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Ultrametrics defined on a finite set S and chains of equivalence relations
on S (or chains of partitions on S) have a close relationship that we
present next.

Theorem

Let S be a finite set and let d : S × S −→ R>0 be a function whose range
is Ran(d) = {r1, . . . , rm}, where r1 = 0 such that d(x , y) = 0 if and only if
x = y. Define the relations ηri = {(x , y) ∈ S × S | d(x , y) 6 ri} for
1 6 i 6 m.
The function d is an ultrametric on S if and only if the sequence of
relations ηr1 , . . . , ηrm is an increasing chain of equivalences on S such that
ηr1 = ιS and ηrm = θS = S × S.
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Proof

Suppose that d is an ultrametric on S . We have (x , x) ∈ ηri because
d(x , x) = 0, so all relations ηri are reflexive. Also, it is clear that the
symmetry of d implies (x , y) ∈ ηri if and only if (y , x) ∈ ηri , so these
relations are symmetric.
The ultrametric inequality is essential for proving the transitivity of the
relations ηri . If (x , y), (y , z) ∈ ηri , then d(x , y) 6 ri and d(y , z) 6 ri ,
which implies d(x , z) 6 max{d(x , y), d(y , z)} 6 ri . Thus, (x , z) ∈ ηri ,
which shows that every relation ηri is transitive and therefore an
equivalence.
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Proof (cont’d)

It is straightforward to see that ηr1 6 ηr2 6 · · · 6 ηrm ; that is, this
sequence of relations is indeed a chain of equivalences.
Conversely, suppose that ηr1 , . . . , ηrm is an increasing sequence of
equivalences on S such that ηr1 = ιS and ηrm = θS , where
ηri = {(x , y) ∈ S × S | d(x , y) 6 ri} for 1 ≤ i 6 m and r1 = 0.
Note that d(x , y) = 0 is equivalent to (x , y) ∈ ηr1 = ιS , that is, to x = y .
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Proof (cont’d)

We claim that for every x , y ∈ S we have:

d(x , y) = min{r | (x , y) ∈ ηr}.

Indeed, since ηrm = θS , it is clear that there is an equivalence ηri such that
(x , y) ∈ ηri . If (x , y) ∈ ηri , the definition of ηri implies d(x , y) 6 ri , so
d(x , y) 6 min{r | (x , y) ∈ ηr}. This inequality can be easily seen to
become an equality since (x , y) ∈ ηd(x ,y). This implies immediately that d
is symmetric.
To prove that d satisfies the ultrametric inequality, let x , y , z be three
members of the set S . Let p = max{d(x , z), d(z , y)}. Since
(x , z) ∈ ηd(x ,z) ⊆ ηp and (z , y) ∈ ηd(z,y) ⊆ ηp, it follows that (x , y) ∈ ηp,
due to the transitivity of the equivalence ηp. Thus,
d(x , y) 6 p = max{d(x , z), d(z , y)}, which proves the ultrametric
inequality for d .
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Previous theorem can be formulated in terms of partitions.

Theorem

Let S be a finite set and let d : S × S −→ R>0 be a function whose range
is Ran(f ) = {r1, . . . , rm}, where r1 = 0 such that d(x , y) = 0 if and only if
x = y. For u ∈ S and r ∈ R>0, define the set
Du,r = {x ∈ S | d(u, x) 6 r}.
Define the collection of sets

πri = {D(u, ri ) | u ∈ S}

for 1 6 i 6 m. The function d is an ultrametric on S if and only if the
sequence of collections πr1 , . . . , πrm is an increasing sequence of partitions
on S such that πr1 = αS and πrm = ωS .
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Ultrametrics whose range is the set {0, 1} are said to be binary.

Corollary

Let S be a finite set and let d : S × S −→ R>0 be a function whose range
is Ran(d) = {0, 1}. Then, d is a binary ultrametric on S if and only if the
relation

ρ = {(x , y) ∈ S × S | d(x , y) = 0}

is an equivalence on S. Conversely, every equivalence ρ on a set S defines
a binary ultrametric u(ρ) given by

u(ρ)(x , y) =

{
0 if (x , y) ∈ ρ,
1 otherwise.
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Definition

Let S be a set. A hierarchy on the set S is a pair (S ,H), where H is
collection of sets H ⊆ P(S) that satisfies the following conditions:

the members of H are nonempty sets;
S ∈ H;
for every x ∈ S , we have {x} ∈ H;
if H,H ′ ∈ H, H 6= H ′, and H ∩ H ′ 6= ∅, then we have either H ⊂ H ′

or H ′ ⊂ H.

Note that the last condition is equivalent to H ∩ H ′ ∈ {H,H ′, ∅} for every
H,H ′ ∈ H.
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A standard technique for constructing a hierarchy on a set S starting with
a rooted tree is given next.

Theorem

Let S be a set and let T = (V ,E , v0) be a rooted tree. Define the
mapping µ : V −→ P(S) as follows:

the restriction of µ to LT , the leaves of T is a bijection between LT

and the collection {{s} | s ∈ S}.
if v is a vertex of T that has the immediate descendants v1, . . . , vm,
then µ(v) =

⋃
{µ(vi ) | 1 6 i 6 m}.

