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Definition

A dissimilarity on a set S is a function d : S x § — R>¢ such that
d(x,x) =0 and d(x,y) = d(y,x) for every x,y € S. If d(x,y) =0
implies x =y, then d is a definite dissimilarity.

The set of dissimilarities is denoted by Dg; the set of definite
dissimilarities is denoted by DDs.

The pair (S, d) is a dissimilarity space.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities

2/ 88



If d and d’ are dissimilarities on S we write d < d’ if d(x,y) < d’(x, y) for
every x,y € S.

If d is a definite dissimilarity and d < d’, then d’ is a definite dissimilarity.
Indeed, suppose that d’(x,y) = 0. This implies d(x, y) = 0. Since d is
definite, we have x = y, hence d’ is definite.

The definition of an extended dissimilarity is exactly the same as the
definition of a dissimilarity except that the set of values is R>o U {o0}.
The attribute “extended” will be applied to all types of dissimilarities
defined in the sequel if they range over R>q U {o0}.
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A triangle in a dissimilarity space (S, d) is a three-element subset
{x1,%2,x3} of S. The triangle {x1,x2,x3} is denoted by x1xpx3.

Definition

A quasi-metric on a set S is a dissimilarity d € Dg that satisfies the
triangular condition

d(x,y) < d(x,z) + d(z,y)

for every x,y,z € S.

The set of quasi-metrics on a set is denoted by 8(S).

If d is a definite quasi-metric, we say that then d is a metric. The set of
metrics on S is denoted by M(S).
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Definition
A quasi-ultrametric is a dissimilarity d on a set S that satisfies the
ultrametric condition:

d(x,y) < max{d(x, z),d(z,y)}

for every x,y,z € S. An ultrametric is a definite dissimilarity that satisfies

the ultrametric condition.
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A finite dissimilarity space (S, d), where S = {x1,...,x,} can be specified
by a matrix D € (Rxq)"*", where Djj = d(x;, x;) for 1 <i,j < n. Note
that D is a symmetrical matrix and the diagonal elements equal 0.
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Example

The matrix D
0 5 4
D=5 0 2
4 2 0
specifies the dissimilarity space ({xi, x2, x3}, d) shown below.
X2
2
5 X3

X1
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Example
Consider the mapping d : (Seq,(S))? — Rxq defined by

d(p,a) = [{i | 0<i<n—1andp(i) # q(i)}|

for all sequences p, q of length n on the set S.

It is easy to see that d is a metric. We justify here only the triangular
inequality. Let p, q,r be three sequences of length n on the set S. If
p(/) # q(i), then r(i) must be distinct from at least one of p(/) and
Therefore,

{i]0<i<n—1andp(i)#q(i)}
C {110 i< e and oli) o ()}
u@|0 < n—1Land r(i) # a(i)},

which implies the triangular inequality.

q(/).
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The ultrametric inequality is stronger than the triangular inequality for, if
d(x,y) < max{d(x,z),d(z,y)}, then d(x,y) < d(x,z) + d(z,y) for every
x,y,z € S. Thus, every quasi-ultrametric is also a quasi-metric and every
ultrametric is also a metric.

We will denote by U(S) the set of quasi-ultrametrics defined on the set S.
If d is a dissimilarity on the set S we refer to the pair (S, d) as a
dissimilarity space.

If d has other properties (e.g. is a metric) we refer to the pair (S, d) as a
space with the corresponding property (a metric space).
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Definition

Let (S,d) and (S’,d") be two dissimilarity space. An isometry or a
morphism of dissimilarity space is a function h: S — S’ such that
d'(h(x), h(y)) = d(x,y) for every x,y € S.

If his a bijection, we say that h is an isomorphism of dissimilarity spaces.
Note that in this case d’(y1,y2) = d(h=(y1), h=*()2) for every y1,y» € S

Definition

Let (S, d) and (S’,d") be two dissimilarity space. The partitions

7 € PART(S) and o € PART(S’) are isomorphic if there exists a
isomorphism ¢ : S — S’ of the dissimilarity spaces (S, d) and (S', d’)
such that x = y() if and only if ¢(x) = ¢(y)(c). This is denoted by
(m,d) ~c (', d").
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Theorem

If h:S — S’ is an isometry between the definite dissimilarity space
(S, d) and the dissimilarity space (S’,d’), then h is an injective mapping.

