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Single-link Clustering - Recall

This is a recapitulation of the relationship between single-link clustering
and minimal spanning trees (MSTs) which we covered in our discussion of
hierarchical clustering.
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Single-link Clustering - Recall

Kruskal’s Algorithm:
Data: A weighted graph G = (V ,E , c);
Result: A minimum spanning tree T = (V ,E ′, c ′) of G ;
initialize the set of edges U as U ← ∅;
insert in U successive edges in the order of increasing weight provided that
the insertion does not create a cycle; if it does, skip the edge;
stop when all nodes are connected
return: T = (V ,U, c �U)
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Single-link Clustering - Recall

Let G = ({vi | 1 6 i 6 6},E , c) a the weighted graph shown below.

v1 v2 v3

v4 v5

v6

5 6

7 1 3 4

2 8
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Single-link Clustering - Recall

The successive values of the set U are:

∅
{{v2, v4}}
{{v2, v4}, {v4, v6}}
{{v2, v4}, {v4, v6}, {v2, v5}}
{{v2, v4}, {v4, v6}, {v2, v5}, {v5, v3}}
{{v2, v4}, {v4, v6}, {v2, v5}, {v5, v3}, {v2, v1}}

The weight of the minimum spanning tree shown is 15.

v1 v2 v3

v4 v5
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Single-link Clustering - Recall

Notations:

DDS the set of definite dissimilarities on S ;
(S , d) is a dissimilarity space, where d is a dissimilarity on S ; in
general we assume that d ∈ DDS .
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Single-link Clustering - Recall

Single-link Clustering Algorithm

Data: A dissimilarity space (S , d);
Result: A single-link clustering;
initialize π ← {{x} | x ∈ S};
while {stopping condition is not met}{

seek a pair of clusters C ,C ′ ∈ π such that
d(C ,C ′) = min{d(x , y) | x ∈ C , y ∈ C ′} is minimal;
fuse the clusters C and C ′ into the cluster C ∪ C ′, that is,
π ← π − {C ,C ′} ∪ {C ∪ C ′};

}
return π
The most common stopping condition, which we adopt unless specified
otherwise is that π = ωS , that is, only one cluster exists.
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Single-link Clustering - Recall

The single-link algorithm can be presented from the perspective of a
minimum spanning tree of the weighted complete graph Gd whose vertex
set is S and for which the weight of edge {i , j} is d(i , j).

List edges in increasing order of their weight.
Start with the partition of S that consists of singletons and from an
MST T of the graph GS ,d labeled by these singletons.
At each step the algorithm replaces edges in the tree by blocks
obtained by fusing the extremities of the edges that have the lowest
weight, until a single block partition is obtained.
As before, the most common stopping condition, which we adopt
unless specified otherwise is that π = ωS , that is, only one cluster
exists.
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Single-link Clustering - Recall

Consider the graph

v1 v2 v3

v4 v5

v6

2 3

3 3 3 2

2 3

The list of edges in increasing order of the weight:

{v1, v2} {v3, v5} {v4, v6} {v1, v4} {v2, v3} {v2, v4} {v2, v5} {v5, v6}
2 2 2 3 3 3 3 3
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Single-link Clustering - Recall

The construction of the single-link clustering proceeds along the by adding
the edges whose endpoints are fused in the same cluster (indicated by bold
lines).
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Single-link Clustering - Recall
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Single-link Clustering - Recall
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Single-link Clustering - Recall
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Single-link Clustering - Recall
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Single-link Clustering - Recall
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Clustering Functions

Definition

A clustering function on a set S is a mapping f : DDS −→ PART(S), that
is, as a function that maps a definite dissimilarity on S to a partition of S .
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Clustering Functions

Definition

Let π ∈ PART(S) be a partition of the set S . Define the relation 6π on
DDS as d 6π d ′ if

x ≡ y(π) implies d ′(x , y) 6 d(x , y), and
x 6≡ y(π) implies d ′(x , y) > d(x , y)

for x , y ∈ S .

If d 6π d ′ we say that d ′ is a π-transformation of d and we write d 6π d ′.

Prof. Dan A. Simovici CS724: Topics in Algorithms Clustering Axiomatization 17 / 74



Clustering Functions

Dissimilarity d ′ is a π-tranformation of dissimilarity d .

x

y u

v

d ′(x , y) 6 d(x , y)

d ′(u, v) > d(u, v)
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Clustering Functions

Theorem

The relation 6π is a partial order on DDS .