Then, H = {µ(v) | v ∈ V } defines a hierarchy (S ,H) on the set S.
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Proof

The set of labels HT of the rooted tree T = (V ,E , v0) defines a hierarchy
(S ,H). Indeed, note that each singleton {x} is a label of a leaf. An easy
argument by induction on the height of the tree shows that every vertex is
labelled by the set of labels of the leaves that descend from that vertex.
Therefore, the root v0 of the tree is labelled by S .
Suppose that H,H ′ are labels of the nodes u, v of T , respectively. If
H ∩ H ′ 6= ∅, then the vertices u, v have a common descendant. In a tree,
this can take place only if u is a descendant of v or v is a descendant of u;
that is, only if H ⊂ H ′, or H ′ ⊂ H, respectively. This gives the desired
conclusion.
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Example

Let S = {s, t, u, v ,w , x , y} and let T be a tree whose vertices are labelled
as shown next. It is easy to verify that the family of subsets H of S that
label the nodes of T ,

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w , x}, {s, t, u, v}, {w , x , y}, {s, t, u, v ,w , x , y}}

is a hierarchy (S ,H).
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Theorem

Let S1, . . . ,Sk be k pairwise disjoint sets such that (S1,H1), . . . , (Sk ,Hk)
are k hierarchies. If S =

⋃k
i=1 Si , then the pair (S ,H), where

H = {S} ∪
k⋃

i=1

Hi

is a hierarchy on the set S.
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Proof

It is immediate that (S ,H) satisfies the first three conditions of the
definition.
Let now H,H ′ ∈ H such that H ∩ H ′ 6= ∅. Since the sets S1, . . . ,Sk are
pairwise disjoint, one of the following cases may occur:

both H and H ′ belong to one of the families Hi , or
H = S and there exists a collection Hi such that H ′ ∈ Hi .

In the first case we have either H ⊆ H ′ or H ′ ⊆ H because Hi is a
hierarchy. In the second case we have H ′ ⊆ H.
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The hierarchy introduced in the Theorem is the sum of the hierarchies
(Si ,Hi ) for 1 6 i 6 k. We denote this hierarchy by

∑k
i=1(Si ,Hi ).
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Example

For the hierarchy H defined in previously on the set
S = {s, t, u, v ,w , x , y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,
h({s, t, u}) = 3, h({w , x}) = 4, h({s, t, u, v}) = 5, h({w , x , y}) = 6,
h({s, t, u, v ,w , x , y}) = 7,

is a grading function and H = (S ,H, h) is a graded hierarchy on S .
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Define the relation “≺H” on a hierarchy (S ,H) by H ≺H K if H,K ∈ H,
H ⊂ K , and there is no set L ∈ H such that H ⊂ L ⊂ K .

Lemma

Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H | H ≺H L} is a partition of the set L.
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Proof

We claim that L =
⋃

PL. Indeed, it is clear that
⋃
PL ⊆ L.

Conversely, suppose that z ∈ L but z 6∈
⋃
PL. Since {z} ∈ H and there is

no K ∈ PL such that z ∈ K , it follows that {z} ∈ PL, which contradicts
the assumption that z 6∈

⋃
PL. This means that L =

⋃
PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since
otherwise we would have either K0 ⊂ K1 or K1 ⊂ K0, and this would
contradict the definition of PL.
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Theorem

Let (S ,H) be a hierarchy on a set S. The graph of the relation ≺H on H
is a tree whose root is S; its leaves are the singletons {x} for every x ∈ S.
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We shall draw the tree of a graded hierarchy (S ,H, h) using a special
representation known as a dendrogram.
In a dendrogram, an interior vertex K of the tree is represented by a
horizontal line drawn at the height h(K ).

s t u v w x y
1

2

3

4

5

6
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Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 21 / 110



A graded hierarchy defines an ultrametric, as shown next.

Theorem

Let H = (S ,H, h) be a graded hierarchy on a finite set S. Define the
function dH : S2 −→ R as
dH(x , y) = min{h(U) | U ∈ H and {x , y} ⊆ U} for x , y ∈ S. The
mapping dH is an ultrametric on S.

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 22 / 110



Proof

Observe that for every x , y ∈ S there exists a set H ∈ H such that
{x , y} ⊆ H because S ∈ H.
It is immediate that dH(x , x) = 0. Conversely, suppose that dH(x , y) = 0.
Then, there exists H ∈ H such that {x , y} ⊆ H and h(H) = 0. If x 6= y ,
then {x} ⊂ H, hence 0 = h({x}) < h(H), which contradicts the fact that
h(H) = 0. Thus, x = y .
The symmetry of dH is immediate.
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Proof (cont’d)

To prove the ultrametric inequality, let x , y , z ∈ S , and suppose that
dH(x , y) = p, dH(x , z) = q, and dH(z , y) = r . There exist H,K , L ∈ H
such that {x , y} ⊆ H, h(H) = p, {x , z} ⊆ K , h(K ) = q, and {z , y} ⊆ L,
h(L) = r . Since K ∩ L 6= ∅ (because both sets contain z), we have either
K ⊆ L or L ⊆ K , so K ∪ L equals either K or L and, in either case,
K ∪ L ∈ H. Since {x , y} ⊆ K ∪ L, it follows that

dH(x , y) 6 h(K ∪ L) = max{h(K ),H(L)} = max{dH(x , z), dH(z , y)},

which is the ultrametric inequality.
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We refer to the ultrametric dH as the ultrametric generated by the graded
hierarchy H = (S ,H, h).

