distance from the origin ‖ x ‖, that is,
f (x) = f (‖ x ‖).
Examples of such kernels are k(v,w) = e−‖v−w‖

2
named the rbfdot or

e−‖v−w‖ named the laplacedot, etc.

Prof. Dan A. Simovici CS724: Topics in Algorithms Spectral Clustering 6 / 34



As usual, a clustering of the objects in V = {x1, . . . , xn}, where V ⊆ Rm

is a partition κ = {C1, . . . ,Ck} of V . The blocks Ci of κ are the clusters.
Let κ = {C1, . . . ,Ck} be a clustering of the objects of the set
V = {v1, . . . , vn}. For a block Ci we denote by C̄i the complement of Ci

relative the set V . Clearly, C̄i =
⋃
{Cj | j ∈ {1, . . . , k} − {i}} for every i ,

1 6 i 6 k .

Definition

The cut of κ is the number

cut(κ) =
k∑

i=1

cut(Ci , C̄i )

=
n∑

p=1

n∑
q=1

{s(vp, vq) | vp and vqbelong to different clusters}
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Definition

Let G = (V ,E ) be a graph and let S be a set of vertices. The edge
boundary of S is the set of edges of G that join S to its complement. This
set is denoted by ∂(S). Clearly, ∂(V − S) = ∂(S).
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Theorem

Let G = (V ,E ) be a graph with V = {v1, . . . , vn} and let S be a subset of
V . Then

α(G) ≤ n|∂(S)|
|S |(n − |S |)

,

where ∂(S) is the edge boundary of the set S.
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Proof

Recall that we have shown that

α(G ) = min
x
{x′LGx | x ∈ Sn}

= min
x

∑
{(xi − xj)

2 | x ∈ Sn, i < j and {vi , vj} ∈ E},

where Sn = {x ∈ Rn | x′1n = 0 and ‖ x ‖= 1}.
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Proof cont’d

Let r ∈ Rn be a vector defined by

ri =

{
n − |S | if vi ∈ S ,

−|S | if vi 6∈ S ,

for 1 ≤ i ≤ n.
It is clear that r′1n = 0, that is, r is orthogonal on 1n. Therefore, we have:

α(G) ≤
∑

(vi ,vj )∈E (ri − rj)
2

‖ r ‖2
=

n2|∂(S)|
|S |(n − |S |)2 + (n − |S |)|S |2

=
n∂(S)

|S |(n − |S |)
.
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Definition

Let G = (V ,E ) be a graph. The conductance of G is the number

cd(G ) = min

{
|∂(S)|
|S |

| S ⊆ V , |S | ≤ |V |
2

}
.
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Example

To compute the conductance of a complete graph Kn note that each
vertex v is linked to n − 1 other vertices of the graph. Thus, for a set of
vertices S we have ∂(S) = S × (V − S), so |∂(S)| = |S |(n − |S |). Thus,

cd(Kn) = min
{
n − |S | | S ⊆ V , |S | ≤ n

2

}
= dn

2
e.
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Example

Let G = (V ,E ) be a graph such that |V | = n.

If |S | ≤ n
2 , then cd(G ) ≤ ∂(S)

|S| , so |∂(S)| ≥ cd(G )|S |. If cd(G ) is large,
then the vertices of S have many neighbors outside S .
Suppose that {Gn = (Vn,En) | n ∈ N} be a sequence of graphs with
|Vn| = n such that each graph Gn is k-regular and the there exists a lower
bound b of the sequence {cd(Gn) | n ∈ N}. We refer to such a sequence
of graphs as an expander. Note that |En| = kn

2 , which means that the
graphs grow increasingly sparse.
The existence of a lower bound for conductances guarantees that there
exist many neighbors for a set S of vertices.

Prof. Dan A. Simovici CS724: Topics in Algorithms Spectral Clustering 14 / 34



Theorem

Let G = (V ,E ) be a graph. We have

cd(G ) ≥ α(G )

2
.
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Proof

In the definition of the conductance we require |S | ≤ |V |2 so

|V |
|V | − |S |

=
1

1− |S ||V |
≤ 2.

Therefore, since α(G ) ≤ n|∂(S)|
|S |(n−|S |) , it follows that

α(G ) ≤ n|∂(S)|
|S |(n − |S |)

=
|∂(S)|
|S |

· n

n − |S |
≤ 2cdG ).