Proof: It is immediate that 6π is reflexive.
If we have both d 6π d ′ and d ′ 6π d , then

x ≡ y(π) implies d ′(x , y) 6 d(x , y),

x 6≡ y(π) implies d ′(x , y) > d(x , y),

x ≡ y(π) implies d(x , y) 6 d ′(x , y),

x 6≡ y(π) implies d(x , y) > d ′(x , y),

hence d(x , y) = d ′(x , y) in all cases. This shows that 6π is antisymmetric.
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Clustering Functions

Proof cont’d

Finally, if d 6π d ′ and d ′ 6π d ′′, then

x ≡ y(π) implies d ′(x , y) 6 d(x , y),

and d ′′(x , y) 6 d ′(x , y),

x 6≡ y(π) implies d ′(x , y) > d(x , y),

and d ′′(x , y) > d ′(x , y).

Thus, x ≡ y(π) implies d ′′(x , y) 6 d(x , y) and x 6≡ y(π) implies
d ′′(x , y) > d(x , y), hence 6π is transitive.
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Clustering Functions

Theorem

The partial ordered set (DDS ,6π) is a lattice.
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Clustering Functions

Proof

Let d1, d2 ∈ DDS such that d1 6π d ′ and d2 6π d ′. We have:

x ≡ y(π) implies d ′(x , y) 6 d1(x , y),

and d ′(x , y) 6 d2(x , y),

x 6≡ y(π) implies d ′(x , y) > d1(x , y),

and d ′(x , y) > d2(x , y).

This means that x ≡ y(π) implies d ′(x , y) 6 min{d1(x , y), d2(x , y)} and
x 6≡ t(π) implies d ′(x , y) > max{d1(x , y), d2(x , y)}. Thus, by defining
d ∈ DDS as

d(x , y) =

{
min{d1(x , y), d2(x , y)} if x ≡ y(π),

max{d1(x , y), d2(x , y)} if x 6≡ y(π),

we have d 6π d ′, which shows that d is the infimum of d1 and d2 in the
partial ordered set (DDS ,6π).
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Clustering Functions

Proof cont’d

Similarly, d̃ ∈ DDS defined as

d̃(x , y) =

{
max{d1(x , y), d2(x , y)} if x ≡ y(π),

min{d1(x , y), d2(x , y)} if x 6≡ y(π),

for x , y ∈ S is the supremum of {d1, d2}
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Clustering Functions

Let π ∈ PART(S) and let a, b be two non-negative numbers such that
a 6 b. Define the mapping δπa,b : S × S −→ R>0 as

δπa,b(x , y) =


0 if x = y ,

a if x ≡ y(π) and x 6= y ,

b if x 6≡ y(π).

It is easy to verify that δπa,b is an ultrametric on S .
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Clustering Functions

Definition

Let a, b be two non-negative numbers and let π ∈ PART(S). A
dissimilarity d ∈ DDS is said to (a, b)-conform to π if d 6π δπa,b.

In other words, a dissimilarity d ∈ DDS is said to (a, b)-conform to π if
if x ≡π y then d(x , y) 6 a, and
if x 6≡π y then d(x , y) > b.

for all x , y ∈ S .
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Clustering Functions

Observe that d is (a, b)-conform to π if

M(π) = max{d(x , y) | x ≡ y(π)} 6 a, and

m(π) = min{d(x , y) | x 6≡ y(π)} > b.

Note that if d is (a, b)-conform to π and e 6π d , then e is also
(a, b)-conform to π.
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Clustering Functions

Definition

A pair of positive real numbers (a, b) is π-forcing relative to a clustering
function f if for all d ∈ DDS that are (a, b)-conform to π we have
f (d) = π.