Example

The values of the ultrametric generated by the graded hierarchy (S ,H, h)
on the set S introduced before is

d s t u v w x y

s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0
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Example

The dendrogram of the graded hierarchy shows that S can be regarded as
several unions of spheres in the ultrametric space:

S = B[s, 3] ∪ B[v , 1] ∪ B[w , 3] ∪ B[y , 6]

= B[v , 5] ∪ B[y , 6] = B[y , 7]
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Theorem

Let (S , d) be a finite ultrametric space. There exists a graded hierarchy
H = (S ,H, h) on S such that dH is the ultrametric associated to
H = (S ,H, h).
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Proof

Let H be the collection of equivalence classes of the equivalences
ηr = {(x , y) ∈ S2 | dH(x , y) 6 r} defined by the ultrametric dH on the
finite set S , where the index r takes its values in the range Rd of the
ultrametric d . Define h(E ) = min{r ∈ Rd | E ∈ S/ηr} for every
equivalence class E .
It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every
x ∈ S .
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Proof (cont’d)

Let [x ]t be the equivalence class of x relative to the equivalence ηt .
Suppose that E and E ′ belong to the hierarchy and E ⊂ E ′. We have
E = [x ]r and E ′ = [x ]s for some x ∈ X . Since E is strictly included in E ′,
there exists z ∈ E ′ − E such that d(x , z) 6 s and d(x , z) > r . This
implies r < s. Therefore,

h(E ) = min{r ∈ Rd | E ∈ S/ηr} ≤ min{s ∈ Rd | E ′ ∈ S/ηs} = h(E ′),

which proves that (S ,H, h) is a graded hierarchy.
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The ultrametric e generated by the graded hierarchy H = (S ,H, h) is
given by

e(x , y) = min{h(B) | B ∈ H and {x , y} ⊆ B}
= min{r | (x , y) ∈ ηr} = min{r | d(x , y) 6 r} = d(x , y),

for x , y ∈ S ; in other words, we have e = dH.
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Example

Starting from the ultrametric on the set S = {s, t, u, v ,w , x , y} defined
before we obtain the following quotient sets:

Values of r S/ηr
[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w , x}, {y}
[5, 6) {s, t, u, v}, {w , x}, {y}
[6, 7) {s, t, u, v}, {w , x , y}

[7,∞) {s, t, u, v ,w , x , y}
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As we saw, dH(x , y) generated by a graded hierarchy H is the smallest
height of a set of a hierarchy that contains both x and y . This allows us
to “read” the value of the ultrametric generated by H directly from the
dendrogram of the hierarchy.
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Let G = (V ,E , c) be a weighted graph. We seek to determine a subgraph
G ′ = (V ,E ′, c ′) over the same set of vertices such that

E ′ ⊆ E ;
c ′(x , y) = c(x , y) for {x , y} ∈ E ′, and∑
{c(x , y) | {x , y} ∈ E ′} is minimal.

In other words, we seek a subgraph G ′ of G such that every vertex of G
occurs in G and the total cost of G ′ is minimal.
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Theorem

The set of edges of a connected weighted graph G = (V ,E , c) that
achieves a minimal cost defines a connected and acyclic graph.

Proof.

Let G ′ = (V ,E ′, c ′) be the subgraph of G that achieves a minimal cost.
Since each vertex must be connected to the other vertices, G ′ is a
connected graph.
G ′ contains no cycles. Indeed, suppose that G ′ contains a cycle C and
e = (vi , vj) would be an edge on this cycle. Then, (V ,E ′ − {e}, c ′) is still
connected because we could go from vi to vj using the remaining edges of
this cycle and this would result into a graph with a lower cost. Thus, G ′ is
both connected and acyclic.

Thus, the graph of minimal cost is a tree (a connected and acyclic graph)
and also, a spanning subgraph.
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The cost of a spanning tree T ∈ ST(G ) is the sum of the costs of its
edges. We seek to determine spanning trees of a graph that have the
lowest cost (the minimum spanning tree problem). We will use the
acronym MST to refer to minimum spanning tree.
If the graph G is not connected we seek a minimal spanning forest, that is,
a collection of spanning tree for each of its components such that the total
cost of all these trees is minimal.
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Kruskal’s Algorithm:
Data: A weighted graph G = (V ,E , c)
Result: A minimum spanning tree T = (V ,E ′, c ′) of G
initialize the set of edges U as U ← ∅
insert in U successive edges in the order of increasing weight provided that
the insertion does not create a cycle; if it does, skip the edge;
stop when all nodes are connected
return: T = (V ,U, c �U)
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Let G = ({vi | 1 6 i 6 6},E , c) a the weighted graph shown below.

v1 v2 v3

v4 v5

v6

5 6

7 1 3 4

2 8
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The successive values of the set U are:

∅
{{v2, v4}}
{{v2, v4}, {v4, v6}}
{{v2, v4}, {v4, v6}, {v2, v5}}
{{v2, v4}, {v4, v6}, {v2, v5}, {v5, v3}}
{{v2, v4}, {v4, v6}, {v2, v5}, {v5, v3}, {v2, v1}}

The weight of the minimum spanning tree shown is 15.

v1 v2 v3

v4 v5

v6

5 6

7 1 3 4

2 8
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Suppose that a climber needs to climb a difficult terain. For example, to
reach point v7 starting from point v1 in the map shown below

2 5

4

2
3

3

6 2

4
7

32
9

v1

v2

v3

v4

v5

v6

v7
v8

v9

v10

v11

several paths are possible:

(v1, v4, v8, v9, v7), (v1, v3, v10, v7), (v1, v3, v11, v7), (v1, v2, v5, v6, v7).