This theorem shows that α(G)
2 provides a lower bound for the conductance

of a graph, whose computation is intractable.
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There are several criteria for choosing clusterings defined on similarity
spaces.
The simplest such criterion is the minimal value of cut(κ). This will ensure
that the objects of each cluster Ci are as dissimilar as possible to the
objects from the other clusters.
For bipartitions the algorithm is based on the observation that if x , y are
two vertices of a weighted graph G = (V ,E ,w) and π = {X ,Y } is a
bipartition of V such that x ∈ X and y ∈ Y , then the value of a minimum
cut cut(π) is the smaller of a minimum (x , y)-cut and a minimum cut of
G/{x , y}, where G/{x , y} is the graph obtained from G by merging x and
y and removing the edge (x , y) if such an edge exists.
Indeed, either there exists a minimum cut of G that separates x and y
(and in this case a minimum (x , y)-cut is a minimum cut of G ), or there is
no such cut and, in this case, a minimum cut of G/{x , y} is a minimum
cut of π.
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Let κ = {C1, . . . ,Ck} be a partition of a set V = {v1, . . . , vn} of n objects
into k clusters.
Starting from a similarity matrix S ∈ Rn×n for the objects of V we can
define a similarity graph of V as G = (V ,E , s), where s(vi , v`) = si` for
1 6 i , ` 6 n.
The indicator vector cj ∈ Rn of the cluster Cj is

(cj)i =


1√
|Cj |

if vi ∈ Cj

0 otherwise,

where 1 6 i 6 n and 1 6 j 6 i .
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Since κ is a partition of V , the matrix C = (c1 · · · ck) has an
orthonormal set of columns, so C ′C = Ik . Note that, in terms of the
entries of C we have

cj =



c1j
c2j
...
cij
...
cnj


for 1 6 j 6 k.
We claim that

c′jLGcj =
1

2

cut(Cj , C̄j)

|Cj |
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By a previous result we have:

c′jLGcj =
1

2

k∑
i=1

k∑
`=1

si`(cij − c`j)
2.

If vi ∈ Cj and v` 6∈ Cj we have cij = 1√
|Cj |

and c`j = 0; in this case

si`(cij − c`j)
2 =

sij
|Cj |

.

Otherwise, that is, if both vi and v` belong to Cj , or neither vertex
belongs to Cj we have

si`(cij − c`j)
2 = 0.

This implies

c′jLGcj =
∑
vi∈Cj

∑
v` 6∈Cj

sij
|Cj |

=
1

2

cut(Cj , C̄j)

|Cj |

and c′jLGcj = (C ′LGC )jj .
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Since

C ′LGC =

c′1
...
c′k

 LG (c1 · · · ck),

we have

k∑
j=1

c′jLGcj =
k∑

j=1

(C ′LGC )jj

= trace(C ′LGC ) =
1

2

k∑
j=1

cut(Cj , C̄j)

|Cj |
=

1

2
cutratio(κ).

To minimize cutratio(κ) is tantamount to seeking the matrix C such that
trace(C ′LGC ) is minimal subjected to the constraint C ′C = Ik .
To obtain a practical solution this optimization problem is relaxed by
allowing C to range over Rn×k . By Ky Fan’s Theorem the minimum is
obtained by choosing C such that its columns consist of the eigenvectors
c1, . . . , ck of LG that correspond to the k smallest eigenvalues of the
Laplacian LG .
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The original set of points V = {v1, . . . , vn} ⊆ Rm is transformed now into
a set {y1, . . . , yn} in a lower-dimensional space Rk , where y′1, . . . , y

′
n are

the rows of the matrix C ∈ R× whose columns are the k eigenvectors
c1, . . . , ck of LG , as shown next.
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Unnormalized Spectral Clustering

Data: Similarity matrix S ∈ Rn×n, number k of clusters
Result: A clustering κ = {C1, . . . ,Ck}

let A be its weighted adjacency matrix;
compute the ordinary Laplacian L;
compute the first k eigenvectors c1, . . . , ck of L;
let C = (c1, . . . , ck) ∈ Rn×k ;
define y1, . . . , yn ∈ Rk such that C ′ = (y1 · · · yn);
cluster {y1, . . . , yn} ⊆ Rk using the k-means algorithm into κ;
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Another approach to spectral clustering uses the normalized cut of a
partition. As before, let κ = {C1, . . . ,Ck} be a partition of a set
V = {v1, . . . , vn} of n objects into k clusters for which we have a similarity
matrix S ∈ Rn×n. Define the characteristic vector hj of Cj as

(hj)i =


1√

vol(Cj )
if vi ∈ Cj ,

0 otherwise,

for 1 6 j 6 k and let H = (h1 · · · hk) be the matrix of these vectors. We
have

h′jDGhj =
n∑

i=1

n∑
`=1

(hj)idi`(hj)`.
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The non-zero terms in this sum are such that i = ` and vi ∈ Cj . Thus,
h′jDGhj = 1

vol(Cj )

∑
v∈Cj

d(v) = 1. On the other had, h′jDGhm = 0 if

j 6= m, so H ′DGH = Ik . A similar computation yields

h′jAGhj =
n∑

i=1

n∑
`=1

(hj)i si`(hj)` =
1

vol(Cj)

∑
vi ,v`∈Cj

s(vi , v`).