Equivalently, (a, b) is a π-forcing pair relative to f if

d 6π δ
π
a,b implies f (d) = π.
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Clustering Functions

SYNOPSIS

d is (a, b)-conforms to π if d 6π δπa,b.
(a, b) is π-forcing relative to f if when d 6π δπa,b (that is, d
(a, b)-conforms to π) then f (d) = π.
f is consistent if d 6f (d) d

′ implies f (d ′) = f (d).
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Kleinberg’s Impossibility Result

Kleinberg considers three desirable and natural properties of clustering
functions: scale-invariance, richness, and consistency.
Namely, a clustering function f is:

scale-invariant, if for any dissimilarity function d we have
f (ad) = f (d) if a > 0;
rich, if it is surjective, that is, for any partition π ∈ PART(S) there
exists d ∈ DDS such that f (d) = π;
consistent, if d 6f (d) d

′ then f (d) = f (d ′).
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Kleinberg’s Impossibility Result

Variants of single-link clustering
Besides the common halting condition for the single-link algorithm
(π = ωS) there are several alternatives:

k-cluster stopping condition: Stop adding edges when the
partition first consists of k blocks. (This condition is well-defined
when the number of points is at least k .)
dissimilarity-r stopping condition: Fuse clusters C ,C ′ only
if d(C ,C ′) 6 r ;
scale-α stopping condition: Let α ∈ (0, 1) and let d∗ denote
the maximum pairwise dissimilarity; i.e.
d∗ = max{d(x , y) | x , y ∈ V }. Then, fuse clusters C ,C ′ only if
d(C ,C ′) 6 αd∗.
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Kleinberg’s Impossibility Result

By choosing a stopping condition for the single-link procedure, one
obtains a clustering function, which maps the dissimilarity function to
the set of connected components that results at the end of the
procedure.
For any two of the three properties considered above one can choose
a single-link stopping condition so that the resulting clustering
function satisfies exactly these two properties.
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Kleinberg’s Impossibility Result

Theorem

For any k > 1, and n > k, single-link with the k-cluster stopping
condition satisfies scale-invariance and consistency but fails richness.
For any r > 0, and any n > 2, single-link with the dissimilarity-r
stopping condition satisfies richness and consistency but fails
scale-invariance.
For any positive α < 1, and any n > 3, single-link with the scale
α-stopping condition satisfies scale-invariance and richness but fails
consistency.
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Kleinberg’s Impossibility Result

Proof

Single-link with the k-cluster stopping condition satisfies scale-invariance
and consistency but fails richness.
This function fails the richness condition because not every partition has
k-clusters.
It is immediate that f is scale invariant.
To prove that f it is consistent suppose that f (d) = π and that d 6π d ′.
If x , y belong to the same cluster of π, that is, if x ≡ y(π), then
d ′(x , y) 6 d(x , y), which means that x ≡ y(π′) because the unordered
pair {x , y} is added to the MST that corresponds to d ′ before the same
edge is added to the MST that corresponds to d .
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Kleinberg’s Impossibility Result

Proof cont’d

For any r > 0, and any n > 2, single-link with the dissimilarity-r stopping
condition satisfies richness and consistency but fails scale-invariance.
Scale invariance is not satisfied because by multiplying the dissimilarity by
an appropriate constant we obtain the clustering that consists only of
singletons. The stopping condition means that x ≡ y(f (d)) implies
d(x , y) 6 r .
Richness follows from the fact that the constant r and the dissimilarity d
can be chosen such that f (π) equals any partition on the set of objects.
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Kleinberg’s Impossibility Result

Proof cont’d

Let d , d ′ be dissimilarities such that d 6f (d) d
′. We need to prove that

f (d ′) = f (d), or equivalently, that x ≡ y(f (d)) if and only if x ≡ y(f (d ′)).
Since both partitions f (d) and f (d ′) are obtained by the application of the
single-link with the dissimilarity-r stopping condition it follows that

x ≡ y(f (d)) implies d(x , y) 6 r and x ≡ y(f (d ′)) implies d ′(x , y) 6 r .

If x ≡ y(f (d)) we have d ′(x , y) 6 d(x , y) 6 r so x ≡ y(f (d ′)).
Suppose now that x ≡ y(f (d ′)) but x 6≡ y(f (d)). Since d 6f (d) d

′, we
have d ′(x , y) > d(x , y) and r > d ′(x , y). Thus, r > d(x , y), which
contradicts the fact that x 6≡ y(f (d)). Therefore, x ≡ y(f (d ′)) implies
x ≡ y(f (d)), hence f (d) = f (d ′).
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Kleinberg’s Impossibility Result

Proof cont’d

For any 0 < α < 1, and any n > 3, single-link with the scale α-stopping
condition satisfies scale-invariance and richness but fails consistency.
Recall that clusters are fused when d(C ,C ′) 6 αmax{d(x , y) | x , y ∈ V }.
Scale-invariance is immediate since both the values of the dissimilarities
and the values of the threshold are multiplied at the same rate. Richness is
also immediate.
However, consistency fails.
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Kleinberg’s Impossibility Result

