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The quality of clusterings can be evaluated using two types of criteria:
criteria unrelated to the data set that is subjected to clustering
(external criteria);
criteria that are derived from the data set (internal criteria)
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The Ground Truth

External validation criteria are useful when a “ground truth” is known (as
it is typically the case for classification problems) and we seek to evaluate
the appropriateness of a clustering algorithm for separating objects into
clusters that conform more or less to the existing classification.
The ground truth is captured by a reference partition θ = {T1, . . . ,Tr} of
data set D (also known as the ground-truth partition). We discuss
modalities of comparing a clustering κ = (C1, . . . ,Cm) with the ground
truth partition.
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Definition

The contingency matrix of θ and κ is the matrix G (θ, κ) ∈ Rr×m, where
gij = |Ti ∩ Cj | for 1 6 i 6 r and 1 6 j 6 m.
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Suppose that the classes of objects of a data set D relative to the
partitions θ and κ are described respectively by the R -vectors t and k

whose length is n = |D|. Then, the contingency matrix G (θ, κ) of
partitions θ and κ can be obtained by using table(t,k).
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Example

Let D be a data set with |D| = 12 and let θ and κ be two partitions of D:

θ = {{d1, d6, d10}, {d3, d4, d7, d8, d12}, {d2, d5, d9, d11}},
κ = {{d4, d6, d10, d12}, {d1, d3, d8}, {d2, d5, d7, d9, d11}}.

The R -vectors that describe these partitions are:

t <- c(1,3,2,2,3,1,2,2,3,1,3,2)

k <- c(2,3,2,1,3,1,3,2,3,1,3,1).

A call to the function table returns the contingency table of partitions θ
and κ:

> table(t,k)

k

t 1 2 3

1 2 1 0

2 2 2 1

3 0 0 4
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Example

The row sums of the matrix equal the sizes of blocks of θ, while the
column sums equal the sizes of blocks of κ.
For a contingency matrix G = (gij) ∈ Rr×m for the reference partition
θ = {T1, . . . ,Tr} and clustering κ = {C1, . . . ,Cm} we introduce the
notations:

ni · =
m∑
j=1

gij = |Ti |,

n·j =
r∑

i=1

gij = |Cj |,

n·· =
r∑

i=1

m∑
j=1

gij = |D|.
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A cluster Cj is θ-pure if it is included in a block Ti of the reference
partition θ.
We denote by Tij the largest block of the reference partition θ that has the
largest intersection with the cluster Cj .
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Definition

The precision of a cluster Cj is defined as

precisionθ(Cj) =
1

|Cj |
·max{|Cj ∩ Ti | | 1 6 i 6 r},

and it measures the largest fraction of the cluster in a block of the
reference partition.
The precision of the clustering κ is the average precision of the clusters
C1, . . . ,Cm, that is,

precisionθ(κ) =
m∑
j=1

|Cj |
|D|

precisionθ(Cj)

=
1

|D|

m∑
j=1

max{|Ti ∩ Cj | | 1 6 i 6 r}.

If all clusters of κ are pure, then precisionθ(κ) = 1.
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Definition

The recall of the cluster Cj is defined as

recallθ(Cj) =
1

|Tij |
|Cj ∩ Tij |

and measures the fraction of the largest reference block that has the
largest intersection with Cj which is shared with Cj .
The F-measure of the cluster Cj is the harmonic average of its precision
and recall:

F (Cj) =
2

1
precisionθ(Cj )

+ 1
recallθ(Cj )

= 2
nij j

nj + |Tij |
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The F -measure F (κ) for the clustering κ is the mean of the F -measures
for the clusters:

F (κ) =
1

m

m∑
j=1

F (Cj).

Higher values for the F -measure indicate a better fit between the reference
partition θ and the clustering κ.
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Example

Let θ and κ be the partitions introduced in above, where
θ = {T1,T2,T3}, κ = {C1,C2,C3} and

T1 = {d1, d6, d10} C1 = {d4, d6, d10, d12},
T2 = {d3, d4, d7, d8, d12} C2 = {d1, d3, d8},
T3 = {d2, d5, d9, d11} C3 = {d2, d5, d7, d9, d11}.