These computations allow us to write

h′jLGhj = h′j(DG − AG )hj = Ik − h′jAGhj = 1− 1

vol(Cj)

∑
vi ,v`∈Cj

s(vi , v`)

=
vol(Cj)−

∑
vi ,v`∈Cj

s(vi , vj)

vol(Cj)
=

cut(Cj , C̄j)

vol(Cj)
.

Therefore,

trace(H ′LGH) =
k∑

j=1

h′jLGhj =
k∑

j=1

cut(Cj , C̄j)

vol(Cj)
= ncut(κ).
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To minimize the normalized cut we need to minimize trace(H ′LGH)

subjected to the constraint H ′DH = Ik . Let M = D
1
2H. Then, in terms of

the matrix M, the optimization problem amounts to minimizing

trace(M ′D−
1
2LGD

− 1
2M) = trace(M ′LG ,symM) subjected to the restriction

M ′M = Ik . By allowing M to range over Rn×k , the optimum can be
achieved by M = (m1, . . . ,mk), where m1, . . . ,mk are the first k
eigenvectors of the symmetric Laplacian LG ,sym.
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D−
1
2m1, . . . ,D

− 1
2mk are the first k eigenvectors of the of the random

walk Laplacian and these are exactly the columns of the matrix H. So, the
optimal value of H is obtained by choosing its columns to be equal to the
eigenvectors that correspond to the first k eigenvalues of LG ,rw.
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Next we discuss the implementation of spectral clustering in R .
We consider a set of 41 points in R2 placed into two squares and encoded
as pairs of numbers in the matrix X .

X <- matrix(c(1,1,1,2,1,3,1,4,1,5,1,6,1,7,

11,1,11,2,11,3,11,4,11,5,11,6,11,7,

2,1,3,1,4,1,5,1,6,1,7,1,8,1,9,1,10,1,

2,7,3,7,4,7,5,7,6,7,7,7,8,7,9,7,10,7,

4,3.5,4,4,4,4.5,

5,3.5,5,4,5,4.5,

6,3.5,6,4,6,4.5),

nrow = 41, byrow=TRUE)
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The set of points in R2 looks like:
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The function neighbor graph(X,k) is used for building a k-nearest
neighbor graph Gnn,k , where an edge (v,w) exists if w is among the k
nearest neighbors of v. The adjacency matrix K of this graph is
symmetrized (using the operation K <- K + t(K) to yield the symmetric
adjacency matrix of an undirected graph.

neighbor_graph <- function(X,k)

{

D <- as.matrix(dist(X))

K <- matrix(0,nrow=nrow(X),ncol=nrow(X))

for(i in 1:nrow(X)) {

neighbor_index <- order(D[i,])[2:k]

K[i,][neighbor_index] <-1

}

# K is a matrix having 1s in position (i,j) if j is among

# the first k neighbors of i

K <- K + t(K)

K[K == 2] = 1

return(K)

}
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The function spectral clustering makes use of the function
laplacian and the functineighbor graph defined above. The R script
of this function is given next.

spectral_clustering <- function(X,k,num_eig)

{

G = neighbor_graph(X,k)

L = laplacian(G,FALSE)

eig = eigen(L,symmetric=TRUE)

n = nrow(L)

return(eig$vectors[,(n - num_eig):(n-1)])

# this returns the eigenvectors of the num_eig smallest eigenvalues

}
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Finally, the set of eigenvectors returned by spectral clustering is
clustered using the k-means function as in:

X_sc <- spectral_clustering(X,k,num_eig)

X_final <- kmeans(X_sc,num_clust)
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A direct application of the function specc of the package kernlab

sc<- specc(X,centers=2,kernel=’’rbfdot’’)

followed by a call to the pdf function

> pdf(’’squares.pdf’’)

> plot(X,pch=sc+22)

> dev.off()

will produce the plot shown next.
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