Proof: Suppose that h(x) = h(y), which implies d’(h(x), h(y)) = 0.
Thus, d(x,y) =0, hence x = y because d is a definite dissimilarity. We
conclude that h is injective.
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Definition

Let (S, d) be a dissimilarity space. A partition o € PART(S) is nice or
locally well-separated if for every x,u,v € S, x = u(o) and x # v(o)
implies d(x, u) < d(x, v).

In other words, for a nice partition of a dissimilarity space no element is
closer to an element from a different block than it is to any point from its

own block.
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Definition

A partition o of a dissimilarity space (S, d) is perfect or globally
well-separated if of all its in-block dissimilarities are smaller than all of its
between-block dissimilarities. In other words, for every u,v,x,y € S, if
u=v(o)and x # y(0), then d(u,v) < d(x,y).

Clearly, every perfect partition is nice; the converse is not true.
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Example

A bipartition m = {X, Y} of a set S defines a quasi-ultrametric 6, on S as

520, y) = {1 if x # y(m),

0 otherwise

for x,y € S. If dx(x,y) =0, then d;(x,y) < dr(x,z) + dr(z, y) for every
z€ S. If dr(x,y) =1, it means that x and y belong to distinct blocks of
7. Thus, for any z we have either x = z(7) and therefore z # y(x), or

x = z(m) and z = y(m). In the first case we have d,(x,z) =0 and
dr(z,y) = 1; in the second case, d-(x,z) =1 and d(z,y) = 0. In either
case, the ultrametric inequality is satisfied.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 14 / 88



Definition

Let (S, d) be a dissimilarity space. The open sphere centered in xgp of
radius r is the set

B(xo,r) ={x€ S | d(x0,x) < r}.

The closed sphere centered in xg of radius r is the set

Blxo,r] ={x €S | d(x0,x) < r}.
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Definition
Let (S, d) be a dissimilarity space. The diameter of a subset U of S is
diamy(U) = sup{d(x,y) | x,y € U}.

A pair of points x,y € S is diametrical if d(x,y) = diam4(S5).
If the dissimilarity d is clear from context, then the subscript d may be
omitted.

If (S, d) is a finite dissimilarity space, the supremum in the definition of
the diameter of a set can be replaced by the maximum, that is,

diamg(U) = max{d(x,y) | x,y € U}.
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A mapping d : S x S — R can be extended to the set of subsets of S
by defining d(U, V) as

d(U, V) = inf{d(u,v) | u€ Uand v e V} (1)

for U,V € P(S).

Observe that, even if d is a metric, then its extension is not, in general, a
metric on P(S) because it does not satisfy the triangular inequality.
Instead, we can show that for every U, V, W we have

d(U, W) < d(U, V) + diam(V) + d(V, W).
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Indeed, by the definition of d(U, V) and d(V, W), for every € > 0, there

exist ue U, v,v € V, and w € W such that

d(U, V) < d(u,v) < d(U, V) + &,
d(V, W) < d(v',w) < d(V, W)+ &.

By the triangular axiom, we have
d(u,w) < d(u,v)+d(v,V)+d(V, w).

Hence,
d(u,w) < d(U, V) +diam(V)+ d(V, W)+,

which implies
d(U,W) < d(U,V)+diam(V)+d(V,W)+e

for every € > 0. This yields the needed inequality. 7|
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Definition

Let (S, d) be a metric space. The sets U, V € P(S) are separate if
d(U,V)>o.

We denote the number d({u}, V) = inf{d(u,v) | v € V} by d(u, V). It
is clear that u € V implies d(u, V) = 0.
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A norm is a real-valued function defined on a linear space that satisfies
certain conditions and assigns a positive number to any non-zero vector.
Norms are intended to model the “length” of vectors. As we shall see,
norms generate metrics on linear spaces.

Definition
Let V be a real linear space. A seminorm on V' is a mapping v: V — R
that satisfies the following conditions:
o v(x+y)<v(x)+v(y) (subadditivity), and
e v(ax) = |a|lv(x) (positive homogeneity),
for x,y € V and a € R.
If v(x) = 0 implies x = 0, then we say that v is a norm.

v

By taking a = 0 in the second condition of the definition we have v(0) =0
for every seminorm.
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Example

The set of real-valued continuous functions defined on the interval [—1, 1]
is a real linear space. The addition of two such functions f, g, is defined
by (f + g)(x) = f(x) + g(x) for x € [—1, 1]; the multiplication of f by a
scalar a € R is (af)(x) = af(x) for x € [-1,1].

