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The k-means algorithm is one of the best known clustering algorithms and
has been in existence for a long time. The k-means algorithm is considered
by some authors to be among the top ten algorithms in data mining.

The term “k-means” was introduced by J. B. MacQueen.
The best-known variant of the algorithm was proposed by S. Lloyd in
1957 as a technique for pulse-code modulation, published outside of
Bell Labs 25 years later.
E. W. Forgy published essentially the same method, known today as
Lloyd-Forgy algorithm. Due to its simplicity and to its many
implementations it is a very popular algorithm despite this
requirement.
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The k-means algorithm requires the specification of the number of clusters
k as an input and computes a k-block partition of a finite set of points in
Rn such that the objects that belong to the same block have a high degree
of similarity, and the objects that belong to distinct blocks are dissimilar.

The k-means algorithm begins with a randomly chosen set of k points
c1, . . . , ck in Rn called centroids.
An initial partition of the set S of objects is computed by assigning
each object ui to its closest centroid cj and adopting a rule for
breaking ties when there are several centroids that are equally
distanced from ui (e.g., assigning ui to the centroid with the lowest
index).
The algorithm alternates between between assigning cluster
membership for each object and computing the center of each cluster.

Prof. Dan A. Simovici CS724: Topics in Algorithms Partitional Clustering Algorithms 3 / 41



The k-means Lloyd-Forgy Algorithm

Data: the set of objects to be clustered S = {x1, . . . , xn} and the number
of clusters k ;
Result: a collection of k clusters;
generate a randomly chosen collection of k vectors c1, . . . , ck in Rn;
assign each object xi to the closest centroid cj breaking ties in some
arbitrary manner;
let π = {U1, . . . ,Uk} be the partition defined by c1, . . . , ck ;
Repeat{

recompute c1, . . . , ck as the centroids of the clusters U1, . . . ,Uk ;
ForEach (xi ∈ X ) do
{
if(xi is reassiged to a closer cj)
then obj reassigned++;
}
}
until (obj reassigned == 0)
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Theorem

The function sse(π) does not increase as the k-means through successive
iterations of the Lloyd-Forgy Algorithm.
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Proof

Let S = {x1, . . . , xn} be the set of objects in Rm to be clustered. Suppose
that the partition π = {C1, . . . ,Cp, . . . ,Cq, . . .Ck} was built at a certain
stage of the algorithm and let π′ = {C ′1, . . . ,C ′p, . . . ,C ′q, . . .C ′k} be the
partition of X obtained by reassigning an object xr from Cp to Cq. We
have:

C ′i =


Ci if i 6∈ {p, q},
Cp − {x} if i = p,

Cq ∪ {x} if i = q.

This reassignment may take place only if ‖ xr − cp ‖>‖ xr − cq ‖.
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Since∑
{‖ x− cp ‖2 | x ∈ Cp}+

∑
{‖ x− cq ‖2 | x ∈ Cq}

>
∑
{‖ x− cp ‖2 | x ∈ Cp − {xr}}+

∑
{‖ x− cq ‖2 | x ∈ Cq ∪ {xr},

we have

sse(π) =
k∑

j=1

∑
{‖ x− cj ‖2 | x ∈ Cj}

=
∑{∑

{‖ x− cj ‖2 | x ∈ Cj}
∣∣∣j ∈ {1, . . . , k} − {p, q}}

+
∑
{‖ x− cp ‖2 | x ∈ Cp}+

∑
{‖ x− cq ‖2 | x ∈ Cq}

>
∑{∑

{‖ x− cj ‖2 | x ∈ Cj} | j ∈ {1, . . . , k} − {p, q}
}

+
∑
{‖ x− cp ‖2 | x ∈ Cp − {xr}}

+
∑
{‖ x− cq ‖2 | x ∈ Cq ∪ {xr}} = sse(π′).

Thus, sse(π) does not increase when xr is reassigned.
Prof. Dan A. Simovici CS724: Topics in Algorithms Partitional Clustering Algorithms 7 / 41



Example

Consider the set S = {x1, x2, x3, x4} in Rn given by

x1 =

(
0
0

)
, x2 =

(
a
0

)
, x3 =

(
a
1

)
, x4 =

(
0
1

)
shown next:

x2 =

(
a
0

)
x1 =

(
0
0

)

x4 =

(
0
1

)
x3 =

(
a
1

)
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There are 7 distinct partitions having two blocks on a 4-element set, so
there exist seven modalities to cluster these four objects:

