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Definition

A dissimilarity on a set S is a function d : S × S −→ R>0 such that
d(x , x) = 0 and d(x , y) = d(y , x) for every x , y ∈ S . If d(x , y) = 0
implies x = y , then d is a definite dissimilarity.
The set of dissimilarities is denoted by DS ; the set of definite
dissimilarities is denoted by DDS .
The pair (S , d) is a dissimilarity space.
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If d and d ′ are dissimilarities on S we write d 6 d ′ if d(x , y) 6 d ′(x , y) for
every x , y ∈ S .
If d is a definite dissimilarity and d 6 d ′, then d ′ is a definite dissimilarity.
Indeed, suppose that d ′(x , y) = 0. This implies d(x , y) = 0. Since d is
definite, we have x = y , hence d ′ is definite.
The definition of an extended dissimilarity is exactly the same as the
definition of a dissimilarity except that the set of values is R>0 ∪ {∞}.
The attribute “extended” will be applied to all types of dissimilarities
defined in the sequel if they range over R>0 ∪ {∞}.
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A triangle in a dissimilarity space (S , d) is a three-element subset
{x1, x2, x3} of S . The triangle {x1, x2, x3} is denoted by x1x2x3.

Definition

A quasi-metric on a set S is a dissimilarity d ∈ DS that satisfies the
triangular condition

d(x , y) 6 d(x , z) + d(z , y)

for every x , y , z ∈ S .
The set of quasi-metrics on a set is denoted by S(S).
If d is a definite quasi-metric, we say that then d is a metric. The set of
metrics on S is denoted by M(S).
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Definition

A quasi-ultrametric is a dissimilarity d on a set S that satisfies the
ultrametric condition:

d(x , y) 6 max{d(x , z), d(z , y)}

for every x , y , z ∈ S . An ultrametric is a definite dissimilarity that satisfies
the ultrametric condition.
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A finite dissimilarity space (S , d), where S = {x1, . . . , xn} can be specified
by a matrix D ∈ (R>0)n×n, where Dij = d(xi , xj) for 1 6 i , j 6 n. Note
that D is a symmetrical matrix and the diagonal elements equal 0.
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Example

The matrix D

D =

0 5 4
5 0 2
4 2 0


specifies the dissimilarity space ({x1, x2, x3}, d) shown below.

x1

x3

x2

4

5

2
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Example

Consider the mapping d : (Seqn(S))2 −→ R>0 defined by

d(p,q) = |{i | 0 6 i 6 n − 1 and p(i) 6= q(i)}|

for all sequences p,q of length n on the set S .
It is easy to see that d is a metric. We justify here only the triangular
inequality. Let p,q, r be three sequences of length n on the set S . If
p(i) 6= q(i), then r(i) must be distinct from at least one of p(i) and q(i).
Therefore,

{i | 0 6 i 6 n − 1 and p(i) 6= q(i)}
⊆ {i | 0 6 i 6 n − 1 and p(i) 6= r(i)}
∪{i | 0 6 i 6 n − 1 and r(i) 6= q(i)},

which implies the triangular inequality.
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The ultrametric inequality is stronger than the triangular inequality for, if
d(x , y) 6 max{d(x , z), d(z , y)}, then d(x , y) 6 d(x , z) + d(z , y) for every
x , y , z ∈ S . Thus, every quasi-ultrametric is also a quasi-metric and every
ultrametric is also a metric.
We will denote by U(S) the set of quasi-ultrametrics defined on the set S .
If d is a dissimilarity on the set S we refer to the pair (S , d) as a
dissimilarity space.
If d has other properties (e.g. is a metric) we refer to the pair (S , d) as a
space with the corresponding property (a metric space).
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Definition

Let (S , d) and (S ′, d ′) be two dissimilarity space. An isometry or a
morphism of dissimilarity space is a function h : S −→ S ′ such that
d ′(h(x), h(y)) = d(x , y) for every x , y ∈ S .
If h is a bijection, we say that h is an isomorphism of dissimilarity spaces.
Note that in this case d ′(y1, y2) = d(h−1(y1), h−1(y2) for every y1, y2 ∈ S ′.

Definition

Let (S , d) and (S ′, d ′) be two dissimilarity space. The partitions
π ∈ PART(S) and σ ∈ PART(S ′) are isomorphic if there exists a
isomorphism φ : S −→ S ′ of the dissimilarity spaces (S , d) and (S ′, d ′)
such that x ≡ y(π) if and only if φ(x) ≡ φ(y)(σ). This is denoted by
(π, d) ∼C (π′, d ′).
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Theorem

If h : S −→ S ′ is an isometry between the definite dissimilarity space
(S , d) and the dissimilarity space (S ′, d ′), then h is an injective mapping.

Proof: Suppose that h(x) = h(y), which implies d ′(h(x), h(y)) = 0.
Thus, d(x , y) = 0, hence x = y because d is a definite dissimilarity. We
conclude that h is injective.
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Definition

Let (S , d) be a dissimilarity space. A partition σ ∈ PART(S) is nice or
locally well-separated if for every x , u, v ∈ S , x ≡ u(σ) and x 6≡ v(σ)
implies d(x , u) 6 d(x , v).