Define v(f) = sup{|f(x)| | x € [-1,1]}. Since |f(x)| < v(f) and

lg(x)| < v(g) for x € [-1,1]}, it follows that

(f + ) ()| < |F(X)] + [g()] < v(f) +v(g). Thus,

v(f +g) <v(f)+v(g).

We denote v(f) by || f ||.
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Theorem
Let v:V — R be a seminorm on a linear space V.. We have
v(x —y) = [v(x) —v(y)l,

for x,y € V.

Proof: We have v(x) < v(x —y) + v(y), so
v(x) —v(y) Svix—y).
Since v(x —y) = | — 1lv(y — x) = v(y) — v(x) we have

—(v(x) = v(y)) < v(x) = v(y).
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Corollary

Ifv:V — R is a seminorm on the linear space V/, then v(x) > 0 for
xe V.

Proof: Choose y = 0 in the previous inequality; we have
v(x) = |v(x)| = 0.
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Every norm defined on a linear space V generates a metric on the space.

Theorem
Each norm v : V. — R>q on a real linear space V' generates a metric on
the set V defined by d,(x,y) =v(x —y) for x,y € V.
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Proof

Note that if d,(x,y) = v(x — y) = 0, it follows that x — y = 0; that is,
X=y.

The symmetry of d,, is obvious and so we need to verify only the triangular
axiom. Let x,y,z € L. Applying the subaditivity of norms we have we have

vix—z)=v(x—y+y—z)<vix—y)+v(y—2)

or, equivalently, d,(x,z) < d,(x,y) + d,(y, z), for every x,y,z € L, which
concludes the argument.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 25/ 88



We refer to d, as the metric induced by the norm v on the linear space V.
Observe that the norm v can be expressed using d, as v(x) = d,(x,0) for
xe V.
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A simple and interesting property of triangles in ultrametric spaces is given
next.

Theorem

Let (S, d) be an ultrametric space and let t = xyz be a triangle in (S, d).
The two sides of t which are not the smallest have equal length.

Proof: If d(x,y) is the smallest of the numbers d(x,y), d(y, z), d(x, z)
we have

so d(x,z) =d(y, z).
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In an ultrametric space any triangle is isosceles and the side that is not
equal to the two others cannot be longer than these.

Theorem

Let S = {x1,...,xm} be a finite set with m > 2 such that (S, d) is a
quasi-ultrametric space. The range of d, Ran(d) contains at most m
distinct values.
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Proof

The proof is by induction on m. The basis step, m = 1 is immediate
because Ran(d) = 0. Suppose that the statement holds for sets of size less
than m, let S = {x1,...,xm} be a set of size m and let

T ={x1,...,Xm—1}. The restriction of d to T x T contains at most

m — 1 values. Let x; be one of the closest element of T to x,,. Then, for
every element x; of T we have d(x;j, Xm) > d(xk, Xm). Since the triangle
XjXKXm 15 isosceles we may have either

d(Xjaxm) = d(Xkyxm) P d(Xjan)7

or
d(xj, xk) = d(xj, xm) > d(xk, Xm)-

In the first case, only one element, d(xk, xm) is added to the range of d; in
the second case, d(x;j, xm) equals one of the previous values and the size of
the range of d remains the same. In either case, the size o%e range of d
is no larger than m. umass
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Corollary

For an ultrametric space (S, d) with |S| = m, there are at most m — 1
non-zero values of d.

Theorem

(Egocentricity of Closed Spheres) Let B[x, r| be a closed sphere in a
finite ultrametric space (S, d). If y € B[x,r], then B[x,r| = Bly,r]. In
other words, in a finite ultrametric space, a closed sphere has all its points
as centers.

v
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Proof

Let z € B[x, r]. Since d(x,z) < r, it follows that

d(y,z) < max{d(y,x),d(x,2)} <,

so z € Bly, r], which implies B[x, r] C Bly,r].
If u € Bly, r] we have d(y, u) < r. This implies

d(x,u) < max{d(x,y),d(y,u)} <r,

hence u € B[x, r]. Thus, Bly, r] C B|x, r]. We conclude that
Bly, r] = Blx,r].
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Corollary

If two closed spheres B|x, r] and Bly, r'] in a finite ultrametric space have
a point in common, then one of the closed spheres is included in the other.
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Theorem

(Egocentricity of Open Spheres) Let B(x,r) be an open sphere in a
finite ultrametric space (S, d). If y € B(x,r), then B(x,r) = B(y,r). In
other words, in a finite ultrametric space, an open sphere has all its points
as centers.
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Proof