The choice of a trail is dictated by the most difficult segment of each trail,
and the climber chooses the trail having the least maximum difficulty as
shown. Segments of maximum difficulty have been marked with a thick
line. Thus, the trail with minimum maximal difficulty is (v1, v2, v5, v6, v7).
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Lemma

Let K = (V ,E , c) be a complete weighted graph having a positive weight
function c. For ℘ ∈ pathsK (u, v), let

M(℘) = max{c(x , y) | {x , y} is an edge on ℘},

and d(u, v) = min{M(℘) | ℘ ∈ pathsK (u, v)}.
The function d : V × V −→ R>0 is an ultrametric on V .
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Proof

We have d(u, u) = 0 because the unique path between u and u is
℘0 = (u) and M(℘0) = 0. Conversely, if d(u, v) = 0, then u = v .
It is immediate that d(u, v) = d(v , u) for u, v ∈ S . We claim that d
satisfies the ultrametric inequality.
Let u, v ,w ∈ V , d(u, v) = p, and d(v ,w) = q. There exists a path
℘ ∈ pathsK (u, v) such that d(u, v) = M(℘) and M(℘) 6 M(℘′) for every
path ℘′ that joins u and v . Similarly, there exists a path
℘1 ∈ pathsK (v ,w) such that d(v ,w) = M(℘1) and M(℘1) 6 M(℘′1) for
every path ℘′1 ∈ pathsK (v ,w).
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Proof (cont’d)

Note that ℘℘1 is a path that joins u to w and the largest value of c(x , y)
for an edge {x , y} on this path is
max{M(℘),M(℘1)} = max{d(u, v), d(v ,w)}. Since d(u,w) is the least of
the maximal weights that occur on a path that joins u to w it follows that

d(u,w) 6 max{d(u, v), d(v ,w)}.

In other words, d is an ultrametric on V .
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An extension of the lemma

Let G = (V ,E , c) be a weighted graph. Define c̃ : V × V −→ R̂>0 as

c̃(u, v) =

{
c(u, v) if {u, v} ∈ E ,

∞ otherwise.

Theorem

Let G = (V ,E , c) be a weighted graph. For ℘ ∈ pathsK (u, v), let

M(℘) = max{c̃(x , y) | {x , y} is an edge on ℘},

and d(u, v) = min{M(℘) | ℘ ∈ pathsK (u, v)}.
The function d : V × V −→ R̂>0 is a quasi-ultrametric on V .
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Proof

If there is no path between the vertices u,w , we have d(u,w) =∞. Note
that in this case, for every v ∈ V , either there is no path between u and v ,
or there is no path between v and w . In either case, the ultrametric
inequality holds. If there is a path between u and w , the argument of the
Lemma applies.
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Corollary

Let T = (V ,E , c) be a weighted tree. Since each pair of distinct vertices
vi , vj is connected by a unique path, we can define the function
d : V × V −→ R>0 such that d(vi , vj) is 0 if vi = vj and d(vi , vj) is the
largest weight assigned to an edge on the path between vi and vj .
Then d is an ultrametric on V .
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Theorem

The ultrametric dT generated by a minimum spanning tree T of a
weighted graph G = (V ,E , c) is the same for every MST of G.
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Proof

Let T and T ′ be two minimal spanning trees for G and let d , d ′ be the
ultrametrics generated by T and T ′, respectively.
Suppose that there is a pair of vertices {x , y} such that

dT (x , y) < d ′T (x , y).

Removing from T ′ the most expensive edge that occurs on the path
between x and y in this tree we get two connected components of T ′, that
can be connected by some edge on a path from x to y in T . Thus, the
cost of T ′ is reduced, which contradicts the minimality of T ′.
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Definition

Let D ∈ Rn×n be a matrix with non-negative entries. An ultrametric tree
for D is a rooted tree T = (V ,E , v0) that satisfies the following conditions:

T contains n leaves, each labeled by a unique row in D;
each internal node of T is labeled by one entry from D, and has at
least two children;
along any path from the root to a leaf, the numbers labeling the
internal nodes strictly decrease;
for any two leaves u, v of T , duv is the label of the closest common
ancestor of u and v in T .
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The rows of the matrix D ∈ R8×8 given below are labeled by
a, b, c , d , e, f , g , h:

D =

a b c d e f g h
a 0 3 3 8 8 8 11 11
b 3 0 2 8 8 8 11 11
c 3 2 0 8 8 8 11 11
d 8 8 8 0 3 6 11 11
e 8 8 8 3 0 6 11 11
f 8 8 8 6 6 0 11 11
g 11 11 11 11 11 11 0 5
h 11 11 11 11 11 11 5 0

An ultrametric tree that represents this matrix:

a b c d e f g h

2 3 5

3 6

8

11
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Since a binary tree with n leaves has n − 1 interior nodes, the existence of
an ultrametric tree for a matrix D ∈ Rn×n implies that the matrix D has
at most n − 1 distinct non-zero entries.

Definition

An ultrametric matrix is a symmetric non-negative matrix D ∈ Rn×n with
dii = 0 for 1 6 i 6 n and dij 6 max{dik , dkj} for 1 6 i , j , k 6 n
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Theorem

A symmetric matrix D ∈ Rn×n has an ultrametric tree if and only if D is
an ultrametric matrix.
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Proof

Suppose that D has an ultrametric tree and consider the minimal subtree
that contains the distinct leaves i , j , k. Let v be the closest common
ancestor of i and j and let u be the closest common ancestor of i , j , k.
Clearly, u is an ancestor of v , which means that u > v because the
numbers labeling the internal nodes strictly decrease along any path from
the root to a leaf. The number at v is dij , while the number at u is
dik = djk . Therefore, dik 6 max{dij , djk}, so D is an ultrametric matrix.
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Proof (cont’d)