Note that contingency matrix G (θ, σ) can be written as

G =

|T1 ∩ C1| |T1 ∩ C2| |T1 ∩ C3|
|T2 ∩ C1| |T2 ∩ C2| |T2 ∩ C3|
|T3 ∩ C1| |T3 ∩ C2| |T3 ∩ C3|

 =

2 1 0
2 2 1
0 0 4


Thus, the blocks of the reference partitions that have the largest
intersection with the clusters C1,C2 and C3 are T2, again T2 and T3,
respectively.
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Example

The precision of the clusters of κ relative to θ are

precisionθ(C1) =
2

4
, precisionθ(C2) =

2

3
, precisionθ(C3) =

4

5
,

so C3 has the largest precision.
The precision of κ is

precisionθ(κ) =
m∑
j=1

|Cj |
|D|

precisionθ(Cj)

=
4

12

2

4
+

3

12

2

3
+

5

12

4

5
=

2

3
.

The recalls of the clusters are

recallθ(C1) =
2

5
, recallθ(C2) =

2

5
, recallθ(C3) =

4

4
.
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Example

The recalls of the clusters are

recallθ(C1) =
2

5
, recallθ(C2) =

2

5
, recallθ(C3) =

4

4
.

The F -score of C1 is

F (C1) =
2precision(C1) · recall(C1)

precision(C1) + recall(C1)
=

4

9
.

Similarly, F (C2) = 1
2 and F (C3) = 8

9 . The F-score for the cluster κ is the
average of these scores, that is, 1

3(49 + 1
2 + 8

9) = 11
18 .

A good score is usually close to 1.
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Example

Consider the first two principal components of the objects in the iris

data set and the projection of this data set on these components.
We begin by converting the class of the items in iris into numerical
values by using the function numClass:

numClass <- function(){

result <- vector(length=150)

for(i in 1:150)

if(iris[i,5]==’’setosa’’) result[i]=1

else if (iris[i,5]==’’versicolor’’) result[i]=2

else result[i]=3

return(result)

}
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Example

The numerical class is saved in N with

N <- numClass()

Next, we represent the objects in the iris data set using the first two
principal components by writing

> pcaIRIS <- PCA(iris[,1:4],graph=FALSE)

> M <- pcaIRIS$ind$coord[,1:2]

Recall that PCA is a function of the package FactMineR.
The k-means algorithm for k = 3 is applied to M:

> K1 <- kmeans(M,3)

and the component cluster of K1 is compared to N. In case of equality,
the object was placed in the correct cluster (and appears as a black
rectangle); otherwise, the object was missclassified.
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Example

The corresponding representation is obtained by writing:

> pdf(’’pcaIRIS.pdf’’)

> plot(M,pch = 14 + (K1$cluster==N))

> dev.off()
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Representation of the iris data set
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A contingency table can now be created by writing

> table(N,K1$cluster)

This produces

1 2 3

1 50 0 0

2 0 11 39

3 0 36 14

The first class setosa is perfectly classified; only 11 of the fifty plants of
the versicolor, and only 14 of the fifty virginica are correctly placed.
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The notion of entropy is a probabilistic concept that lies at the
foundation of information theory.
Our goal is to define entropy in an algebraic setting by introducing
the notion of entropy of a partition of a finite set.
Entropy will allow us to compare clusterings regarded as partitions of
finite sets.
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From a probabilistic point of view Shannon’s entropy is defined starting
from a probability distribution p = (p1, . . . , pn) with pi > 0 for 1 6 i 6 n
and

∑n
i=1 pi = 1, as H(p) =

∑n
i=1 pi log2

1
pi

.
Since the function f : (0,∞) −→ R given by f (x) = − log2 x is convex by
Jensen’s inequality we have:

− log2

(
n∑

i=1

pixi

)
6 −

n∑
i=1

pi log2 xi .

If xi = 1
pi

, we obtain

− log2 n 6 −
n∑

i=1

pi log2
1

pi
.

Thus H(p1, . . . , pn) 6 log2 n, which shows that the maximum Shannon
entropy, log2 n is obtained when p1 = · · · = pn = 1

n .
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Definition

Let S be a finite set and let π = {B1, . . . ,Bm} be a partition of S . The
β-entropy of a partition π ∈ PART(S) is the number Hβ(S , π) defined as

Hβ(S , π) =
1

1− 21−β
·

(
1−

m∑
i=1

(
|Bi |
|S |

)β)
.

When S is clear from context we write Hβ(π) instead of Hβ(S , π).
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The Shannon entropy of π is the number

H(π) = −
m∑
i=1

|Bi |
|S |

log2
|Bi |
|S |

.