Since y € B(x,r), we have d(x,y) < r. For z € B(x, r) we have
d(x,z) <r.
Since the triangle xyz is isosceles the following three cases may occur:
e d(x,y) <d(x,z)=d(y,z) < r (because d(x,z) < r), or
e d(x,z) < d(x,y)=d(y,z) < r (because d(x,y) < r), or
e d(y,z) < d(x,y) =d(x,z) < r (because d(x,y) < r).
Thus, in every case d(y,z) < r,so z € B(y,r). Thus, B(x,r) C B(y,r).
Conversely, suppose that z € B(y, r), that is, d(y,z) < r. Since
d(y, x) < r the following cases may occur
e d(x,y) <d(x,z)=d(y,z) < r (because d(y,z) < r), or
e d(x,z) < d(x,y) =d(y,z) < r (because d(y,z) < r), o
e d(y,z) < d(x,y) =d(x,z) < r (because d(y, x) < r).

Therefore, in every case d(x,z) < r, so B(y,r) < B(x, r). We conclude
that B(x,r) = B(y, z).
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Theorem

Let B[x, r] and Bly, r] be two disjoint closed spheres in the finite
ultrametric space (S, d) having the same radius r. Then, for every
u € B[x,r] and v € Bly, r] we have d(u,v) = d(x, y).

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 35/ 88



Proof

Let k = d(u, v). Since B[x, r] and Bly, r] are disjoint closed spheres, it

follows that k > r. Since xyu is an isosceles triangle, it follows that
d(u,y) = k. Since d(v,y) < r, we have d(v,u) = d(u,y) = k.
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Theorem

Let (S, d) be a finite ultrametric space. If B[xo, r] is a closed sphere in
(S, d) such that Blxo, r] # {xo}, then diamq(B[xo,r]) = r.

Proof: Since B[xp, r] contains a point x distinct from xg and d(xp, x) < r,
it is clear that the diameter of B|x, r] is at least equal to r.

Let u, v be elements of B[x, r] such that d(u, v) = diam(B|[xp, r]). Since
d(xo, u) < r and d(xo,v) < r, and d(u, v) is one of the largest sides of the
triangle xguv, it follows that we have either d(u, v) = d(xo, u) or

d(u,v) = d(xo, v). In either case, d(u,v) < r, hence diamy(B|xo, r]) < r.
Thus, diamy(B[xo, r]) = r.
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The next statement provides a characterization of set diameters in
ultrametric spaces.

Theorem

Let S be a finite non-empty set. A function 7 : P(X) — R satisfies the
conditions

o 7(A) =0 if and only if A is a singleton, and

o T(AUB) < max{7(AU C),7(CUB)}
for all A, B, C € P(S) if and only if there exists an ultrametric d on S
such that 7(A) = diamy(A) for every A € P(S).
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Proof

Suppose that 7 satisfies the conditions of the theorem. Choosing B = A in
the second condition implies 7(A) < 7(AU C). Thus, if AC C, we have
T(A) < 7(C), so T is isotonic.

Let ¢ € C. Choosing A = {c}, it follows that 0 = 7(¢) < 7(C), hence
7(C) = 0, so T is non-negative.

Define the function d : S xS — R>g as d(x, y) = 7({x,y}). Property (i)
implies that d(x, y) = 0 if and only if x = y; moreover, d is non-negative.
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Choosing A = {a}, B = {b}, and C = {c} in the second condition implies
d(a, b) < max{d(a,c),d(c,b)}, so d is an ultrametric.

It remains to show that 7(X) = diamg(X) for | X| > 3. Let

X ={x1,...,xp}. For 1 <j < n prove that 7(X) < max;; d(x;, x;) for

1 < i,j < n. The argument is by induction on n and we can write:

7(X) = 7({x1,. ., xn—1} U{xn})
(setting A= {x1,...,xp—1} and B = {x,})

< max{7({x1,..., xa—1} U{X;}), 7({xn, Xj})
(setting C = {x;})

= max{7({x1,...,xa—1}), d({xn; X })}

< maxd(x;, ;).

L

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 40 / 88



Proof (cont'd)

By repeating this process we obtain
7(X) < max{d(x;,x;) | 1 <i,j < n}=diamg(X).

Since 7 is an isotonic mapping, if {x;, x;} is a diametrical pair of points in
X, then
7(X) = 7({xi, x;}) = d(x;, %) = diamg(X),

hence 7(X) = diamg(X).
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Conversely, suppose that d is an ultrametric on X such that

7(A) = diamy(A) for A € F(X). This implies that if 7(A) = 0, then Ais a
singleton.