Conversely, suppose that D is an ultrametric matrix. Note that
dii = 0 6 dij for all j 6= i . If there are m non-zero distinct entries in the
row i of D, then any ultrametric tree T for D must contain a path ℘i

from i to the root with exactly m nodes and each node on this path must
be labeled by one of the distinct m entries on row i ; these labels must
appear in decreasing order on the path. Thus, the nodes and the labels on
the path to leaf i are determined only by the entries of the row i of D.
Any internal node v on that path labeled by dij must be the closest
common ancestor of leaves i and j . This determines where leaf j must
occur in T relative to ℘i . Thus, ℘i partitions the remaining n − 1 nodes
into m − 1 classes resulting into a partition πi . Leaves j and k are
together in the same class of πi if dij = dik . It follows that each block B`

of πi is defined by a distinct node in ℘i .
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The construction of an ultrametric tree can be done recursively, for each of
the classes B`; after each of these trees is obtained they can be connected
to yield the full ultrametric tree.
Let v be an internal node and let leaf j be contained in this class. Let k
be some other leaf. Three cases may occur:

k is in the same class as j ;
k is in a class contained between the leaf i and node v ;
k is in a class contained between node v and the root of the tree.
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In the first case dij = dik , so djk 6 dij because D is an ultrametric matrix.
This means that if a subtree containing leaves j and k is attached to v ,
then djk is correctly represented in the new tree and the tree has the
required property that node numbers stricly decrease along any path from
the root.
In the second case dik > dij , so djk = dik . Therefore, if an ultrametric tree
for the class containing j is connected at v , then djk will be correctly
computed at the least common ancestor of j and k .
In the third case, dik < dij , so djk = dij and v must be the least common
ancestor of j and k .
Thus, in all cases, the ultrametric tree of the class defined by v can be
correctly attached to v and the procedure correctly constructs an
ultrametric tree for D.
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We construct an ultrametric tree for the matrix D before. There are three
distinct non-zero entries in the first row of D, namely, 3, 8, and 11.

a

3

8

11

a

3

8

11

{b, c}
{d , e, f }

{g , h}

(a) (b)
The construction begins with the path of length 3 shown in Figure (a).
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The vertex sets that correspond to the vertices encountered an this path
are {b, c}, {d , e, f }, and {g , h} and their ultrametric matrices are:

b c

b 0 2
c 2 0

,

d e f

d 0 3 6
e 3 0 6
f 6 6 0

,

g h

g 0 5
h 5 0

.
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The ultrametric trees of these matrices are shown in Figures (a)-(c).

b c d e f g h

2 3 5

6

(a) (b) (c)
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Single-linkage clustering begins by initializing each point as its own cluster,
and then repeatedly merging the pair of clusters whose distance to one
another (as measured from their closest points of approach) is minimal.
The merging of clusters has a local behavior: the regions where the
clusters are closest have a greater influence on this process than the global
structure of the dissimilarity graph of the objects. The effect is to produce
elongated clusters.
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Single-linkage Clustering Algorithm
Data: A dissimilarity space (S , d);
Result: A single-linkage clustering;
initialize π ← {{x} | x ∈ S};
while {stopping condition is not met}
{ seek a pair of clusters C ,C ′ ∈ π such that

δ(C ,C ′) = min{d(x , y) | x ∈ C , y ∈ C ′}

is minimal;
fuse the clusters C and C ′ into the cluster C ∪ C ′, that is,
π ← π − {C ,C ′} ∪ {C ∪ C ′};
}
return π
The most common stopping condition, which we adopt unless specified
otherwise is that π = ωS , that is, only one cluster exists.
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Other stopping conditions:

k-cluster stopping condition: Stop adding edges when the
partition first consists of k blocks. (This condition is well-defined
when the number of points is at least k .)
dissimilarity-r stopping condition: Only fuse clusters C ,C ′

such that δ(C ,C ′) 6 r ;
scale-α stopping condition: Let d∗ denote the maximum
pairwise distance; i.e. d∗ = max{d(i , j) | (i , j) ∈ V }. Only fuse
clusters C ,C ′ if δ(C ,C ′) 6 αd∗.
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The single-linkage algorithm can be presented from the perspective of a
minimum spanning tree of the weighted complete graph Gd whose vertex
set is S and for which the weight of edge {i , j} is d(i , j).

The process starts with the partition of S that consists of singletons
and from an MST T of the graph GS ,d labeled by these singletons.
At each step the algorithm replaces edges in the tree by blocks
obtained by fusing the extremities of the edges that have the lowest
weight, until a single block partition is obtained.
As before, the most common stopping condition, which we adopt
unless specified otherwise is that π = ωS , that is, only one cluster
exists.
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Consider the graph
v1 v2 v3

v4 v5

v6

2 3

3 3 3 2

2 3

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 63 / 110



Starting from the MST tree for the previous graph the construction of the
single-link clustering proceeds along the sequence of graphs next.

v1 v2 v3

v4 v5

v6

2 3

3 3 3 2

2 3
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{v1} {v2} {v3}

{v4} {v5}

{v6}

3

3 3 2

2
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{v1} {v2} {v3, v5}

{v4}

{v6}

3

3 3

2
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{v1} {v2} {v3, v5}

{v4, v6}

3

3 3
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{v2} {v3, v5}

{v1, v4, v6}

3

3
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{v2, v3, v5}

{v1, v4, v6}
3
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{v2, v3, v5, v1, v4, v6}
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Hierarchical clustering can be regarded as a recursive process that begins
with a metric space of objects (S , d) and results in a chain of partitions of
the set of objects. In each of the partitions, similar objects belong to the
same block and objects that belong to distinct blocks tend to be dissimilar.
In agglomerative hierarchical clustering, the construction of this chain
begins with the unit partition π1 = αS . If the partition constructed at step
k is

πk = {Uk
1 , . . . ,U

k
mk
},

then two distinct blocks Uk
p and Uk

q of this partition are selected using a
selection criterion. These blocks are fused and a new partition

πk+1 = {Uk
1 , . . . ,U

k
p−1,U

k
p+1, . . . ,U

k
q−1,U

k
q+1, . . . ,U

k
p ∪ Uk

q }

is formed. Clearly, we have πk ≺ πk+1. The process must end because the
poset (PART(S),6) is of finite height. The algorithm halts when the
one-block partition ωS is reached.