In other words, for a nice partition of a dissimilarity space no element is
closer to an element from a different block than it is to any point from its
own block.
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Definition

A partition σ of a dissimilarity space (S , d) is perfect or globally
well-separated if of all its in-block dissimilarities are smaller than all of its
between-block dissimilarities. In other words, for every u, v , x , y ∈ S , if
u ≡ v(σ) and x 6≡ y(σ), then d(u, v) < d(x , y).

Clearly, every perfect partition is nice; the converse is not true.
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Example

A bipartition π = {X ,Y } of a set S defines a quasi-ultrametric δπ on S as

δπ(x , y) =

{
1 if x 6≡ y(π),

0 otherwise

for x , y ∈ S . If dπ(x , y) = 0, then dπ(x , y) 6 dπ(x , z) + dπ(z , y) for every
z ∈ S . If dπ(x , y) = 1, it means that x and y belong to distinct blocks of
π. Thus, for any z we have either x ≡ z(π) and therefore z 6≡ y(π), or
x ≡ z(π) and z ≡ y(π). In the first case we have δπ(x , z) = 0 and
δπ(z , y) = 1; in the second case, δπ(x , z) = 1 and δπ(z , y) = 0. In either
case, the ultrametric inequality is satisfied.
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Definition

Let (S , d) be a dissimilarity space. The open sphere centered in x0 of
radius r is the set

B(x0, r) = {x ∈ S | d(x0, x) < r}.

The closed sphere centered in x0 of radius r is the set

B[x0, r ] = {x ∈ S | d(x0, x) 6 r}.
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Definition

Let (S , d) be a dissimilarity space. The diameter of a subset U of S is

diamd(U) = sup{d(x , y) | x , y ∈ U}.

A pair of points x , y ∈ S is diametrical if d(x , y) = diamd(S).
If the dissimilarity d is clear from context, then the subscript d may be
omitted.

If (S , d) is a finite dissimilarity space, the supremum in the definition of
the diameter of a set can be replaced by the maximum, that is,

diamd(U) = max{d(x , y) | x , y ∈ U}.
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A mapping d : S × S −→ R̂>0 can be extended to the set of subsets of S
by defining d(U,V ) as

d(U,V ) = inf{d(u, v) | u ∈ U and v ∈ V } (1)

for U,V ∈ P(S).
Observe that, even if d is a metric, then its extension is not, in general, a
metric on P(S) because it does not satisfy the triangular inequality.
Instead, we can show that for every U,V ,W we have

d(U,W ) 6 d(U,V ) + diam(V ) + d(V ,W ).
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Indeed, by the definition of d(U,V ) and d(V ,W ), for every ε > 0, there
exist u ∈ U, v , v ′ ∈ V , and w ∈W such that

d(U,V ) 6 d(u, v) 6 d(U,V ) + ε
2 ,

d(V ,W ) 6 d(v ′,w) 6 d(V ,W ) + ε
2 .

By the triangular axiom, we have

d(u,w) 6 d(u, v) + d(v , v ′) + d(v ′,w).

Hence,
d(u,w) 6 d(U,V ) + diam(V ) + d(V ,W ) + ε,

which implies

d(U,W ) 6 d(U,V ) + diam(V ) + d(V ,W ) + ε

for every ε > 0. This yields the needed inequality.

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities, Metrics, and Ultrametrics 18 / 88



Definition

Let (S , d) be a metric space. The sets U,V ∈ P(S) are separate if
d(U,V ) > 0.

We denote the number d({u},V ) = inf{d(u, v) | v ∈ V } by d(u,V ). It
is clear that u ∈ V implies d(u,V ) = 0.
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A norm is a real-valued function defined on a linear space that satisfies
certain conditions and assigns a positive number to any non-zero vector.
Norms are intended to model the “length” of vectors. As we shall see,
norms generate metrics on linear spaces.

Definition

Let V be a real linear space. A seminorm on V is a mapping ν : V −→ R
that satisfies the following conditions:

ν(x + y) 6 ν(x) + ν(y) (subadditivity), and
ν(ax) = |a|ν(x) (positive homogeneity),

for x , y ∈ V and a ∈ R.
If ν(x) = 0 implies x = 0, then we say that ν is a norm.

By taking a = 0 in the second condition of the definition we have ν(0) = 0
for every seminorm.
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Example

The set of real-valued continuous functions defined on the interval [−1, 1]
is a real linear space. The addition of two such functions f , g , is defined
by (f + g)(x) = f (x) + g(x) for x ∈ [−1, 1]; the multiplication of f by a
scalar a ∈ R is (af )(x) = af (x) for x ∈ [−1, 1].
Define ν(f ) = sup{|f (x)| | x ∈ [−1, 1]}. Since |f (x)| 6 ν(f ) and
|g(x)| 6 ν(g) for x ∈ [−1, 1]}, it follows that
|(f + g)(x)| 6 |f (x)|+ |g(x)| 6 ν(f ) + ν(g). Thus,
ν(f + g) 6 ν(f ) + ν(g).
We denote ν(f ) by ‖ f ‖.
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Theorem

Let ν : V −→ R be a seminorm on a linear space V . We have

ν(x − y) > |ν(x)− ν(y)|,

for x , y ∈ V .