Let a, b be two diametrical points in AU B. There are three cases to
consider in order to prove (ii):

If both a and b belong to A, then

max{d(x,y) | x,y € AUB} = max{d(x,y) | x,y € A}

Therefore,

diamg(AU B) max{d(x,y) | x,y € A}

< max{d(x,z) | x,z€ AU C}
< max{max{d(x,z) | x,z€ AUC},
max{d(y,z) | y,z€ BUC}}
= max{diamy(AU C), diamy(C U B)},
h 7
ence T(AU B) < max{r(AU C),7(CUB)}. umass
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If both a and b belong to B, then we obtain
max{d(x,y) | x,y € AUB} = max{d(x,y) | x,y € B},

as above, which implies 7(AU B) < max{7(AU C),7(C U B)}.
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If ac Aand b€ B, then

T(AUB) = max{d(x,y) | x,y € AUB}
= max{d(x,y) | x €A,y € B} = d(a,b),

where a € A and b € B. Then, for each ¢ € C, we have

diamg(AUB) = max{d(x,y) | x € A,y € B}
d(a, b) < max{d(a,c),d(b,c)}

< max{max{d(x,z) | x€ A,z € C},
max{d(y,z) | y € B,z € C}}
< max{diamg(AU C), diamy(C U B)}.
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Theorem

Let (S, d) be a finite ultrametric space. For every r > 0 the family of
spheres o, = {B[x, r] | x € S} is a partition of S.

Proof: Since x € BJx, r] for every x € S, we have | J, . B[x,r] = S.

x€ES

Suppose that B[x, r] N B[y, r] # (). One of these spheres is included in the
other, which implies that they are equal. Thus, two distinct spheres of the
same radius are disjoint, which implies that they constitute a partition of

S.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 45 / 88



Let CLS(S, d) be the collection of subsets that consists of () and all closed
spheres of the ultrametric space (S, d).

Theorem
If (S, d) is a finite ultrametrc space with |S| = n, then |CLS(S, d)| < 2 \5|J
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Proof

The proof is by strong inductionon n=|S|. f n=1, S = {x} is a

singleton and the unique closed sphere is {a}. Thus, |CLS(S, d)| =2 and
the inequality is satisfied.

Suppose that the inequality holds for any dissimilarity space (S, d) with
|S| < n.

Let now (S, d) be an ultrametric space with |S| = n+ 1,
S ={x0,---,Xn—1,%n}. Suppose that
min{d(x. %) | x # %}
= d(X07X1) << d(XOamel) < d(XO)Xm)
= - =d(x0,%n—1) = d(x0, Xn) = max{d(x;, x;) | xi # x;},
and let

Sm—l - {X07X1a"'aXm—1}7

{Xmy Xm+1, -+ Xn}- %
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Proof (cont'd)

By the inductive assumption, |CLS(Spm—1,d)| < 2|Sm—1| = 2m and
|CLS(Sm, d)| < 2|Sm| =2(n— m+1).

All points xx for k > m are at the same distance d(xo, x,) from all points
xj with j < m. Thus, CLS(S, d)) € CLS(Sm_1, d) U CLS(Sm, d) U {S}.
Since the empty set belongs to both CLS(S;,—1,d) and CLS(Sp, d),
CLS(S,d) <2m+2(n—m+1)+1-1=2(n+1)=2|5|.

%
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For an ultrametric space (S, d) the set CLS(S, d) is a lattice.

In other words, for two closed spheres B, B, their meet is just their
intersection and is just the smaller of the two closed spheres. The join of
B, B’ is either the larger of the closed spheres (if one is included in the
other), or the ball of radius r = d(x, y), where x € B and y € B’, having
the center at any point of BU B'.
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Theorem

Let d be a dissimilarity on a set S and let Uy be the set of

quasi-ultrametrics Uy = {e € Us | e < d}. The set Uy has a largest
element in the poset (DDs, <).

%
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The set Uy is nonempty because the zero dissimilarity dy given by
do(x,y) = 0 for every x,y € S is a quasi-ultrametric and dp < d.

Since the set {e(x,y) | e € Uy} has d(x,y) as an upper bound, it is
possible to define the mapping €1 : S> — R>g as

ei(x,y) =sup{e(x,y) | e € Uy} for x,y € S. It is clear that e < e for
every quasi-ultrametric e. We claim that e; is an ultrametric on S.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 51 / 88



Proof (cont'd)

We prove only that e; satisfies the ultrametric inequality. Suppose that
there exist x, y,z € S such that e; violates the ultrametric inequality; that
is,

max{ei(x,z),e1(z,y)} < ei(x,y).