Let V = {x1, x2, x3} and let d be defined by

d(x1, x2) = a, d(x2, x3) = b, d(x1, x3) = c,

where a < b < c. Thus, the maximum dissimilarity is c .
Choose α such that a < αc < b, or a

c < α < b
c . The resulting partition is

π = f (d) = {{x1, x2}, {x3}}.
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Kleinberg’s Impossibility Result

If d ′ is such that d 6π d ′ then

d ′(x1, x2) 6 d(x1, x2) = a,

d ′(x2, x3) > d(x2, x3) = b,

d ′(x1, x3) > d(x1, x3) = c .

There conditions are satisfied by d ′ defined as

d ′(x1, x2) = a, d ′(x2, x3) = b, d ′(x1, x3) = kc .

Choose k such that b < αkc . We have f (d ′) = {{x1, x2, x3}}. Since
d 6π d ′ but f (d ′) 6= f (d), consistency fails.
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Antichains of Partitions and An Impossibility Result

Lemma

Let f be a consistent clustering function on a dissimilarity space (S , d).
For any π ∈ Ran(f ) there exist positive numbers a, b such that the pair
(a, b) is π-forcing relative to f .
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Antichains of Partitions and An Impossibility Result

Proof

Since π ∈ Ran(f ) there exists d such that f (d) = π. Let

a′ = min{d(x , y) | x ≡ y(π)},
b′ = max{d(x , y) | x 6≡ y(π)},

and let a, b be two numbers such that a 6 a′ 6 b′ 6 b. Since d ′

(a, b)-conforms to π = f (d), we have f (d ′) = π by the consistency
property. It follows that the pair (a, b) is π-forcing relative to f .
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Antichains of Partitions and An Impossibility Result

Theorem

If a clustering function f : DDS −→ PART(S) is scale-invariant and
consistent, then its range is an antichain in the partially ordered set of
partitions of S.
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Antichains of Partitions and An Impossibility Result

Proof

Suppose that f is scale-invariant and that exist distinct partitions
π0, π1 ∈ Ran(f ) such that π0 is a refinement of π1, that is, π0 < π1.
Let (a0, b0) be a π0 forcing pair and let (a1, b1) be a π1 forcing pair
relative to f , where a0 < b0 and a1 < b1.
Let a2 be such that a2 6 a1, and let ε such that 0 < ε < a0a2

b0
.

Since π0 < π1 define a dissimilarity d ∈ DDS such that:
if x ≡ y(π0), then d(x , y) 6 ε;
if x ≡ y(π1) but x 6≡ y(π0), then a2 6 d(x , y) 6 a1;
if x 6≡ y(π1) then d(x , y) > b1.
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Antichains of Partitions and An Impossibility Result

Proof cont’d

The dissimilarity d (a1, b1)-conforms to π1 and so f (d) = π1.
Set α = b0

a2
and define d ′ = αd . By scale invariance we have

f (d ′) = f (d) = π1.
For x ≡ y(π0) we have d ′(x , y) 6 εb0

a2
< a0, while for x 6≡ y(π0) we have

d ′(x , y) > a2b0a
−1
2 = b0.

Thus, d ′ (a0, b0) conforms to π0 and so we have f (d ′) = π0. Since
π0 6= π1. this is a contradiction.
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Antichains of Partitions and An Impossibility Result

Theorem

For every antichain of partitions A, there is a clustering function that is
scale-invariant and consistent such that Ran(f ) = A.
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Antichains of Partitions and An Impossibility Result

Proof

Let A be an antichain of partitions of the set S . An A-sum-of-pairs
clustering function f is defined as f (d) = π, where π is the partition that
minimizes the sum

Φd(π) =
∑
{d(x , y) | x ≡ y(π)}

over partitions π in A.
Since Φαd(π) = αΦd(π) it is clear that f is scale-invariant.
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Antichains of Partitions and An Impossibility Result

For π ∈ A let d be the dissimilarity on the set S with |S | = n having the
following properties:

d(x , y) < 1
n3

for x ≡ y(π);
d(x , y) > 1 for x 6≡ y(π).

