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The Davies-Bouldin Index

The Davies-Bouldin index is designed for evaluating the quality of
non-overlapping clusterings.

Definition

Let (S , d) be a metric space. A dispersion measure on (S , d) is a function
s : P(S) −→ R>0 such that s(C ) = 0 if and only if |C | = 1.

Example

The function sse is a dispersion measure.
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Example

The function δ : P(S) −→ R>0 defined by

δ(C ) =

∑
{d(x , y) | x , y ∈ C , x 6= y}

|C |(|C | − 1)

yields the mean distance between all pairs of objects in C . It is immediate
to see that δ(C ) = 0 if and only if |C | = 1, so δ is a dispersion measure.
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Example

The diameter diam : P(S) −→ R>0 is a dispersion function for obvious
reasons.
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Definition

Let κ = {C1, . . . ,Ck} be a clustering in a metric space (S , d), si be the
dispersion of Ci , and rij be the distance between the representatives ci and
cj of the clusters Ci and Cj (usually chosen as the centroids of the clusters
Ci and Cj) for 1 6 i , j 6 k.
A cluster similarity measure is a function r : R3

>0 −→ R̂ that satisfies the
following conditions:

r(si , sj ,mij) > 0;
r(si , sj ,mij) = r(sj , si ,mij);
r(si , sj ,mij) = 0 if and only if si = sj ;
if sj = sk and mij < mik , then r(si , sj ,mij) > r(si , sk ,mik);
if mik = mij and sj > sk , then r(si , sj ,mij) > r(si , sk ,mik).
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When the distance between cluster centers increases while their
dispersions remain constant, the similarity of the clusters decreases.
If the distances between cluster centroids remains constant while the
dispersion increase, the similarity increases.
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Example

Consider the function r given by

r(s, s ′,m) =
s + s ′

m

for s, s ′,m ∈ R>0. It is immediate that r satifies the conditions imposed
on similarity measures.
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Definition

Let κ = {C1, . . . ,Ck} be a clustering in a metric space (S , d). The
Davies-Bouldin index of κ is the clustering average similarity measure rκ
given by

rκ =
1

k

k∑
i=1

max{rij | 1 6 j 6 k}.

The “best” clustering is the one that minimizes the average similarity
measure.
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Example

Consider a data set in R2 shown next:

v1 =

(
2
1

)
, v2 =

(
2
3

)
, v3 =

(
8
1

)
, v4 =

(
8
3

)
grouped into two clusterings:

κ = {C1,C2}, κ′ = {C ′
1,C2},

where
C1 = {v1, v2},C2 = {v3, v4},

and
C ′
1 = {{v1, v3},C ′

2 = {v2, v4}.
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The centroids of the clusters are:

cluster C1 C2 C ′
1 C ′

2

centroid

(
2
2

) (
8
2

) (
5
1

) (
5
3

)
We choose the dispersion measure as the sum of the square errors. Its
values for the clusters are:

sse(C1) = 2, sse(C2) = 2, sse(C ′
1) = 18, sse(C ′

2) = 18.

Thus, r12 = 0.8 and r ′12 = 18, hence rκ = 0.8 and rκ′ = 18, giving the
edge to κ.
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The Dunn Quality Indices

A related family of cluster quality indices is known as Dunn quality indices.
For a clustering κ = {C1, . . . ,Ck} a Dunn index is a function

∆(κ) =
min16i<j6k D(Ci ,Cj)

max16j6k s(Cj)
,

where s is a dispersion measure, and D(Ci ,Cj) is an intercluster
dissimilarity (which can be the least distance between two points in
different clusters, the maximum distance between two such points, or the
distance between the centroids of the clusters, etc.). Note that if a cluster
has a high value of the dispersion this impacts negatively the value of the
index due to the presence of max in the denominator.
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The Silhouette Coefficient

Let κ = {C1, . . . ,Ck} be a clustering on a dissimilarity space (S , d), where
k > 1. The silhouette coefficient of an object compares the similarity
between an object and other objects located in the same cluster, and the
similarity of the same object to objects located in other clusters.
Suppose that x ∈ S is assigned to the cluster Cp and {x} ⊂ Cp. Define

a(x) =
1

|Cp|
∑
{d(x , u) | u ∈ Cp − {x}}.

For r 6= p define d(x ,Cr ) = 1
|Cr |
∑
{d(x , y) | y ∈ Cr} and

b(x) = min{d(x ,Cr ) | 1 6 r 6 k and r 6= p}.

The cluster Cr that defines b(x), that is, b(x) = d(x ,Cr ) is the neighbour
of x and represents the second-best choice for object x .
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Definition

The silhouette of x is the number s(x) defined as

s(x) =
b(x)− a(x)

max{a(x), b(x)}
=


1− a(x)

b(x) if a(x) < b(x),

0 if a(x) = b(x),
b(x)
a(x) − 1 if a(x) > b(x).

If Cp = {x} we define s(x) = 0.
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Note that −1 6 s(x) 6 1. When s(x) is close to 1, the within dissimilarity
a(x) is much smaller than the smallest between dissimilarity b(x).
Therefore, x is well-classified; the second best-choice of a cluster for x is
not nearly as closes as the actual choice.
When a(x) is close to 0, then a(x) and b(x) are about the same, hence it
not clear whether x has been correctly assigned to Cp.
When a(x) is close to −1, then a(x) is larger than b(x), so x is closer to
some cluster other than Cp; we say that x has been missassigned.
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Example

Starting from the iris dataset we remove the species attribute by

ir <- iris[,1:4]

and apply the pam algorithm of the package clust:

pamc <- pam(ir,3)

The plot of the pamc object contains two subplots: the clusplot, which
we discussed previously and the sihouette plot. These plots can be
obtained by writing

> pdf(’’pamc-clusplot.pdf’’)

> plot(pamc,which.plots=1)

> dev.off()
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and

> pdf(’’pamc-silh.pdf’’)

> plot(pamc,which.plots=2)

> dev.off()

The plot which is generated is determined by the parameter which.plots
(1 for clusplot and 2 for the silhouette plot.
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These two components explain 95.81 % of the point variability.
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Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of pam(x = ir, k = 3)

Average silhouette width :  0.55

n = 150 3  clusters  Cj

j :  nj | avei∈Cj  si

1 :   50  |  0.80

2 :   62  |  0.42

3 :   38  |  0.45
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The silhouette function can be used to determine the best number of
clusters. Consider, for example a uni-dimensional set of objects defined as

x <- c(rnorm(50),rnorm(50,mean=5),rnorm(50,mean=15))

and define an array w as

w <- numeric(20)
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Then write

x <- c(rnorm(50),rnorm(50,mean=5),rnorm(30,mean=15))

w <- numeric(20)

for(k in 2:20)

w[k] <- pam(x,k)$silinfo$avg.width

k.best <- which.max(w)

cat(’’silhouette-optimal number of clusters is: ’’,k.best,’’\n’’)

plot(1:20,w,type=’’h’’,main=’’pam() clustering assessment’’,

xlab=’’k (no of clusters)’’,ylab=’’avg. silhouette width’’)

axis(1,k.best,paste(’’best’’,k.best,sep=’’\n’’),col=’’red’’,col.axis=’’red’’)
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The best value is k = 3, as it also follows from the following graph:
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