The Gini index of π is the number

gini(π) = 1−
m∑
i=1

(
|Bi |
|S |

)2

.

Both the Shannon entropy and the Gini index can be used to evaluate the
uniformity of the distribution of the elements of S in the blocks of π
because both values increase with the uniformity of the distribution of the
elements of S .
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Example

Entropy increasing with partition uniformity:

q q q q q q q q q q
q qq q q q qq q q
q qq q q q qq qqq q q q q qq qqq

H(π1) = 2.32

H(π2) = 2.17

H(π3) = 2.04

H(π4) = 1.96
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Gini index increasing with partition uniformity:

q q q q q q q q q q
q qq q q q qq q q
q qq q q q qq qqq q q q q qq qqq

gini(π1) = 0.80

gini(π2) = 0.79

gini(π3) = 0.72

gini(π4) = 0.68
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If β = 2, we obtain H2(π), which is twice the Gini index,

Hβ(S , π) = 2 ·

(
1−

m∑
i=1

(
|Bi |
|S |

)2
)
.

The Gini index, gini(π) = 1−
∑m

i=1

(
|Bi |
|S|

)2
, is widely used in machine

learning and data mining.
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The limit case, limβ→1Hβ(π), yields

lim
β→1
Hβ(S , π) = lim

β→1

1

1− 21−β
·

(
1−

m∑
i=1

(
|Bi |
|S |

)β)

= lim
β→1

1

21−β ln 2
·

(
−

m∑
i=1

(
|Bi |
|S |

)β
ln
|Bi |
|S |

)

= −
m∑
i=1

|Bi |
|S |

log2
|Bi |
|S |

,

which is the Shannon entropy of π.
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Definition

Let S and T be disjoint sets, and let π = {B1, . . . ,Bm} ∈ PART(S) and
σ = {C1, . . . ,Cn} ∈ PART(T ). The sum of the partitions π and σ is the
partition π + σ of S ∪ T given by

π + σ = {B1, . . . ,Bm,C1, . . . ,Cn}
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Theorem

Let β > 1. The following properties hold:
(i) If π, π′ ∈ PART(S) and π 6 π′, then Hβ(π′) 6 H(π).
(ii) If S ,T are finite sets and |S | 6 |T |, then Hβ(S , αS) 6 Hβ(T , αT ).
(iii) If S and T are disjoint sets, π ∈ PART(S) and σ ∈ PART(T ), then

Hβ(S ∪ T , π + σ)

=

(
|S |

|S |+ |T |

)β
Hβ(S , π) +

(
|T |

|S |+ |T |

)β
Hβ(T , σ)

+Hβ(S ∪ T , {S ,T}).
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Proof

To prove Part (i) it suffices to show that π ≺ π′ implies Hβ(π′) 6 H(π).
Therefore, we may assume that π = {B1, . . . ,Bm−1,Bm} and
π′ = {B1, . . . ,Bm−1 ∪ Bm}. The inequality to be proven amounts to
showing that when β > 1 we have

|Bm−1 ∪ Bm|β > |Bm−1|β + |Bm|β.

Since Bm−1 and Bm are disjoint, this amounts to

(|Bm−1|+ |Bm|)β > |Bm−1|β + |Bm|β.

Note that for the function φ : [0, 1] −→ R defined by φ(t) = tβ + (1− t)β

we have φ(0) = φ(1) = 1 and the function has a minimum in 1
2 ,

φ
(
1
2

)
= 1

21−β
. Therefore, φ(t) > 1 when t ∈ [0, 1]. Choosing

t = |Bm|
|Bm−1|+|Bm| in the last inequality we obtain the desired result.
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Since Hβ(S , αS) = 1−|S |1−β
1−21−β , Part (ii) is immediate.

The last part follows from the definition of π + σ.
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Definition

The joint β-entropy of partitions π, σ ∈ PART(S) is the β-entropy
Hβ(π ∧ σ).

For π = {B1, . . . ,Bm} and σ = {C1, . . . ,Cn} in PART(S) the joint
β-entropy is:

Hβ(π ∧ σ) =
1

1− 21−β

1−
m∑
i=1

n∑
j=1

(
|Bi ∩ Cj |
|S |

)β .
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The entropies previously introduced generate corresponding conditional
entropies.
Let π ∈ PART(S) and let C ⊆ S . Denote by πC the “trace” of π on C
given by

πC = {B ∩ C |B ∈ π such that B ∩ C 6= ∅}.