We have Φd(π) < 1; moreover, Φd(π′) < 1 only for partitions π′ such that
π′ 6 π. Since A is an antichain, π minimizes Φd over all partitions in A,
hence f (d) = π.
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Antichains of Partitions and An Impossibility Result

To prove consistency suppose that f (d) = π and let d ′ be such that
d 6π d ′. For any partition π′ let ∆(π′) = Φd(π′)− Φd ′(π′). It suffices to
show that for any π′ ∈ A we have ∆(π) > ∆(π′).
Note that

∆(π) =
∑
{d(x , y)− d ′(x , y) | x ≡ y(π)},

∆(π′) =
∑
{d(x , y)− d ′(x , y) | x ≡ y(π′)}

6
∑
{d(x , y)− d ′(x , y) | x ≡ y(π ∧ π′)}

6 ∆(π),

where both inequalities follow from d 6π d ′ (for the first, only terms that
correspond to pairs in the same cluster of π are non-negative; for the
second, every term corresponding to a pair in the same cluster of π is
non-negative). This concludes the argument.
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Antichains of Partitions and An Impossibility Result

Kleinberg’s Main Result

Corollary

For each n > 2, there is no clustering function that satisfies
scale-invariance, richness and consistency.

Proof: Suppose that f : DDS −→ PART(S) is a clustering function that
satisfies scale-invariance and consistency. By a previous theorem, the
range of f is an antichain in (PART(S),6), so f cannot be a surjective.
Therefore, f fails the richness property, which contradicts the initial
assumption.
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Centroid-based clustering and consistency

In centroid-based clustering k input points are selected as tentative
centroids followed by the definition of clusters by assigning each point in S
to its nearest centroid.
The aim is to choose centroids such that each point in S is close to at
least one of them.

Example

A choice is to select centroids such that the sum of dissimilaritiess to its
assigned points is minimal (Fermat points or k-median).
An alternative, used in the case of k-means is to seek centroids such that
the sum of the squares of dissimilarities to its assigned points is minimal.
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Centroid-based clustering and consistency

Kleinberg proved that for a general class of centroid-based clustering
functions, including k-means and k-median, none of the functions in the
class satisfies the consistency property. This contrasts with with the results
for single-link and sum-of-pairs.
For k ∈ N, k > 2 and any continuous, non-decreasing, and unbounded
function g : R>0 −→ R>0, define the (k, g)-centroid clustering function as
follows.
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Centroid-based clustering and consistency

Choose the subset T of S consisting of k centroid for which the objective
function λgd(T ) =

∑
x∈S g(d(x ,T )) is minimized. (Here

d(x ,T ) = minc∈T d(x , c)). Then, define a partition of S into k clusters
by assigning each point to the element of T closest to it.

the k-median function is obtained by setting g to be the identity
function;
the objective function underlying k-means clustering is obtained by
setting g(d) = d2.
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Centroid-based clustering and consistency

Theorem

For every k > 2 and every function g chosen as above, and for n
sufficiently large relative to k, the (k , g)-centroid clustering function fails
the consistency property.
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Centroid-based clustering and consistency

Proof

Suppose that k = 2; the argument for k > 2 is similar. Let
πγ = {X ,Y } ∈ PART(S), where |X | = m and |Y | = γm for γ > 0.
Assume that the dissimilarity between points in X is r , the dissimilarities
between points in Y are equal to ε, where ε < r , and the dissimilarity
between x in X and y in Y is r + δ, for some δ > 0.
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Centroid-based clustering and consistency

Proof cont’d

By choosing γ, r , ε and δ appropriately, the optimal choice of 2 centroids
will consist of one point from X and one from Y , and the resulting
partition π will have clusters X and Y .
Suppose we partition X into sets X0 and X1 of equal size, and reduce the
dissimilarities between points in the same Xi to be r ′ < r (keeping all
other dissimilarities the same). This yields the dissimilarity d ′.
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Centroid-based clustering and consistency

Proof cont’d

X Y

X0

X1

r + δ
r ′

r ′
r

ε

This can be done, for r ′ small enough, so that the optimal choice of two
centroids will now consist of one point from each Xi , yielding a different
partition of S .
As our second dissimilarity is a π-transformation of the first, this violates
consistency.
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Partitioning Functions

The notion of partitioning function, a modification of the notion of
clustering function is considered.