Proof: We have ν(x) 6 ν(x − y) + ν(y), so

ν(x)− ν(y) 6 ν(x − y).

Since ν(x − y) = | − 1|ν(y − x) > ν(y)− ν(x) we have

−(ν(x)− ν(y)) 6 ν(x)− ν(y).
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Corollary

If ν : V −→ R is a seminorm on the linear space V , then ν(x) > 0 for
x ∈ V .

Proof: Choose y = 0 in the previous inequality; we have
ν(x) > |ν(x)| > 0.

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities, Metrics, and Ultrametrics 23 / 88



Every norm defined on a linear space V generates a metric on the space.

Theorem

Each norm ν : V −→ R>0 on a real linear space V generates a metric on
the set V defined by dν(x , y) = ν(x − y) for x , y ∈ V .
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Proof

Note that if dν(x , y) = ν(x − y) = 0, it follows that x − y = 0; that is,
x = y .
The symmetry of dν is obvious and so we need to verify only the triangular
axiom. Let x , y , z ∈ L. Applying the subaditivity of norms we have we have

ν(x − z) = ν(x − y + y − z) 6 ν(x − y) + ν(y − z)

or, equivalently, dν(x , z) 6 dν(x , y) + dν(y , z), for every x , y , z ∈ L, which
concludes the argument.
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We refer to dν as the metric induced by the norm ν on the linear space V .
Observe that the norm ν can be expressed using dν as ν(x) = dν(x , 0) for
x ∈ V .
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A simple and interesting property of triangles in ultrametric spaces is given
next.

Theorem

Let (S , d) be an ultrametric space and let t = xyz be a triangle in (S , d).
The two sides of t which are not the smallest have equal length.

Proof: If d(x , y) is the smallest of the numbers d(x , y), d(y , z), d(x , z)
we have

d(y , z) 6 max{d(x , y), d(x , z)} = d(x , z),

d(x , z) 6 max{d(x , y), d(y , z)} = d(y , z),

so d(x , z) = d(y , z).
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In an ultrametric space any triangle is isosceles and the side that is not
equal to the two others cannot be longer than these.

Theorem

Let S = {x1, . . . , xm} be a finite set with m > 2 such that (S , d) is a
quasi-ultrametric space. The range of d, Ran(d) contains at most m
distinct values.
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Proof

The proof is by induction on m. The basis step, m = 1 is immediate
because Ran(d) = 0. Suppose that the statement holds for sets of size less
than m, let S = {x1, . . . , xm} be a set of size m and let
T = {x1, . . . , xm−1}. The restriction of d to T × T contains at most
m − 1 values. Let xk be one of the closest element of T to xm. Then, for
every element xj of T we have d(xj , xm) > d(xk , xm). Since the triangle
xjxkxm is isosceles we may have either

d(xj , xm) = d(xk , xm) > d(xj , xk),

or
d(xj , xk) = d(xj , xm) > d(xk , xm).

In the first case, only one element, d(xk , xm) is added to the range of d ; in
the second case, d(xj , xm) equals one of the previous values and the size of
the range of d remains the same. In either case, the size of the range of d
is no larger than m.
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Corollary

For an ultrametric space (S , d) with |S | = m, there are at most m − 1
non-zero values of d.

Theorem

(Egocentricity of Closed Spheres) Let B[x , r ] be a closed sphere in a
finite ultrametric space (S , d). If y ∈ B[x , r ], then B[x , r ] = B[y , r ]. In
other words, in a finite ultrametric space, a closed sphere has all its points
as centers.
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Proof

Let z ∈ B[x , r ]. Since d(x , z) 6 r , it follows that

d(y , z) 6 max{d(y , x), d(x , z)} 6 r ,

so z ∈ B[y , r ], which implies B[x , r ] ⊆ B[y , r ].
If u ∈ B[y , r ] we have d(y , u) 6 r . This implies

d(x , u) 6 max{d(x , y), d(y , u)} 6 r ,

hence u ∈ B[x , r ]. Thus, B[y , r ] ⊆ B[x , r ]. We conclude that
B[y , r ] = B[x , r ].
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Corollary

If two closed spheres B[x , r ] and B[y , r ′] in a finite ultrametric space have
a point in common, then one of the closed spheres is included in the other.
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Theorem

(Egocentricity of Open Spheres) Let B(x , r) be an open sphere in a
finite ultrametric space (S , d). If y ∈ B(x , r), then B(x , r) = B(y , r). In
other words, in a finite ultrametric space, an open sphere has all its points
as centers.
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Proof

Since y ∈ B(x , r), we have d(x , y) < r . For z ∈ B(x , r) we have
d(x , z) < r .
Since the triangle xyz is isosceles the following three cases may occur:

d(x , y) 6 d(x , z) = d(y , z) < r (because d(x , z) < r), or
d(x , z) 6 d(x , y) = d(y , z) < r (because d(x , y) < r), or
d(y , z) 6 d(x , y) = d(x , z) < r (because d(x , y) < r).