Clearly, πC ∈ PART(C ); also, if C is a block of π, then πC = ωC .
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Definition

Let π, σ ∈ PART(S) and let σ = {C1, . . . ,Cn}. The β-conditional entropy
of partitions π, σ ∈ PART(S) is the function Hβ : PART(S)2 −→ R>0

defined by

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β
Hβ(πCj

).
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Note that Hβ(π|ωS) = Hβ(π) and that Hβ(ωS |π) = Hβ(π|αS) = 0 for
every partition π ∈ PART(S).
For π = {B1, . . . ,Bm} and σ = {C1, . . . ,Cn}, the conditional entropy can
be written explicitly as

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β m∑
i=1

1

1− 21−β

[
1−

(
|Bi ∩ Cj |
|Cj |

)β]

=
1

1− 21−β

n∑
j=1

((
|Cj |
|S |

)β
−

m∑
i=1

(
|Bi ∩ Cj |
|S |

)β)
. (1)
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For the special case when π = αS , we can write

Hβ(αS |σ) =
n∑

j=1

(
|Cj |
|S |

)β
Hβ(αCj

) =
1

1− 21−β

 n∑
j=1

(
|Cj |
|S |

)β
− 1

|S |β−1

 .

(2)

Example

By applying l’Hôpital rule the Shannon conditional entropy H(π|σ) is

H(π|σ) = lim
β←1

1

1− 21−β

n∑
j=1

((
|Cj |
|S |

)β
−

m∑
i=1

(
|Bi ∩ Cj |
|S |

)β)

=
m∑
i=1

n∑
j=1

|Bi ∩ Cj |
|S |

log
|Bi ∩ Cj |
|Cj |

.
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Theorem

Let S be a finite set and let π, σ ∈ PART(S). We have Hβ(π|σ) = 0 if
and only if σ 6 π.

Proof.

Suppose that σ = {C1, . . . ,Cn}. If σ 6 π, then πCj
= ωCj

for 1 6 j 6 n
and therefore

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β
Hβ(ωCj

) = 0.

Conversely, suppose that

Hβ(π|σ) =
n∑

j=1

(
|Cj |
|S |

)β
Hβ(πCj

) = 0.

This implies Hβ(πCj
) = 0 for 1 6 j 6 n, which means that πCj

= ωCj
for

1 6 j 6 n by a previous remark. This means that every block Cj of σ is
included in a block of π, so σ 6 π.
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The joint entropy of two partitions is linked to conditional entropy in the
next statement.

Theorem

Let π and σ be two partitions of a finite set S. We have

Hβ(π ∧ σ) = Hβ(π|σ) +Hβ(σ) = Hβ(σ|π) +Hβ(π),
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Proof

By a previous equality we have:

Hβ(π ∧ σ)−Hβ(π|σ)

=
1

1− 21−β

1−
m∑
i=1

n∑
j=1

(
|Bi ∩ Cj |
|S |

)β
− 1

1− 21−β

n∑
j=1

((
|Cj |
|S |

)β
−

m∑
i=1

(
|Bi ∩ Cj |
|S |

)β)
= Hβ(σ).

The second equality has a similar proof.
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Corollary

If Hβ(π ∧ σ) = Hβ(π), then π 6 σ.

Proof.

Since Hβ(π ∧ σ) = Hβ(π), we have Hβ(σ|π) = 0. Thus, we have
π 6 σ.
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We saw that

Hβ(π)−Hβ(π|σ) = Hβ(σ)−Hβ(σ|π).

This justifies the following definition:

Definition

The mutual information of π, σ ∈ PART(S) is the number:

Iβ(π, σ) = Hβ(π)−Hβ(π|σ) = Hβ(σ)−Hβ(σ|π).

Taking into account the definition of the joint entropy we obtain a
symmetric expression for the mutual information of π and σ as

Iβ(π, σ) = Hβ(π) +Hβ(σ)−Hβ(π ∧ σ).