Definition

A partitioning function on a definite dissimilarity space is a function
f : DDS × {1, . . . , |S |} −→ PART(S) such that f (d , k) is a partition of S
having k blocks.
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Partitioning Functions

One could consider properties of partitioning functions similar to the ones
previously introduced by Kleinberg for clustering functions.
Namely, a partitioning function f is:

scale-invariant, if for any dissimilarity d ∈ DDS and number of
clusters k (such that 1 6 k 6 |S |) we have f (ad , k) = f (d , k) if
a > 0;
rich, if for any number of clusters k such that 1 6 k 6 |S |,
Ran(f (·, k)) equals the set of all partitions that have k blocks;
order-consistent, if for any d , d ′ and k the order of edges of G is
identical for d and d ′, then f (d , k) = f (d ′, k);

Order-consistency means that the only way that the partition function uses
edge weights is by comparing them against each other. Note that
order-consistency implies scale invariance.
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Partitioning Functions

Definition

A partitioning function f : DDS × {1, . . . , |S |} −→ PART(S) is consistent
if f (d , k) = π and d 6π d ′ implies f (d ′, k) = π.

The main result discussed here is that the four properties enumerated
above: scale invariance, k-richness, order-consistency, and consistency are
satisfiable. To present this result we shall revisit the single-link clustering.
The single-link algorithm on a dissimilarity space (S , d) can be discussed
in the context of a complete weighted graph G = (S ,E , d), where the
weight of an edge {x , y} is d(x , y). If S = {x1, . . . , xn}, the dissimilarity d
is specified by a list Ld of numbers in non-decreasing order

Ld = (d1, d2, . . . , d(n2)
),

of the weights of the edges of G .
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Partitioning Functions

An edge {x , y} is redundant if x and y are connected via a path whose
edges have smaller weight than d({x , y}). The following algorithm
constructs the single-link clustering κ, where Cx is the cluster that contain
x .

Prof. Dan A. Simovici CS724: Topics in Algorithms Clustering Axiomatization 59 / 74



Partitioning Functions

Data: A dissimilarity space (S , d), given by the list Ld and a number k ,
where 1 6 k 6 |S |.
Result: A single-link clustering that consists of no more than k clusters.
π ← {{xi} | 1 6 i 6 |S |};
i ← 1;
while {|π| > k}{

let ei = {x , y};
let Cx ∈ π such that x ∈ Cx ;
let Cy ∈ π such that y ∈ Cx ;
if{Cx 6= Cy}{

merge Cx and Cy ;
π ← π − {Cx ,Cy} ∪ {Cx ∪ Cy};
}
i ← i + 1;
} return π

Prof. Dan A. Simovici CS724: Topics in Algorithms Clustering Axiomatization 60 / 74



Partitioning Functions

Theorem

The partitioning function computed by the previous single-link algorithm is
scale invariant, k-rich, order-consistent, and consistent.
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Partitioning Functions

Proof

Single-link is order-consistent because if its decisions are based on
comparing two edges to determine which dissimiarities are smaller or
larger. Scale-invariance follows from order-consistency.
To obtain a k-partition π it suffices to set intra-block dissimilarities to 1
and the inter-block dissimilarities to 2 to have the algorithm return π.
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Partitioning Functions

To show the consistency of the algorithm, let f (d , k) = π. An edge
e = {x , y} is an inner edge if x ≡ y(π) and an outer edge if x 6≡ y(π). To
construct π the algorithm sorts all edges of the graph and then examines
every edge. While there are more than k clusters, the algorithm transforms
the smallest outer edge into an inner edge (thereby reducing the number
of clusters by 1). An inner edge that is larger than any outer edge is
refered to as a redundant inner edge. Such an edge is not considered for
merging; however, it becomes an inner edge by transitivity.
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Partitioning Functions

If the edges of the graph are listed as e = (e1, e2, . . . , e(n2)
) in ascending

order of the corresponding dissimilarities, each of these edges may be an
outer edge, a non-redundant inner edge, or a redundant inner edge. By the
definition of the algorithm there is a prefix p of e which consists of inner
edges and suffices to define π. If k = n, p will be empty as there are no
inner edges.
Consider now the π-transformations of d . If we shrink a non-redundant
inner edge of d , then p will not change and the algorithm will still produce
π. If we shrink a redundant inner edge, p may change to p′, but the
clustering produced will not change as a result of transitivity. Finally, if we
exapand an outer edge, again p will not change leaving π intact. Thus, for
all posssible π-transformations d ′ of d we will obtain the same clustering.
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An Axiomatization of Clustering Quality Measures

We present now an axiomatization of measures of clustering quality
developed by M. Ackerman and S. Ben-David. This is an alternative
approach in the attempt to axiomatize clustering and leads to a consistent
system of axioms.
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An Axiomatization of Clustering Quality Measures