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 71 / 110



If two blocks U and V of a partition π are fused into a new block W to
yield a new partition π′ that covers π, then the variation of the sum of
squared errors was shown to be

sse(π′)− sse(π) =
|U||V |
|W |

‖ cV − cU ‖2 .
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In each phase of hierarchical clustering two of the “closest” clusters are
merged. The notion of closest clusters is dependent on the specific
dissimilarity between clusters considered in each variant of the clustering
algorithm. If U and V are two clusters, the dissimilarity between them is
be defined using one of the following real-valued, two-argument functions
defined on the set of subsets of S :

sl(U,V ) = min{d(u, v)|u ∈ U, v ∈ V };
cl(U,V ) = max{d(u, v)|u ∈ U, v ∈ V };

gav(U,V ) =

∑
{d(u, v)|u ∈ U, v ∈ V }

|U| · |V |
;

cen(U,V ) = ‖ cU − cV ‖2;

ward(U,V ) =
|U||V |
|U|+ |V |

‖ cV − cU ‖2 .
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The names of the functions sl, cl, gav, and cen defined above are
acronyms of the terms “single link”, “complete link”, “group average”,
and “centroid”, respectively.
They are linked to variants of the hierarchical clustering algorithms that
we discuss later. Note that in the case of the ward function the value
equals the increase in the sum of the square errors when the clusters U,V
are replaced with their union.
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The specific selection criterion for fusing blocks defines the clustering
algorithm. All algorithms store the dissimilarities between the current
clusters πk = {Uk

1 , . . . ,U
k
mk
} in an mk ×mk -matrix Dk = (dk

ij ), where dk
ij

is the dissimilarity between the clusters Uk
i and Uk

j . As new clusters are
created by merging two existing clusters, the distance matrix must be
adjusted to reflect the dissimilarities between the new cluster and existing
clusters.
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The general form of the hierararchical clustering algorithm is
Data: the initial dissimilarity matrix D1;
Result: the cluster hierarchy on the set of objects S , where |S | = n;
k = 1;
initialize clustering: π1 = αS ;
while {πk contains more than one block}
{ merge a pair of two of the closest clusters;

output new cluster;
k + +;
compute the dissimilarity matrix Dk ;
}
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To evaluate the space and time complexity of hierarchical clustering, note
that the algorithm must handle the matrix of the dissimilarities between
objects, and this is a symmetric n × n-matrix having all elements on its
main diagonal equal to 0; in other words, the algorithm needs to store
n(n−1)

2 numbers. To keep track of the clusters, an extra space that does
not exceed n − 1 is required. Thus, the total space required is O(n2).
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The computation of the dissimilarity between a new cluster and existing
clusters is described next.

Theorem

Let U and V be two clusters of the clustering π that are joined into a new
cluster W . Then, if Q ∈ π − {U,V }, we have:

sl(W ,Q) =
1

2
sl(U,Q) +

1

2
sl(V ,Q)− 1

2

∣∣∣sl(U,Q)− sl(V ,Q)
∣∣∣;

cl(W ,Q) =
1

2
cl(U,Q) +

1

2
cl(V ,Q) +

1

2

∣∣∣cl(U,Q)− cl(V ,Q)
∣∣∣;

gav(W ,Q) =
|U|

|U|+ |V |
gav(U,Q) +

|V |
|U|+ |V |

gav(V ,Q);

cen(W ,Q) =
|U|

|U|+ |V |
cen(U,Q) +

|V |
|U|+ |V |

cen(V ,Q)

− |U||V |
(|U|+ |V |)2

cen(U,V );

ward(W ,Q) =
|U|+ |Q|

|U|+ |V |+ |Q|
ward(U,Q) +

|V |+ |Q|
|U|+ |V |+ |Q|

ward(V ,Q)

− |Q|
|U|+ |V |+ |Q|

ward(U,V ).
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Proof

The first two equalities follow from the fact that

min{a, b} =
1

2
(a + b)− 1

2
|a− b|,

max{a, b} =
1

2
(a + b) +

1

2
|a− b|,

for every a, b ∈ R.
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Proof (cont’d)

For the third equality, we have

gav(W ,Q)

=

∑
{d(w , q)|w ∈W , q ∈ Q}

|W | · |Q|

=

∑
{d(u, q)|u ∈ U, q ∈ Q}

|W | · |Q|
+

∑
{d(v , q)|v ∈ V , q ∈ Q}

|W | · |Q|

=
|U|
|W |

∑
{d(u, q)|u ∈ U, q ∈ Q}

|U| · |Q|
+
|V |
|W |

∑
{d(v , q)|v ∈ V , q ∈ Q}

|V | · |Q|

=
|U|

|U|+ |V |
gav(U,Q) +

|V |
|U|+ |V |

gav(V ,Q).