Thus, in every case d(y , z) < r , so z ∈ B(y , r). Thus, B(x , r) ⊆ B(y , r).
Conversely, suppose that z ∈ B(y , r), that is, d(y , z) < r . Since
d(y , x) < r the following cases may occur

d(x , y) 6 d(x , z) = d(y , z) < r (because d(y , z) < r), or
d(x , z) 6 d(x , y) = d(y , z) < r (because d(y , z) < r), or
d(y , z) 6 d(x , y) = d(x , z) < r (because d(y , x) < r).

Therefore, in every case d(x , z) < r , so B(y , r) 6 B(x , r). We conclude
that B(x , r) = B(y , z).
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Theorem

Let B[x , r ] and B[y , r ] be two disjoint closed spheres in the finite
ultrametric space (S , d) having the same radius r . Then, for every
u ∈ B[x , r ] and v ∈ B[y , r ] we have d(u, v) = d(x , y).
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Proof

Let k = d(u, v). Since B[x , r ] and B[y , r ] are disjoint closed spheres, it
follows that k > r . Since xyu is an isosceles triangle, it follows that
d(u, y) = k . Since d(v , y) 6 r , we have d(v , u) = d(u, y) = k .

x
r

u

y

r

v
> r
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Theorem

Let (S , d) be a finite ultrametric space. If B[x0, r ] is a closed sphere in
(S , d) such that B[x0, r ] 6= {x0}, then diamd(B[x0, r ]) = r .

Proof: Since B[x0, r ] contains a point x distinct from x0 and d(x0, x) 6 r ,
it is clear that the diameter of B[x0, r ] is at least equal to r .
Let u, v be elements of B[x0, r ] such that d(u, v) = diam(B[x0, r ]). Since
d(x0, u) 6 r and d(x0, v) 6 r , and d(u, v) is one of the largest sides of the
triangle x0uv , it follows that we have either d(u, v) = d(x0, u) or
d(u, v) = d(x0, v). In either case, d(u, v) 6 r , hence diamd(B[x0, r ]) 6 r .
Thus, diamd(B[x0, r ]) = r .
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The next statement provides a characterization of set diameters in
ultrametric spaces.

Theorem

Let S be a finite non-empty set. A function τ : P(X ) −→ R>0 satisfies the
conditions

τ(A) = 0 if and only if A is a singleton, and
τ(A ∪ B) 6 max{τ(A ∪ C ), τ(C ∪ B)}

for all A,B,C ∈ P(S) if and only if there exists an ultrametric d on S
such that τ(A) = diamd(A) for every A ∈ P(S).
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Proof

Suppose that τ satisfies the conditions of the theorem. Choosing B = A in
the second condition implies τ(A) 6 τ(A ∪ C ). Thus, if A ⊆ C , we have
τ(A) 6 τ(C ), so τ is isotonic.
Let c ∈ C . Choosing A = {c}, it follows that 0 = τ(c) 6 τ(C ), hence
τ(C ) > 0, so τ is non-negative.
Define the function d : S ×S −→ R>0 as d(x , y) = τ({x , y}). Property (i)
implies that d(x , y) = 0 if and only if x = y ; moreover, d is non-negative.
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Choosing A = {a}, B = {b}, and C = {c} in the second condition implies
d(a, b) 6 max{d(a, c), d(c , b)}, so d is an ultrametric.
It remains to show that τ(X ) = diamd(X ) for |X | > 3. Let
X = {x1, . . . , xn}. For 1 6 j 6 n prove that τ(X ) 6 maxi ,j d(xi , xj) for
1 6 i , j 6 n. The argument is by induction on n and we can write:

τ(X ) = τ({x1, . . . , xn−1} ∪ {xn})
(setting A = {x1, . . . , xn−1} and B = {xn})

6 max{τ({x1, . . . , xn−1} ∪ {xj}), τ({xn, xj})
(setting C = {xj})

= max{τ({x1, . . . , xn−1}), d({xn, xj})}
6 max

i ,j
d(xi , xj).
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Proof (cont’d)

By repeating this process we obtain

τ(X ) 6 max{d(xi , xj) | 1 6 i , j 6 n} = diamd(X ).

Since τ is an isotonic mapping, if {xi , xj} is a diametrical pair of points in
X , then

τ(X ) > τ({xi , xj}) = d(xi , xj) = diamd(X ),

hence τ(X ) = diamd(X ).
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Conversely, suppose that d is an ultrametric on X such that
τ(A) = diamd(A) for A ∈ F(X ). This implies that if τ(A) = 0, then A is a
singleton.
Let a, b be two diametrical points in A ∪ B. There are three cases to
consider in order to prove (ii):
If both a and b belong to A, then

max{d(x , y) | x , y ∈ A ∪ B} = max{d(x , y) | x , y ∈ A}.