This is equivalent to

sup{e(x,y) | e € Ug}
> max{sup{e(x,z) | e € Uy},sup{e(z,y) | e € Uy}}.

Thus, there exists & € Uy such that
é(x,y) > sup{e(x,z) | e € Uy}, and &(x,y) > sup{e(z,y) | e € Ug}.
In particular, &(x,y) > &(x, z) and &(x,y) > &(z,y), which contradicts

the fact that & is an quasi-ultrametric. m
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The quasi-ultrametric defined above is known as the subdominant
quasi-ultrametric for the dissimilarity d.

In general, the infimum of a set of quasi-ultrametrics is not necessarily an
ultrametric.
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Example

Consider a three-element set S = {x, y, z}, four distinct nonnegative
numbers a, b, ¢, d such that a > b > ¢ > d and the quasi-ultrametrics d
and d’ defined by the triangles shown in Figures (a) and (b), respectively.

X
y

Y 47 X - Z
(@ (b)) .
The dissimilarity dy defined by do(u, v) = min{d(u, v),d"(u, v)} for
u,v € S is given by

do(x,y) = b,do(y,z) = d, and do(x,z) = c,

and dp is clearly not a quasi-ultrametric because the triangle xyz is not
isosceles.
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The inequalities developed in this section are essential for the study of
norms and metrics in R”.

Lemma
Let p,g € R —{0,1} such that /la + % = 1. Then we have p > 1 if and

only if g > 1. Furthermore, one of the numbers p, q belongs to the
interval (0, 1) if and only if the other number is negative.

%
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Lemma

Let p,g € R —{0,1} be two numbers such that ,1) + % =1andp > 1.
Then, for every a,b € R>g, we have
aP b9

3b<_+_,
P q

where the equality holds if and only if a = b~ 15,

%
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Proof

We have g > 1. Consider the function f(x) = % + % — x for x > 0. We

have f/(x) = xP~1 — 1, so the minimum is achieved when x = 1 and
f(1) = 0. Thus,

f(ab=5) > F(1) =0,

which amounts to

p

By multiplying both sides of this inequality by bp%l, we obtain the desired
inequality.

%
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Observe that if ,1) + (1’ =1and p <1, then g < 0. In this case, we have
the reverse inequality
ELEN X

ab> — + 2
P q )

which can be shown by observing that the function f has a maximum in
x = 1. The same inequality holds when g < 1 and therefore p < 0.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 58 / 88




Theorem

The Holder Inequality Let ai,...,a, and by, ..., b, be 2n nonnegative

numbers, and let p and q be two numbers such that ;1) + %l =1landp>1.
We have:

Q=

n n % n
E a,-b,- < E af . E blq
i=1 i=1 i=1

%
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Proof

Ifag=---=a,=0orif by =--- = b, =0, then the inequality is clearly
satisfied. Therefore, we may assume that at least one of a1, ..., a, and at
least one of by, ..., b, is non-zero. Define the numbers
aj b;
Xj=——"——andy;, = d

(X0, 4)” (X7, b%) @

for 1 < i< n. A previous Lemma applied to x;, y; yields

]

aib; < 1 af-’ n 1 bP
(27:1 af’)% (27:1 b:g)% G Xict af.’ 92 bf‘

%
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Proof (cont'd)

Adding these inequalities, we obtain

n n % n %
Sooe (87) (29)

1 1 _
because P + = 1.
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The nonnegativity of the numbers as, ..., an, b1, ..., b, can be relaxed by

using absolute values.

Theorem

Let a1,...,a, and by, ..., b, be 2n numbers and let p and q be two
numbers such that %, =+ % =1and p > 1. We have

1
q

n n % n
doabil < (Y lail? ) - D] bl
i=1 i1 i=1
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Corollary

(The Cauchy-Schwarz Inequality for R") Let a1,...,a, and by, ..., b,
be 2n real numbers. We have

Zn:a,'b,' < zn:a? zn:blz
S i=1 i=1

%
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Theorem

(Minkowski’s Inequality) Let a1,...,a, and by,..., b, be 2n
nonnegative real numbers. If p > 1, we have

(Soewr)' = (4) (50

If p < 1, the inequality sign is reversed.
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Proof

For p =1, the inequality is immediate. Therefore, we can assume that
p > 1. Note that

S o+ b = S aa+ b+ > b+ b

i=1 i=1 i=1

By Holder's inequality for p, g such that p > 1 and % + % =1, we have

zn:a,(a,+b <Za)

T I

i=1

(zn:(ai + bi)(p_l)q> E

i=1

(Z af)) P (Z(a; + bi)p> N
i=1 i=1

%
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Proof (cont'd)

Similarly, we can write

Zb ai+ b)P L < (Zb”) (Zn; a,+b,-)">q.