Definition

A clustering quality measure is a function m(S , d , π) ranging over R>0,
where (S , d) form a dissimilarity spaces and π ∈ PART(S).
The quality measure m is

scale invariant if for every λ > 0 we have m(S , λd , π) = m(S , d , π);
consistent if d 6πa,b d ′ implies m(S , d ′, π) 6 m(S , d , π);
rich if for every π0 ∈ PART(S) with π0 6∈ {αS , ωS} there exists a
dissimilarity d such that π0 = arg maxπ m(S , d , π).
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An Axiomatization of Clustering Quality Measures

For center-based clustering it is possible to formulate a quality measure
that satisfies all requirements of the previous definition. We assume that
the dissimilarity distance is a metric and thus, it is possible to define
cluster centers (either as medians or as means). This makes centers
invariant to scaling.

Definition

Let (S , d) be a dissimilarity space and let π = {C1, . . . ,Ck} ∈ PART(S)
be a clustering.
A subset K is a representative set for π if K ∩Ci contains a unique element
ci for each block Ci of π and K is invariant under scaling. It is clear that
|K | = k . Denote by REP(π) the set of possible representative sets for π.
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An Axiomatization of Clustering Quality Measures

Define the point margin of x ∈ S relative to K as

pomπ,d(x) =
d(x , cx)

d(x , ex)
,

where cx ∈ K is the closest representative to x , and ex is the second
closest representative to x .
The smaller the value of the point margin, the better the clustering is.
The relative margin of a clustering π is the number relm(π) defined as

relm(S , d , π) = min
K∈REP(π)

avgx∈S−Kpomπ,d(x).
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An Axiomatization of Clustering Quality Measures

Theorem

The relative margin relm is scale-invariant, consistent and rich.
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An Axiomatization of Clustering Quality Measures

Proof

The scale-invariance of relm(S , d , π) follows from the fact that K is
invariant under scaling.
Let d ′ be a π-transformation of d , that is, d 6πa,b d ′. Since x and cx
belong to the same cluster of π and x , ex belong to two distinct clusters,
we have d ′(x , cx) 6 d(x , cx) and d(x , ex) 6 d ′(x , ex), which implies

pomπ,d ′(x) =
d ′(x , cx)

d ′(x , ex)
6

d(x , cx)

d(x , ex)
= pomπ,d(x).

This implies relm(S , d ′, π) 6 relm(S , d , π), so relm is consistent.
Starting with a non-trivial clustering π on S consider the ultrametric δπa,b
where a < b. Then π = relm(S , δπa,b, π). Thus, relm is rich.
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An Axiomatization of Clustering Quality Measures

Previous theorem shows that the system of axioms introduced is consistent
(which means that the set of objects that satifies this system is non-void).
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An Axiomatization of Clustering Quality Measures

Definition

Let (S , d) be a dissimilarity space. The clusterings π, σ ∈ PART(S) are
isomorphic if there is a bijection h : S −→ S such that x ≡ y(π) if and
only if h(x) ≡ h(y)(σ). This is denoted by π ∼d σ.
A clustering quality measure m is isomorphic invariant if if all
π, σ ∈ PART(S) such that π ∼d σ we have m(S , d , π) = m(S , d , σ).

If we add isomorphic invariance to the system of axioms introduced
previously, the system remains consistent because it is easily seen that
relm satisfies this extra axiom.
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An Axiomatization of Clustering Quality Measures

An example of clustering quality measure that satisfies scale invariance,
consistency, richness and isomorphic invariance.

Definition

Let (S , d) be a dissimilarity space and let G = (S ,P2(S), d) be the
weighted graph of (S , d). For π ∈ PART(S), a cluster C ∈ π consider the
subgraph GC and the set of paths pathsC in GC .
Let x , y ∈ C . The weakest point link of C is the number
wlpπ(x , y) = dGC

(x , y), where dGC
is the ultrametric earlier defined.
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An Axiomatization of Clustering Quality Measures

In other words, wlpπ is the least maximum value of dissimilarity
encountered on a path in C that joins x to y .

Definition

The weakest link of the clustering π is the number wl(π) given by

wl(π) =
max{wlpπ(x , y) | x ≡ y(π)}

min{d(x , y) | x 6≡ y(π)}

wl satisfies all axioms.
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