Therefore,
Hβ(π)−Hβ(π|σ) = Hβ(σ)−Hβ(σ|π).
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Lemma

Let w1, . . . ,wn be n positive numbers such that
∑n

i=1 wi = 1,
a1, . . . , an ∈ [0, 1], and let β > 1. We have

1−

(
n∑

i=1

wiai

)β
−

(
n∑

i=1

wi (1− ai )

)β
>

n∑
i=1

wβ
i

(
1− aβi − (1− ai )

β
)
.
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Proof
It is easy to see that xβ + (1− x)β 6 1 for x ∈ [0, 1]. This implies

wi

(
1− aβi − (1− ai )

β
)
wβ
i

(
1− aβi − (1− ai )

β
)

because wi ∈ (0, 1) and β > 1.
By applying Jensen’s inequality to the convex function h(x) = xβ we have(

n∑
i=1

wiai

)β
6

n∑
i=1

wia
β
i(

n∑
i=1

wi (1− ai )

)β
6

n∑
i=1

wi (1− ai )
β.

These inequalities allow us to write

1−

(
n∑

i=1

wiai

)β
−

(
n∑

i=1

wi (1− ai )

)β

=
n∑

i=1

wi −

(
n∑

i=1

wiai

)β
−

(
n∑

i=1

wi (1− ai )

)β

>
n∑

i=1

wi −
n∑

i=1

wia
β
i −

n∑
i=1

wi (1− ai )
β

=
n∑

i=1

wi

(
1− aβi − (1− ai )

β
)
>

n∑
i=1

wβ
i

(
1− aβi − (1− ai )

β
)
,
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Theorem

Let S be a set, π ∈ PART(S) and let C and D be two disjoint subsets of
S. For β > 1, we have

|C ∪ D|βHβ(πC∪D) > |C |βHβ(πC ) + |D|βHβ(πD).
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Proof

Let π = {B1, . . . ,Bn} ∈ PART(S). Define

wi =
|Bi ∩ (C ∪ D)|
|C ∪ D|

, ai =
|Bi ∩ C |

|Bi ∩ (C ∪ D)|

for 1 6 i 6 n, so 1− ai = |Bi∩D|
|Bi∩(C∪D)| .

By a previous lemma we have:

1−

(
n∑

i=1

|Bi ∩ C |
|C ∪ D|

)β
−

(
n∑

i=1

|Bi ∩ D|
|C ∪ D|

)β

>
n∑

i=1

(
|Bi ∩ (C ∪ D)|
|C ∪ D|

)β (
1−

(
|Bi ∩ C |

|Bi ∩ (C ∪ D)|

)β
−
(

|Bi ∩ D|
|Bi ∩ (C ∪ D)|

)β)
.
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Proof cont’d

The last inequality is equivalent to

|C ∪ D|β −
n∑

i=1

|Bi ∩ (C ∪ D)|β

> |C |β −
n∑

i=1

|Bi ∩ C |β + |D|β −
n∑

i=1

|Bi ∩ D|β.

This last inequality leads immediately to the inequality of the theorem.
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The β-conditional entropy is dually monotonic with respect to its first
argument and is monotonic with respect to its second argument.

Theorem

Let π, σ, σ′ ∈ PART(S), where S is a finite set. If σ 6 σ′, then
Hβ(σ|π) > Hβ(σ′|π) and Hβ(π|σ) 6 Hβ(π|σ′).
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Proof

Since σ 6 σ′, we have π ∧ σ 6 π ∧ σ′, so Hβ(π ∧ σ) > Hβ(π ∧ σ′).
Therefore, Hβ(σ|π) +Hβ(π) > Hβ(σ′|π) +Hβ(π), which implies
Hβ(σ|π) > Hβ(σ′|π).

Prof. Dan A. Simovici CS724: Topics in Algorithms Evaluation of Clustering Quality 48 / 80



Proof cont’d

For the second part of the theorem, it suffices to prove the inequality for
partitions σ, σ′ such that σ ≺ σ′. Without loss of generality we may
assume that σ = {C1, . . . ,Cn−2,Cn−1,Cn} and
σ′ = {C1, . . . ,Cn−2,Cn−1 ∪ Cn}. Thus, we can write

Hβ(π|σ′)

=
n−2∑
j=1

(
|Cj |
|S |

)β
Hβ(πCj

) +

(
|Cn−1 ∪ Cn|
|S |

)β
Hβ(πCn−1∪Cn)

>

(
|Cj |
|S |

)β
Hβ(πCj

) +

(
|Cn−1|
|S |

)β
Hβ(πCn−1) +

(
|Cn|
|S |

)β
Hβ(πCn)

= H(π|σ).
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Corollary

We have Hβ(π) > Hβ(π|σ) for every π, σ ∈ PART(S).

Proof.