Adding the last two inequalities yields

zn:(a,-er,-)P < (iaﬁ’)p - (ibf’)p (Zn:(a, + b;)P )q,
i=1 i=1 i=1 i=1

which is equivalent to inequality

(eeor) < (24 - (3),
i=1 i=1 i=1 m
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Example
For x € R"” and y € R” the Euclidean metric is the mapping

da(x,y) =

To prove the triangular inequality, let x,y,z € R". Choosing a; = x; — y;
and b; = y; — z; for 1 < i < n in Minkowski's inequality implies

n n

Z(x,- —z)? < Z(Xi —yi)?+ Z(Yi - z)?,

i=1 =1l

which amounts to d(x,z) < d(x,y) + d(y, z). Thus, we conclude that d is
indeed a metric on R".

v

74

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities 67 / 88



Theorem

For p > 1, the function vy, : R" — Rx>q defined by

n
Vp(X1,.. ., Xn) = Z\x;]” ,
i=1

where x = (x1,...,Xxn) € R", is a norm on R".
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Proof

Let x = (x1,...,%n), Y = (V1,-..,¥n) € R". Minkowski's inequality applied
to the nonnegative numbers a; = |x;| and b; = |y;| amounts to

n % n % n %
(Z(\Xf! + |Yi\)p> < <Z !Xi\p> + (Z !y/'\p) :
i=1 i=1 i=1

Since |x; + yi| < |xi| + |yi| for every i, we have

<Z(|Xi +Yi!)p> p < (Z |Xi|p) 4 (Z |)/i!p> p :
i—1

i=1 i=1

that is, vp(x +y) < vp(x) + vp(y).
Thus, v, is a norm on R".
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Example
The mapping v; : R” — R given by

vi(x) = [xa| + | + -+ |xal,

for x = (x1,...,Xp) € R” is a norm on R".
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Example
A special norm on R” is the function v, : R” — R given by

Voo(X) = max{|x;| | 1 < i< n}

for x = (x1,...,%,) € R".
We start from the inequality

|Xi +}/i’ < |Xi‘ =+ |}/i’ < Voo(x) + Voo(Y)
for every i, 1 < i < n. This in turn implies

Voo(x +y) = max{|x; + yi| | 1 < i< n} < voo(X)+ vooly),

which gives the desired inequality.
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Vso Can be regarded as a limit case of the norms v,. Indeed, let x € R”
and let M = max{|x;| | 1 < i< n}=|xy|="--= x| for some
l1,...,lk, where 1 < 01,..., 0, < n. Here x;,,...,x;, are the components
of x that have the maximal absolute value and k > 1. We can write

lim vp(x) = lim M Z('X‘)p %: lim M(k)? = M,

pP—00 p—00 — M
=

which justifies the notation v.

%
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We use the alternative notation || x ||, for vp(x). We refer || x ||2 as the
Euclidean norm of x and we denote this norm simply by || x || when there
is no risk of confusion.
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Example

For p > 1, let £, be the set that consists of sequences of real numbers
x = (xp, X1, . . .) such that the series Y °/ |x;|P is convergent. We can
show that £, is a linear space.

Let x,y € ¢, be two sequences in £,. Using Minkowski's inequality we have

n n n n
D Ixiyil? < Yo (bal + il < D0 IxlP + D il
i=0 0 i=0 i=0

i=

which shows that x +y € /,. It is immediate that x € £, implies ax € ¢,

for every a € R and x € /.
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For p > 1, then d, denotes the metric d,, induced by the norm v, on the
linear space R” known as the Minkowski metric on R".
If p =2, we have the Euclidean metric on R" given by

n

da(x,y) = | DI —yil? = | D> _(xi — )%
i-1

i=1

For p =1, we have
n

di(x,y) = > |xi — yil.

i=1
This metric is known also as the city-block metric.
The norm v, generates the metric d,, given by

doo(x,y) = max{|x; — i | 1 <i<n},

also known as the Chebyshev metric. 7/
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Example

In the special case of R? for x = (xp, x1) and y = (yo, y1), then da(x,y) is
the length of the hypotenuse of the right triangle and di(x,y) is the sum
of the lengths of the two legs of the triangle.