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 80 / 110



Proof (cont’d)

The equality involving the function cen is immediate. The last equality can
be easily translated into

cen(W ,Q) =
|Q||W |
|Q|+ |W |

‖ cQ − cW ‖2

=
|U|+ |Q|

|U|+ |V |+ |Q|
|U||Q|
|U|+ |Q|

‖ cQ − cU ‖2

+
|V |+ |Q|

|U|+ |V |+ |Q|
|V ||Q|
|V |+ |Q|

‖ cQ − cV ‖2

− |Q|
|U|+ |V |+ |Q|

|U||V |
|U|+ |V |

‖ cV − cU ‖2,

which can be verified replacing |W | = |U|+ |V | and cW = |U|
|W |cU + |V |

|W |cV .
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Corollary (The Lance-Williams Formula)

Let U and V be two clusters of the clustering π that are joined into a new
cluster W . Then, if Q ∈ π − {U,V }, the dissimilarity between W and Q
can be expressed as

d(W ,Q) = aUd(U,Q) + aV d(V ,Q) + bd(U,V ) + c |d(U,Q)− d(V ,Q)|,

where the coefficients aU , aV , b, c are given by the following table:

Function aU aV b c

sl 1
2

1
2 0 −1

2

cl 1
2

1
2 0 1

2

gav |U|
|U|+|V |

|V |
|U|+|V | 0 0

cen |U|
|U|+|V |

|V |
|U|+|V | − |U||V |

(|U|+|V |)2 0

ward |U|+|Q|
|U|+|V |+|Q|

|V |+|Q|
|U|+|V |+|Q| −

|Q|
|U|+|V |+|Q| 0
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The variant of the algorithm that makes use of the function sl is known as
the single-link clustering. It tends to favor elongated clusters.
The group average method, which makes use of the gav function
generates an intermediate approach between the single-link and the
complete-link method.
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Some of the methods mentioned so far have in common the monotonicity
property expressed by the following statement.

Theorem

Let (S , d) be a finite metric space and let D1, . . . ,Dm be the sequence of
matrices constructed by any of the first three hierarchical methods (single,
complete, or average link), where m = |S |. If min D j is the smallest entry
of the matrix D j for 1 6 j 6 m, then min D1 6 min D2 6 · · · 6 min Dm.
In other words, the dissimilarity between clusters that are merged at each
step is nondecreasing.
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D j D j+1

h

q

p

p q h

dpq

dqp

r

h

r h

dhr

drh
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Proof

Let D j+1 be the matrix is obtained from the matrix D j by merging the
clusters Cp and Cq that correspond to the lines p and q and to columns
p, q of D j . This happens because dpq = dqp is one of the minimal
elements of the matrix D j . Then, these lines and columns are replaced
with a line and column that corresponds to the new cluster Cr and the
dissimilarities between this new cluster and the previous clusters Ch, where
h 6= p, q. The elements d j+1

rh of the new line (and column) are obtained

either as min{d j
ph, d

j
qh}, max{d j

ph, d
j
qh}, or

|Cp |
|Cr |d

j
ph +

|Cq |
|Cr |d

j
qh, for the

single-link, complete-link, or group average methods, respectively. Note
that any of the values that d j+1

rh may take is greater or equal than min D j ,
so min D j+1 > min D j .
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The last two methods captured by the Lance-Williams formula are the
centroid method and the Ward method of clustering.
As we observed before, the dissimilarity of two clusters in the case of
Ward’s method equals the increase in the sum of the squared errors that
results when the clusters are merged.
The centroid method adopts the distance between the centroids as the
distance between the corresponding clusters. Either method lacks the
monotonicity properties.
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We use the function setofpoints2 defined by

setofpoints2 <- function(n,center,stdev){

return(cbind(rnorm(n,center[1],stdev[1]),

rnorm(n,center[2],stdev[2])))

}

to generate n points in R2 normally distributed around the vector center
and having the standard deviations specified by the vector stdev.
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We begin by producing three sets of points A, B and D, and, then by joining
these sets into the set D and naming the columns of this matrix as x and y:

A <- setofpoints2(40,c(2,4),c(0.2,0.3))

B <- setofpoints2(30,c(3,2.5),c(0.3,0.3))

C <- setofpoints2(45,c(4,4),c(0.2,0.4))

D <- rbind(A,B,C)
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Then, the columns of D are named "x" and "y" by assigning to
colnames(D) the array c("x","y").
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The plot of the set D is shown here
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Starting from the matrix S a dist object is produced by d<-dist(S).
Next, the function hclust is applied in order to produce the single-link
hierarchical clustering sLink:

sLink <- hclust(d,method=’’single’’)

The dendrogram of the clustering is visualized using plot(sLink) and its
representation is shown in below:
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To obtain three clusters, the dendrogram is “cut” at an appropriate level
using the function call rect.hclust(sLink,3) which generates the
representation shown below:

32
29

30
26

31
27 33 35

28 34
4

6
10

8 1 3
9

5
2 7

21
15

23
13 18

19
16 25

20 22
14

11 17
12 24

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Cluster Dendrogram

hclust (*, "single")
d

H
ei

gh
t

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 93 / 110



A clustering obtained by the application of the complete-link is:
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The Ward method produces the following clustering:
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Note that at the leaf-level, when clusters are sigletons, all methods
produce exactly the same result. At higher levels the results diverge. The
vertical axis shows the fusion level.
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Divisive hierarchical clustering begins with a set of objects and recursively
splits it to build a clustering.