We noted that Hβ(π) = Hβ(π|ωS). Since ωS > σ, the statement
follows.
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Corollary

Let ξ, θ, θ′ be three partitions of a finite set S. If θ > θ′, then

Hβ(ξ ∧ θ)−Hβ(θ) > Hβ(ξ ∧ θ′)−Hβ(θ′).
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Proof

By a previous result we have:

Hβ(ξ ∧ θ)−Hβ(ξ ∧ θ′) = Hβ(ξ|θ) +Hβ(θ)−Hβ(ξ|θ′)−Hβ(θ′).

The monotonicity of Hβ(|) in its second argument means that:
Hβ(ξ|θ)−Hβ(ξ|θ′) > 0, so Hβ(ξ ∧ θ)−Hβ(ξ ∧ θ′) > Hβ(θ)−Hβ(θ′),
which implies the desired inequality.
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The behavior of β-conditional entropies with respect to the “addition” of
partitions is discussed in the next statement.

Theorem

Let S be a finite set and π and θ be two partitions of S, where
θ = {D1, . . . ,Dh}. If σi ∈ PART(Di ) for 1 6 i 6 h, then

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

(
|Di |
|S |

)β
Hβ(πDi

|σi ).

If τ = {F1, . . . ,Fk} and σ = {C1, . . . ,Cn} are two partitions of S, let
πi ∈ PART(Fi ) for 1 6 i 6 k. Then,

Hβ(π1 + · · ·+ πk |σ) =
k∑

i=1

(
|Fi |
|S |

)β
Hβ(πi |σFi

) +Hβ(τ |σ).
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Proof

Suppose that σi = {E `i | 1 6 ` 6 pi}. The blocks of the partition

σ1 + · · ·+ σh are the sets of the collection
⋃h

i=1{E `i | 1 6 ` 6 pi}. Thus,
we have

Hβ(π|σ1 + · · ·+ σh) =
h∑

i=1

pi∑
`=1

(
|E `i |
|S |

)β
Hβ(πE `i

).

On the other hand, since (πDi
)E `i

= πE `i
, we have

h∑
i=1

(
|Di |
|S |

)β
Hβ(πDi

|σi ) =
h∑

i=1

(
|Di |
|S |

)β pi∑
`=1

(
|E `i |
|Di |

)β
Hβ(πE `i

)

=
h∑

i=1

pi∑
`=1

(
|E `i |
|S |

)β
Hβ(πE `i

),

which gives the first equality of the theorem.
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Proof cont’d

To prove the second part, observe that
(π1 + · · ·+ πk)Cj

= (π1)Cj
+ · · ·+ (πk)Cj

for every block Cj of σ. Thus,
we have

Hβ(π1 + · · ·+ πk |σ) =
n∑

j=1

(
|Cj |
|S |

)β
Hβ((π1)Cj

+ · · ·+ (πk)Cj
).

By applying a previous corollary to partitions (π1)Cj
, . . . , (πk)Cj

of Cj , we
can write

Hβ((π1)Cj
+ · · ·+ (πk)Cj

) =
k∑

i=1

(
|Fi ∩ Cj |
|Cj |

)β
Hβ((πi )Cj

) +Hβ(τCj
).
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Thus,

Hβ(π1 + · · ·+ πk |σ)

=
n∑

j=1

k∑
i=1

(
|Fi ∩ Cj |
|S |

)β
Hβ((πi )Cj

) +
n∑

j=1

(
|Cj |
|S |

)β
Hβ(τCj

)

=
k∑

i=1

(
|Fi |
|S |

)β n∑
j=1

(
|Fi ∩ Cj |
|Fi |

)β
Hβ((πi )Fi∩Cj

) +Hβ(τ |σ)

=
k∑

i=1

(
|Fi |
|S |

)β
Hβ(πi |σFi

) +Hβ(τ |σ),

which is the desired equality.
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Theorem

Let π, σ, τ be three partitions of the finite set S. We have

Hβ(π|σ ∧ τ) +Hβ(σ|τ) = Hβ(π ∧ σ|τ).
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Proof

By a previous theorem we can write

Hβ(π|σ ∧ τ) = Hβ(π ∧ σ ∧ τ)−Hβ(σ ∧ τ)

Hβ(σ|τ) = Hβ(σ ∧ τ)−Hβ(τ).