'
_ (Y
Y2 (n)

=) (%)

7a
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We can compare the norms v, (and the metrics of the form dp) that were

introduced on R". We begin with a preliminary result.

Lemma

Let a1, ...,an be n positive numbers. If p and q are two positive numbers

such that p < q, then

(a’l’+~--—|—a‘,§)%2(a§’+~~-—|—ag)%.
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Proof
Let f : R"O — R be the function defined by

F(r) = (a5 + - +al)r.

Since
B In(aj +---+ap)

i

Inf
nf(r) ;
it follows that

f'(r)

1 ajlna;+---+aplna,

_ 1 r r
= 2 (31+ +an)+r

f(r)

To prove that f'(r) < 0, it suffices to show that
ajlna; +---+ajlna, < In(af +---+ aj)
al+---+ aj h r '

This last inequality is easily seen to be equivalent to

a4+ +aj

aI aI
Zf+ oAt +f<0’m
a e a a DR a
=1 "o ! msss

which holds because

Prof. Dan A. Simovici CS724: Topics in Algorithms Dissimilarities

78 / 88



Theorem

Let p and q be two positive numbers such that p < q. For every u € R”,

we have || u ||, u |-

Proof: This statement follows immediately from previous Lemma.
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Corollary

Let p, g be two positive numbers such that p < q. For every x,y € R”, we
have dy(x,y) > dg(x,y).
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Example

For p =1 and g = 2 the inequality of a previous theorem becomes

which is equivalent to

X
n n

(3)
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Theorem

Let p > 1. For every x € R" we have

% [loo <[ % [[p< 7 {] X [loo -

Proof: Starting from the definition of v, we have

n % 1 1
Ixllo= ()< 0 ma el =2 11 -
1=

The first inequality is immediate.
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Corollary

Let p and q be two numbers such that p,q > 1. There exist two constants
c,d € Ryq such that

clIxflg<lxllp<d | xlq

forx € R".

Proof: Since || x [|[<|| x ||, and || x ||¢< n || X ||, it follows that
| x ||g< n || x ||p. Exchanging the roles of p and g, we have
I x [lp< nllx g, so

S xdlgslx llo<nll x g

for every x € R".
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Corollary

For every x,y € R" and p > 1, we have du(X,y) < dp(x,y) < ndso(x,y).

Further, for p,q > 1, there exist c,d € R~ such that

cdqg(x,y) < dp(x,y) < cdg(x,y)

for x,y € R".
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If p < g, then the closed sphere By [x, r] is included in the closed sphere
By, [x, r]. For example, we have

B [0,1] € By,[0,1] € By, [0, 1].
In Figures (a) - (c) we represent the closed spheres By, [0, 1], By, [0, 1], and
B4, [0,1].

A

/h
N

(c)
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Theorem

Let x1,...,xm and y1,...,Ym be 2m nonnegative numbers such that

";1 =Y ",yi=1and let p and q be two positive numbers such that
% = 1. We have

‘clv—‘M

1

Q|

w1

P
D Xy
=i

1 1

1
Proof: The Holder inequality applied to x{,..., x5 and y,.

1
.y Ym yields
the needed inequality

m. oy m m
DY <Y x5y v=1
j=1 =1 j=1
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We can formulate now a generalization of the Holder Inequality.

Theorem

Let A be an n x m matrix, A = (ajj), having positive entries such that

ZJ 1aj=1for1<i<n Ifp=(p1,...,pn) is an n-tuple of positive
numbers such that Y7, pj = 1, then

ZHap,

j=1i=1
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Proof

The argument is by induction on n > 2. The basis case, n = 2 follows
1

|mm<?d|ately by choosing p = p1’ 9=

1<j<m

Suppose that the statement holds for n, let A be an (n+ 1) x m-matrix

having positive entries such that ijzl aj=1for1<i<n+1,and let

P= (Pl, s 7pn>pn+1) be such that pr+ -+ Ppt Pop1 = L.

It is easy to see that

Xj = aij, and yj = azj for

m n+1

P, P1 Pn1 p+p1
E Har<£ aljnljanj—i—anﬂ)n n+
j=1i=1

By applying the inductive hypothesis, we have Z - H'H'l pi
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