Therefore,

diamd(A ∪ B) = max{d(x , y) | x , y ∈ A}
6 max{d(x , z) | x , z ∈ A ∪ C}
6 max{max{d(x , z) | x , z ∈ A ∪ C},

max{d(y , z) | y , z ∈ B ∪ C}}
= max{diamd(A ∪ C ), diamd(C ∪ B)},

hence τ(A ∪ B) 6 max{τ(A ∪ C ), τ(C ∪ B)}.
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If both a and b belong to B, then we obtain

max{d(x , y) | x , y ∈ A ∪ B} = max{d(x , y) | x , y ∈ B},

as above, which implies τ(A ∪ B) 6 max{τ(A ∪ C ), τ(C ∪ B)}.
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If a ∈ A and b ∈ B, then

τ(A ∪ B) = max{d(x , y) | x , y ∈ A ∪ B}
= max{d(x , y) | x ∈ A, y ∈ B} = d(a, b),

where a ∈ A and b ∈ B. Then, for each c ∈ C , we have

diamd(A ∪ B) = max{d(x , y) | x ∈ A, y ∈ B}
= d(a, b) 6 max{d(a, c), d(b, c)}
6 max{max{d(x , z) | x ∈ A, z ∈ C},

max{d(y , z) | y ∈ B, z ∈ C}}
6 max{diamd(A ∪ C ), diamd(C ∪ B)}.
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Theorem

Let (S , d) be a finite ultrametric space. For every r > 0 the family of
spheres σr = {B[x , r ] | x ∈ S} is a partition of S.

Proof: Since x ∈ B[x , r ] for every x ∈ S , we have
⋃

x∈S B[x , r ] = S .
Suppose that B[x , r ] ∩ B[y , r ] 6= ∅. One of these spheres is included in the
other, which implies that they are equal. Thus, two distinct spheres of the
same radius are disjoint, which implies that they constitute a partition of
S .
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Let CLS(S , d) be the collection of subsets that consists of ∅ and all closed
spheres of the ultrametric space (S , d).

Theorem

If (S , d) is a finite ultrametrc space with |S | = n, then |CLS(S , d)| 6 2 |S |.
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Proof
The proof is by strong induction on n = |S |. If n = 1, S = {x} is a
singleton and the unique closed sphere is {a}. Thus, |CLS(S , d)| = 2 and
the inequality is satisfied.
Suppose that the inequality holds for any dissimilarity space (S , d) with
|S | 6 n.
Let now (S , d) be an ultrametric space with |S | = n + 1,
S = {x0, . . . , xn−1, xn}. Suppose that

min{d(xi , xj) | xi 6= xj}
= d(x0, x1) 6 · · · 6 d(x0, xm−1) < d(x0, xm)

= · · · = d(x0, xn−1) = d(x0, xn) = max{d(xi , xj) | xi 6= xj},

and let

Sm−1 = {x0, x1, . . . , xm−1},
Sm = {xm, xm+1, . . . , xn}.
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Proof (cont’d)

By the inductive assumption, |CLS(Sm−1, d)| 6 2|Sm−1| = 2m and
|CLS(Sm, d)| 6 2|Sm| = 2(n −m + 1).
All points xk for k > m are at the same distance d(x0, xn) from all points
xj with j < m. Thus, CLS(S , d)) ⊆ CLS(Sm−1, d) ∪ CLS(Sm, d) ∪ {S}.
Since the empty set belongs to both CLS(Sm−1, d) and CLS(Sm, d),
CLS(S , d) 6 2m + 2(n −m + 1) + 1− 1 = 2(n + 1) = 2|S |.
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For an ultrametric space (S , d) the set CLS(S , d) is a lattice.
In other words, for two closed spheres B,B ′, their meet is just their
intersection and is just the smaller of the two closed spheres. The join of
B,B ′ is either the larger of the closed spheres (if one is included in the
other), or the ball of radius r = d(x , y), where x ∈ B and y ∈ B ′, having
the center at any point of B ∪ B ′.
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Theorem

Let d be a dissimilarity on a set S and let Ud be the set of
quasi-ultrametrics Ud = {e ∈ US | e 6 d}. The set Ud has a largest
element in the poset (DDS ,6).

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities, Metrics, and Ultrametrics 50 / 88



The set Ud is nonempty because the zero dissimilarity d0 given by
d0(x , y) = 0 for every x , y ∈ S is a quasi-ultrametric and d0 6 d .
Since the set {e(x , y) | e ∈ Ud} has d(x , y) as an upper bound, it is
possible to define the mapping e1 : S2 −→ R≥0 as
e1(x , y) = sup{e(x , y) | e ∈ Ud} for x , y ∈ S . It is clear that e 6 e1 for
every quasi-ultrametric e. We claim that e1 is an ultrametric on S .

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities, Metrics, and Ultrametrics 51 / 88



Proof (cont’d)

We prove only that e1 satisfies the ultrametric inequality. Suppose that
there exist x , y , z ∈ S such that e1 violates the ultrametric inequality; that
is,

max{e1(x , z), e1(z , y)} < e1(x , y).

This is equivalent to

sup{e(x , y) | e ∈ Ud}
> max{sup{e(x , z) | e ∈ Ud}, sup{e(z , y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x , y) > sup{e(x , z) | e ∈ Ud}, and ê(x , y) > sup{e(z , y) | e ∈ Ud}.