By adding these equalities we obtain the equality of the theorem.
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Corollary

Let π, σ, τ be three partitions of the finite set S. Then, we have

Hβ(π|σ) +Hβ(σ|τ) > Hβ(π|τ).
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Proof

By a previous result, the monotonicity of β-conditional entropy in its
second argument, and the antimonotonicity of the same in its first
argument, we can write

Hβ(π|σ) +Hβ(σ|τ) > Hβ(π|σ ∧ τ) +Hβ(σ|τ)

= Hβ(π ∧ σ|τ)

> Hβ(π|τ),

which is the desired inequality.
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The property of Hβ described next is known as the submodularity of
entropy.

Corollary

Let π and σ be two partitions of the finite set S. Then, we have

Hβ(π ∨ σ) +Hβ(π ∧ σ) 6 Hβ(π) +Hβ(σ).
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Proof

By a previous Corollary, we have Hβ(π|σ) 6 Hβ(π|τ) +Hβ(τ |σ). Then,
we obtain

Hβ(π ∧ σ)−Hβ(σ) 6 Hβ(π ∧ τ)−Hβ(τ) +Hβ(τ ∧ σ)−Hβ(σ),

hence
Hβ(τ) +Hβ(π ∧ σ) 6 Hβ(π ∧ τ) +Hβ(τ ∧ σ).

Choosing τ = π ∨ σ implies immediately the inequality of the corollary.
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The set of partitions PART(S) can be equipped with a metric derived
from the notion of entropy.
The initial result in this direction was obtained by L. de Mántaras in who
proved that the mapping d : PART(S)2 −→ R>0 defined as

d(π, σ) = H(π|σ) +H(σ|π)

(for the Shannon entropy H) is a metric on PART(S). We show that this
result holds for any β-entropy.
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Theorem

The mapping dβ : PART(S)2 −→ R>0 defined by

dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π).

is a metric on PART(S).
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Proof

A double application of a previous Corollary implies

Hβ(π|σ) +Hβ(σ|τ) > Hβ(π|τ),

Hβ(σ|π) +Hβ(τ |σ) > Hβ(τ |π),

for all π, σ, τ ∈ PART(S). This implies the triangular inequality

dβ(π, σ) + dβ(σ, τ) > dβ(π, τ).
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Proof cont’d

The symmetry of dβ is obvious and it is clear that dβ(σ, σ) = 0 for every
σ ∈ PART(S).
Suppose now that dβ(π, σ) = 0. Since the values of the β-entropy are
non-negative we have Hβ(π|σ) = Hβ(σ|π) = 0. This implies both σ 6 π
and π 6 σ, so π = σ.
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Note that dβ can also be written as

dβ(π, σ) = Hβ(π ∧ σ)−Hβ(σ) +Hβ(π ∧ σ)−Hβ(π)

= 2Hβ(π ∧ σ)−Hβ(π)−Hβ(σ).

We can also write

dβ(π, σ) + Iβ(π, σ) = Hβ(π ∧ σ),

an equality which relates the distance between partitions, the mutual
information, and the joint entropy, three important measures that we
introduced related to β-entropy.
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For a partition π ∈ PART(D) we write x ≡π y if there is a block B ∈ π
such that {x , y} ⊆ B. It is immediate that “≡π is an equivalence relation.
Let τ = {T1, . . . ,Tr} be a reference partition of data set D (also known
as the ground-truth partition) and let κ = (C1, . . . ,Cm) be a clustering.
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The pairs of elements of D can be classified into four classes relative to
the partitions τ and σ. Namely, a pair (x , y) with x 6= y is

a true positive pair if x ≡τ y and x ≡κ y ;
a true negative pair if x 6≡τ y and x 6≡κ y ;
a false positive pair if x 6≡τ y and x ≡κ y ;
a false negative pair if x ≡τ y and x 6≡κ y .

The number of true positive pairs is denoted by TP(τ, κ), that of true
negative pairs is TN(τ, κ), the number of false positive pairs is FP(τ, κ),
and the number of false negative pairs is FN(τ, κ).
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For |D| = n there are
(n
2

)
distinct pairs, hence(

n

2

)
= TP(τ, κ) + TN(τ, κ) + FP(τ, κ) + FN(τ, κ).

Let G (τ, κ) = (gij) ∈ Rr×m be the contingency matrix for the reference
partition τ = {T1, . . . ,Tr} and clustering κ = {C1, . . . ,Cm}. We
introduce the partial sums:

gi · =
m∑
j=1

gij = |Ti |,

g·j =
r∑

i=1

gij = |Cj |,

g·· =
r∑

i=1

m∑
j=1

gij = |D|,

for 1 6 i 6 r and 1 6 j 6 m.
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These notations are summarized by the following table:

part. κ
class C1 C2 · · · Cm sums
T1 g11 g12 · · · g1m g1·
T2 g21 g22 · · · g2m g2·

part. τ
...