If there is no need to generate a complete hierarchy it may be more
efficient that the previously discussed hierarchical algorithms.
Since a divisive approach begins with the entire set of objects, it may
be possible to take into account global characteristics of the set of
objects.
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The initial cluster to be split equals to the entire set of objects. During the
evolution of a divisive algorithm, once a cluster C to be selected to be
split we have several choices of bipartitions π = {C ′,C ′′} of C . The choice
of π can be made using the same criteria as in the case of agglomerative
clustering: single-link, complete link, average link, or a variant of the Ward
criterion.
The main issue of divisive hierarchical clustering is the difficulty of
choosing a bipartition. Note that

an agglomerative hierarchical algorithm applied to a set of n objects
has

(n
2

)
choices for creating a two-object cluster;

a divisive hierarchical algorithm that considers all bipartitions has
2n−1 − 1 choices, a considerably larger number.
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The DIANA Algorithm

DIANA (an acronym for DIvisive ANAlysis) is a divisive clustering
algorithm introduced by Kaufman and Rousseeuw.
The algorithm splits sets according to an iterative process which mimmics
the way a political party would split: first the most discontent member of
the party leaves and starts a new party, then some other follow him until
an equilibrium is achieved.

Prof. Dan A. Simovici CS724: Topics in Algorithms Hierarchical Clustering Algorithms 99 / 110



Definition

For a subset T of a dissimilarity space (S , d) and an object t ∈ T the
average dissimilarity of t in T is

adT (t) =
1

|T | − 1

∑
{d(t, u) | u ∈ T − {t}}.

To split a set T we construct a sequence of pairs of sets
(U0,V0), (U1,V1), . . . such that U0 = ∅ and V0 = T . For i > 1 each pair
(Ui ,Vi ) is a bipartition of T .
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Suppose that we constructed the bipartition {Ui ,Vi} and that |Vi | > 1.
For each o ∈ Vi we compute

di (o) = adVi−{o}(o)− adUi
(o)

for each object o of Vi . Let oi = arg maxx di (o) be the object that
maximizes this difference.
If di (oi ) > 0 we move oi from Vi to Ui , that is,

Ui+1 = Ui ∪ {oi} and Vi+1 = Vi − {oi}.

When di (o) 6 0 is negative for all objects o ∈ Vi we stop the process and
the partitioning of T is completed.
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The splitting process at each step involves a cluster that has the largest
diameter and consists in initiating a “splinter group” and then in
reassigning those objects closer to the splinter group” than to the
remaining objects in the cluster.
The divisive coefficient measures the clustering structure of the dataset.
For each observation u, denote by d(u) the diameter of the last cluster to
which it belongs (before being split off as a single observation), divided by
the diameter of the whole dataset. The dc is the average of all numbers
1− d(u). Because dc grows with the number of observations, this
measure should not be used to compare datasets of very different sizes.
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Example

Consider the set of objects T = {x , y , z , u, v} and the matrix of
dissimilarities defined as

D =

x y z u v

x 0 7 4 7 8
y 7 0 9 3 4
z 4 9 0 8 10
u 7 3 8 0 5
v 8 4 10 5 0

The average dissimilarities are:

object o x y z u v

adT (o) 6.5 5.75 7.75 5.75 6.75

The object having the largest average dissimilarity is z , so U1 = {z} and
V1 = {x , y , u, v}.
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Example

Next, we compute the function d1(o) for o ∈ V1:

object o x y u v

adV1−{o}(o) 7.33 4.66 5.33 5.66
adU1(o) 4 9 8 10

d1(o) 3.33 −4.34 −2.67 −4.34

Thus, x is shifted from the second set to the first and we have
U2 = {x , z} and V2 = {y , u, v}.
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Example

In the next phase we compute d2(o) for o ∈ V2:

object o y u v

adV2−{o}(o) 3.5 4 4.5
adU2(o) 8 7.5 9

d2(o) −4.5 −3.5 −4.5

Since all values of d2(o) are negative the process halts and we have the
partition {{x , z}, {y , u, v}} of T .
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Example

The diameters of these clusters are diam({x , z}) = 4 and
diam({y , u, v}) = 5. Thus, in the next phase we split the cluster
V3 = {y , u, v}. The function d3(o) is computed next:

object o y u v

adV3−{o}(o) 3.5 4 4.5

The object that has the largest average dissimilarity is v , so V3 splits into
the clusters U4 = {v} and V4 = {y , u}. Note that two-element clusters
are split automatically into one-element clusters.
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Example

The result of applying the divisive clustering algorithm is shown below
where the numbers 1, . . . , 5 correspond to the elements x , y , z , u, v ,
respectively.

1 3

2 4

5

3
4

5
6

7
8

9
10

Dendrogram of  diana(x = m, diss = TRUE)

Divisive Coefficient =  0.62
m

H
ei

gh
t
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DIANA is implemented in the package cluster. The syntax of the R
command is

diana(x, diss, metric = ...,

stand = FALSE, stop.at.k = FALSE,

keep.diss = n < 100, keep.data = !diss, trace.lev = 0)

x is a data matrix, a data frame, a dissimilarity matrix or object depending
on the value of the diss argument.
A matrix or a data frame is treated like a sample matrix if the logical
variable diss is FALSE. If diss is set to TRUE then x is regarded as a
dissimilarity matrix.
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The metric to be used can be Euclidean or the d1 metric (the
Manhattan metric); these choices are codified as euclidean or
manhattan, respectively.
If the logical parameter stand is set to TRUE, the measurements of x
are standardized before calculating the dissimilarities. Recall that this
standardization takes place for each variable (column) by subtracting
the mean value and dividing by the variable standard deviation. If x is
already a dissimilarity matrix this parameter is ignored.
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A data frame named votes.repub contains the percents of votes given to
the republican candidate in presidential elections from 1856 to 1976. Rows
represent the fifty states, and columns the 31 elections.
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