In particular, ê(x , y) > ê(x , z) and ê(x , y) > ê(z , y), which contradicts
the fact that ê is an quasi-ultrametric.
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The quasi-ultrametric defined above is known as the subdominant
quasi-ultrametric for the dissimilarity d .
In general, the infimum of a set of quasi-ultrametrics is not necessarily an
ultrametric.
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Example

Consider a three-element set S = {x , y , z}, four distinct nonnegative
numbers a, b, c , d such that a > b > c > d and the quasi-ultrametrics d
and d ′ defined by the triangles shown in Figures (a) and (b), respectively.
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BB

b b
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(a) (b)
The dissimilarity d0 defined by d0(u, v) = min{d(u, v), d ′(u, v)} for
u, v ∈ S is given by

d0(x , y) = b, d0(y , z) = d , and d0(x , z) = c ,

and d0 is clearly not a quasi-ultrametric because the triangle xyz is not
isosceles.
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The inequalities developed in this section are essential for the study of
norms and metrics in Rn.

Lemma

Let p, q ∈ R− {0, 1} such that 1
p + 1

q = 1. Then we have p > 1 if and
only if q > 1. Furthermore, one of the numbers p, q belongs to the
interval (0, 1) if and only if the other number is negative.
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Lemma

Let p, q ∈ R− {0, 1} be two numbers such that 1
p + 1

q = 1 and p > 1.
Then, for every a, b ∈ R>0, we have

ab 6
ap

p
+

bq

q
,

where the equality holds if and only if a = b−
1

1−p .
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Proof

We have q > 1. Consider the function f (x) = xp

p + 1
q − x for x > 0. We

have f ′(x) = xp−1 − 1, so the minimum is achieved when x = 1 and
f (1) = 0. Thus,

f
(

ab−
1

p−1

)
> f (1) = 0,

which amounts to
apb−

p
p−1

p
+

1

q
− ab−

1
p−1 > 0.

By multiplying both sides of this inequality by b
p

p−1 , we obtain the desired
inequality.
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Observe that if 1
p + 1

q = 1 and p < 1, then q < 0. In this case, we have
the reverse inequality

ab >
ap

p
+

bq

q
. (2)

which can be shown by observing that the function f has a maximum in
x = 1. The same inequality holds when q < 1 and therefore p < 0.
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Theorem

The Hölder Inequality Let a1, . . . , an and b1, . . . , bn be 2n nonnegative
numbers, and let p and q be two numbers such that 1

p + 1
q = 1 and p > 1.

We have:
n∑

i=1

aibi ≤

(
n∑

i=1

api

) 1
p

·

(
n∑

i=1

bq
i

) 1
q

.
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Proof

If a1 = · · · = an = 0 or if b1 = · · · = bn = 0, then the inequality is clearly
satisfied. Therefore, we may assume that at least one of a1, . . . , an and at
least one of b1, . . . , bn is non-zero. Define the numbers

xi =
ai(∑n

i=1 api
) 1

p

and yi =
bi(∑n

i=1 bq
i

) 1
q

for 1 6 i 6 n. A previous Lemma applied to xi , yi yields

aibi(∑n
i=1 api

) 1
p
(∑n

i=1 bq
i

) 1
q

6
1

p

api∑n
i=1 api

+
1

q

bp
i∑n

i=1 bp
i

.
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Proof (cont’d)

Adding these inequalities, we obtain

n∑
i=1

aibi ≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

bq
i

) 1
q

because 1
p + 1

q = 1.
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The nonnegativity of the numbers a1, . . . , an, b1, . . . , bn can be relaxed by
using absolute values.

Theorem

Let a1, . . . , an and b1, . . . , bn be 2n numbers and let p and q be two
numbers such that 1

p + 1
q = 1 and p > 1. We have

∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

|ai |p
) 1

p

·

(
n∑

i=1

|bi |q
) 1

q

.
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Corollary

(The Cauchy-Schwarz Inequality for Rn) Let a1, . . . , an and b1, . . . , bn

be 2n real numbers. We have∣∣∣∣∣
n∑

i=1

aibi

∣∣∣∣∣ ≤
√√√√ n∑

i=1

a2i ·

√√√√ n∑
i=1

b2
i .
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Theorem

(Minkowski’s Inequality) Let a1, . . . , an and b1, . . . , bn be 2n
nonnegative real numbers. If p > 1, we have(

n∑
i=1

(ai + bi )
p

) 1
p

≤

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

.

If p < 1, the inequality sign is reversed.
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Proof

For p = 1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

n∑
i=1

(ai + bi )
p =

n∑
i=1

ai (ai + bi )
p−1 +

n∑
i=1

bi (ai + bi )
p−1.

By Hölder’s inequality for p, q such that p > 1 and 1
p + 1

q = 1, we have

n∑
i=1

ai (ai + bi )
p−1 ≤

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
(p−1)q

) 1
q

=

(
n∑

i=1

api

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.
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Proof (cont’d)

Similarly, we can write

n∑
i=1

bi (ai + bi )
p−1 ≤

(
n∑

i=1

bp
i

) 1
p
(

n∑
i=1

(ai + bi )
p

) 1
q

.