...
... · · ·

...
...

Tr gr1 gr2 · · · grm gr ·
sums g·1 g·2 · · · g·m g·· = |D|
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All indices mentioned above can be computed in O(rm) time because the
contingency matrix G (τ, κ) can be computed in linear time.
We have

TP(τ, κ) =
r∑

i=1

m∑
j=1

(
gij
2

)

=
1

2

 r∑
i=1

m∑
j=1

g2
ij −

r∑
i=1

m∑
j=1

gij


=

1

2

 r∑
i=1

m∑
j=1

g2
ij − n

 .
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The number of pairs that belong to the same block of the reference
partition is

∑r
i=1

(gi·
2

)
. If we eliminate from these pairs the true positive

pairs we obtain the number of false negative pairs:

FN(τ, κ) =
r∑

i=1

(
gi ·
2

)
− TP(τ, κ)

=
1

2

r∑
i=1

g2
i · −

1

2

r∑
i=1

gi · −
1

2

r∑
i=1

m∑
j=1

g2
ij +

n

2

=
1

2

 r∑
i=1

g2
i · −

r∑
i=1

m∑
j=1

g2
ij


because

∑r
i=1 gi · = n.
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The number of false positive pairs is obtained by subtracting from the
number of pairs that belong to the same cluster the number of true
positive pairs:

FP(τ, κ) =
m∑
j=1

(
g·j
2

)
− TP(τ, κ)

=
1

2

m∑
j=1

g2
·j −

1

2

m∑
j=1

g·j −
1

2

r∑
i=1

m∑
j=1

g2
ij +

n

2

=
1

2

 m∑
j=1

g2
·j −

r∑
i=1

m∑
j=1

g2
ij


because

∑m
j=1 g·j = n.
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The number of true negative pairs is

TN(τ, κ) =
1

2

g2
·· −

r∑
i=1

g2
i · −

m∑
j=1

g2
·j +

r∑
i=1

m∑
j=1

g2
ij

 .

Prof. Dan A. Simovici CS724: Topics in Algorithms Evaluation of Clustering Quality 75 / 80



These numbers can be used, in turn, to compute efficiently several
numerical characteristics of the pair (τ, κ).
Let ρτ and ρκ the equivalences that correspond to the partitions τ and κ.
These equivalences are sets of pairs in D × D. Therefore, it makes sense
to consider their Jaccard coefficient:

J(ρτ , ρκ) =
|ρτ ∩ ρκ|
|ρτ ∪ ρκ|

,

which evaluates the similarity between the reference partition τ and the
clustering κ. It is clear that

|ρτ ∩ ρκ| =
|TP(τ, κ)|

|TP(τ, κ)|+ |FN(τ, κ)|+ |FP(τ, κ)|
.
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The Rand coefficient is

R(τ, κ) =
|TP(τ, κ)|+ |TN(τ, κ)|(n

2

) ,

and represents the fraction of objects where the reference partition and the
clustering agree. When R(τ, κ) = 1 the two partitions are identical.
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The notions of precision and recall previously introduced are reformulated
for pairs of objects.
The precision for τ and κ is

precision(τ, κ) =
TP(τ, κ)

TP(τ, κ) + FP(τ, κ)

and reflects the size of the set of correctly classified pairs of objects vs.
the size of the sets of pairs of objects that reside in the same cluster. We
have precision(τ, κ) = 1 if and only if no false positive pairs.
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The recall for τ and κ is

recall(τ, κ) =
TP(τ, κ)

TP(τ, κ) + FN(τ, κ)

Recall evaluates the fraction of correctly classiffied pairs of objects
compared to all pairs of objects that inhabit the same block of reference
partition.
We have recall(τ, κ) = 1 if FN(τ, κ) = 0, that is, if there are no pairs in ρτ
whose components belong to two distinct clusters.
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The Fowlkes-Mallows coefficient FM(τ, κ) is the geometric average of recall
and precision, that is,

FM(τ, κ) =
√

precision(τ, κ) · recall(τ, κ)

=
TP(τ, κ)√

(TP(τ, κ) + FP(τ, κ))(TP(τ, κ) + FN(τ, κ))
.
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