Adding the last two inequalities yields

n∑
i=1

(ai + bi )
p ≤

( n∑
i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

( n∑
i=1

(ai + bi )
p

) 1
q

,

which is equivalent to inequality(
n∑

i=1

(ai + bi )
p

) 1
p

≤

(
n∑

i=1

api

) 1
p

+

(
n∑

i=1

bp
i

) 1
p

.
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Example

For x ∈ Rn and y ∈ Rn the Euclidean metric is the mapping

d2(x, y) =

√√√√ n∑
i=1

(xi − yi )2.

To prove the triangular inequality, let x, y, z ∈ Rn. Choosing ai = xi − yi
and bi = yi − zi for 1 6 i 6 n in Minkowski’s inequality implies√√√√ n∑

i=1

(xi − zi )2 ≤

√√√√ n∑
i=1

(xi − yi )2 +

√√√√ n∑
i=1

(yi − zi )2,

which amounts to d(x, z) 6 d(x, y) + d(y, z). Thus, we conclude that d is
indeed a metric on Rn.
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Theorem

For p > 1, the function νp : Rn −→ R>0 defined by

νp(x1, . . . , xn) =

(
n∑

i=1

|xi |p
) 1

p

,

where x = (x1, . . . , xn) ∈ Rn, is a norm on Rn.
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Proof

Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. Minkowski’s inequality applied
to the nonnegative numbers ai = |xi | and bi = |yi | amounts to(

n∑
i=1

(|xi |+ |yi |)p
) 1

p

≤

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

.

Since |xi + yi | 6 |xi |+ |yi | for every i , we have(
n∑

i=1

(|xi + yi |)p
) 1

p

≤

(
n∑

i=1

|xi |p
) 1

p

+

(
n∑

i=1

|yi |p
) 1

p

,

that is, νp(x + y) 6 νp(x) + νp(y).
Thus, νp is a norm on Rn.
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Example

The mapping ν1 : Rn −→ R given by

ν1(x) = |x1|+ |x2|+ · · ·+ |xn|,

for x = (x1, . . . , xn) ∈ Rn is a norm on Rn.
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Example

A special norm on Rn is the function ν∞ : Rn −→ R>0 given by

ν∞(x) = max{|xi | | 1 6 i 6 n}

for x = (x1, . . . , xn) ∈ Rn.
We start from the inequality

|xi + yi | 6 |xi |+ |yi | ≤ ν∞(x) + ν∞(y)

for every i , 1 6 i 6 n. This in turn implies

ν∞(x + y) = max{|xi + yi | | 1 6 i 6 n} 6 ν∞(x) + ν∞(y),

which gives the desired inequality.
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ν∞ can be regarded as a limit case of the norms νp. Indeed, let x ∈ Rn

and let M = max{|xi | | 1 ≤ i 6 n} = |x`1 | = · · · = |x`k | for some
`1, . . . , `k , where 1 6 `1, . . . , `k 6 n. Here x`1 , . . . , x`k are the components
of x that have the maximal absolute value and k > 1. We can write

lim
p→∞

νp(x) = lim
p→∞

M

(
n∑

i=1

(
|xi |
M

)p
) 1

p

= lim
p→∞

M(k)
1
p = M,

which justifies the notation ν∞.
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We use the alternative notation ‖ x ‖p for νp(x). We refer ‖ x ‖2 as the
Euclidean norm of x and we denote this norm simply by ‖ x ‖ when there
is no risk of confusion.
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Example

For p > 1, let `p be the set that consists of sequences of real numbers
x = (x0, x1, . . .) such that the series

∑∞
i=0 |xi |p is convergent. We can

show that `p is a linear space.
Let x, y ∈ `p be two sequences in `p. Using Minkowski’s inequality we have

n∑
i=0

|xi + yi |p 6
n∑

i=0

(|xi |+ |yi |)p ≤
n∑

i=0

|xi |p +
n∑

i=0

|yi |p,

which shows that x + y ∈ `p. It is immediate that x ∈ `p implies ax ∈ `p
for every a ∈ R and x ∈ `p.
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For p > 1, then dp denotes the metric dνp induced by the norm νp on the
linear space Rn known as the Minkowski metric on Rn.
If p = 2, we have the Euclidean metric on Rn given by

d2(x, y) =

√√√√ n∑
i=1

|xi − yi |2 =

√√√√ n∑
i=1

(xi − yi )2.

For p = 1, we have

d1(x, y) =
n∑

i=1

|xi − yi |.

This metric is known also as the city-block metric.
The norm ν∞ generates the metric d∞ given by

d∞(x, y) = max{|xi − yi | | 1 6 i 6 n},

also known as the Chebyshev metric.
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Example

In the special case of R2 for x = (x0, x1) and y = (y0, y1), then d2(x, y) is
the length of the hypotenuse of the right triangle and d1(x, y) is the sum
of the lengths of the two legs of the triangle.

-

6

x =

(
x0
x1

)

y =

(
y0
y1

)

(
y0
x1

)
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We can compare the norms νp (and the metrics of the form dp) that were
introduced on Rn. We begin with a preliminary result.

Lemma

Let a1, . . . , an be n positive numbers. If p and q are two positive numbers
such that p 6 q, then(

ap1 + · · ·+ apn
) 1

p ≥
(
aq1 + · · ·+ aqn

) 1
q .
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Proof
Let f : R>0 −→ R be the function defined by

f (r) = (ar1 + · · ·+ arn)
1
r .

Since

ln f (r) =
ln (ar1 + · · ·+ arn)

r
,

it follows that

f ′(r)

f (r)
= − 1

r2
(ar1 + · · ·+ arn) +

1

r
· ar1 ln a1 + · · ·+ arn ln ar

ar1 + · · ·+ arn
.

To prove that f ′(r) < 0, it suffices to show that

ar1 ln a1 + · · ·+ arn ln ar
ar1 + · · ·+ arn

6
ln (ar1 + · · ·+ arn)

r
.

This last inequality is easily seen to be equivalent to
n∑

i=1

ari
ar1 + · · ·+ arn

ln
ari

ar1 + · · ·+ arn
6 0,

which holds because
ari

ar1 + · · ·+ arn
6 1

for 1 6 i 6 n.
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Theorem

Let p and q be two positive numbers such that p 6 q. For every u ∈ Rn,
we have ‖ u ‖p≥‖ u ‖q.

Proof: This statement follows immediately from previous Lemma.
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Corollary

Let p, q be two positive numbers such that p 6 q. For every x, y ∈ Rn, we
have dp(x, y) ≥ dq(x, y).
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Example

For p = 1 and q = 2 the inequality of a previous theorem becomes

n∑
i=1

|ui | 6

√√√√ n∑
i=1

|ui |2,

which is equivalent to ∑n
i=1 |ui |

n
6

√∑n
i=1 |ui |2

n
. (3)
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Theorem

Let p > 1. For every x ∈ Rn we have

‖ x ‖∞6‖ x ‖p6 n ‖ x ‖∞ .

Proof: Starting from the definition of νp we have

‖ x ‖p=

(
n∑

i=1

|xi |p
) 1

p

≤ n
1
p max
16i≤n

|xi | = n
1
p ‖ x ‖∞ .

The first inequality is immediate.
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Corollary

Let p and q be two numbers such that p, q > 1. There exist two constants
c , d ∈ R>0 such that

c ‖ x ‖q6‖ x ‖p6 d ‖ x ‖q

for x ∈ Rn.

Proof: Since ‖ x ‖∞6‖ x ‖p and ‖ x ‖q6 n ‖ x ‖∞, it follows that
‖ x ‖q6 n ‖ x ‖p. Exchanging the roles of p and q, we have
‖ x ‖p6 n ‖ x ‖q, so

1

n
‖ x ‖q6‖ x ‖p6 n ‖ x ‖q

for every x ∈ Rn.
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Corollary

For every x, y ∈ Rn and p > 1, we have d∞(x, y) 6 dp(x, y) 6 nd∞(x, y).
Further, for p, q > 1, there exist c , d ∈ R>0 such that

cdq(x, y) 6 dp(x, y) 6 cdq(x, y)

for x, y ∈ Rn.
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If p 6 q, then the closed sphere Bdp [x, r ] is included in the closed sphere
Bdq [x, r ]. For example, we have

Bd1 [0, 1] ⊆ Bd2 [0, 1] ⊆ Bd∞ [0, 1].

In Figures (a) - (c) we represent the closed spheres Bd1 [0, 1], Bd2 [0, 1], and
Bd∞ [0, 1].
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Theorem

Let x1, . . . , xm and y1, . . . , ym be 2m nonnegative numbers such that∑m
i=1 xi =

∑m
i=1 yi = 1 and let p and q be two positive numbers such that

1
p + 1

q = 1. We have
m∑
j=1

x
1
p

j y
1
q

j 6 1.

Proof: The Hölder inequality applied to x
1
p

1 , . . . , x
1
p
m and y

1
q

1 , . . . , y
1
q
m yields

the needed inequality

m∑
j=1

x
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j y
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j ≤
m∑
j=1

xj

m∑
j=1

yj = 1
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We can formulate now a generalization of the Hölder Inequality.

Theorem

Let A be an n ×m matrix, A = (aij), having positive entries such that∑m
j=1 aij = 1 for 1 6 i ≤ n. If p = (p1, . . . , pn) is an n-tuple of positive

numbers such that
∑n

i=1 pi = 1, then

m∑
j=1

n∏
i=1

apiij 6 1.
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Proof

The argument is by induction on n > 2. The basis case, n = 2 follows
immediately by choosing p = 1

p1
, q = 1

p2
, xj = a1j , and yj = a2j for

1 6 j 6 m.
Suppose that the statement holds for n, let A be an (n + 1)×m-matrix
having positive entries such that

∑m
j=1 aij = 1 for 1 6 i 6 n + 1, and let

p = (p1, . . . , pn, pn+1) be such that p1 + · · ·+ pn + pn+1 = 1.
It is easy to see that

m∑
j=1

n+1∏
i=1

apiij ≤
m∑
j=1

ap11j a
pn−1

n−1 j(anj + an+1 j)
pn+pn+1 .

By applying the inductive hypothesis, we have
∑m

j=1

∏n+1
i=1 apiij 6 1.
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