Clusters centroids sse(π)
C1 C2 c1 c2

{x1} {x2, x3, x4} x1

(
2a/3
2/3

)
2
3
(a2 + 1)

{x2} {x1, x3, x4} x2

(
a/3
2/3

)
2
3
(a2 + 1)

{x3} {x1, x2, x4} x3

(
a/3
1/3

)
2
3
(a2 + 1)

{x4} {x1, x2, x3} x4

(
2a/3
1/3

)
2
3
(a2 + 1)

{x1, x2} {x3, x4}
(
a/2
0

) (
a/2
1

)
a2

{x1, x3} {x2, x4}
(
a/2
1/2

) (
a/2
1/2

)
a2 + 1

{x1, x4} {x2, x3}
(

0
1/2

) (
a

1/2

)
1

It is easy to see that if a 6 1, the least value of sse(π) is a2; for a > 1, the
least value is 1.
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If a < 1 and the centroids are

(
0
1
2

)
and

(
a

1/2

)
, then the k-means

algorithm will return the clustering {{x1, x4}, {x2, x3}} whose sse(π) value
is 1 instead of the minimal value a2.

Similarly, if a > 1 and the centroids are

(
a/2

0

)
and

(
a/2

1

)
, the algorithm

returns the partition {{x1, x2}, {x3, x4}} and the value of sse(π) for this
partition is a2 instead of the least value of 1.
We may have gaps between the sum-of-squares value of the partition
returned by the k-means algorithm and the minimum value of the
objective function.
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The next theorem shows a limitation of the k-means algorithm because
this algorithm produces only clusters whose convex closures may intersect
only at the points of S .

Theorem

Let S = {x1, . . . , xn} ⊆ Rm be a set of n vectors. If C1, . . . ,Ck is the set
of clusters computed by the k-means algorithm in any step, then the
convex closure of each cluster Ci , Kconv(Ci ) is included in a polytope Pi

that contains ci for 1 ≤ i ≤ k.
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Proof

Suppose that the centroids of the partition {C1, . . . ,Ck} are c1, . . . , ck .
Let mij = 1

2(ci + cj) be the midpoint of the segment cicj and let Hij be
the hyperplane (ci − cj)

′(x−mij) = 0 that is the perpendicular bisector of
the segment cicj . Equivalently,

Hij = {x ∈ Rm | (ci − cj)
′x =

1

2
(ci − cj)

′(ci + cj)}.

The halfspaces determined by Hij are described by the inequalities:

H+
ij : (ci − cj)

′x ≤ 1

2
(‖ ci ‖22 − ‖ cj ‖22)

H−ij : (ci − cj)
′x ≥ 1

2
(‖ ci ‖22 − ‖ cj ‖22).
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Proof (cont’d)

It is easy to see that ci ∈ H+
ij and cj ∈ H−ij . Moreover, if

d2(ci , x) < d2(cj , x), then x ∈ H+
ij , and if d2(ci , x) > d2(cj , x), then

x ∈ H−ij . Indeed, suppose that d2(ci , x) < d2(cj , x), which amounts to

‖ ci − x ‖22<‖ cj − x ‖22. This is equivalent to

(ci − x)′(ci − x) < (cj − x)′(cj − x).

The last inequality is equivalent to

‖ ci ‖22 −2c′ix <‖ cj ‖22 −2c′jx,

which implies that x ∈ H+
ij .
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Proof (cont’d)

In other words, x is located in the same half-space as the closest centroid
of the set {ci , cj}. Note also that if d2(ci , x) = d2(cj , x), then x is located
in H+

ij ∩ H−ij = Hij , that is, on the hyperplane shared by Pi and Pj .
Let Pi be the closed polytope defined by

Pi =
⋂
{H+

ij | j ∈ {1, . . . , k} − {i}}

Objects that are closer to ci than to any other centroid cj are located in
the closed polytope Pi . Thus, Ci ⊆ Pi and this implies Kconv(Ci ) ⊆ Pi .
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Let S = {x1, . . . , xn}, where S ⊆ Rm be the set of objects to be clustered
by the k-means algorithm, and let C = {c1, . . . , ck} be a subset of Rm.
For 1 6 i 6 define the subset Ci of S as consisting of those members of S
for which the closest point in C is ci (such that ties between distances
d(x, ci ) and d(x, cj) are broken arbitrarily). The collection {C1, . . . ,Ck} is
a partition πC of S .
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The k-means algorithm entails choosing the elements of C , to accomplish
the minimization of the objective function

sse(πC ) =
k∑

i=1

∑
xj∈Ci

‖ xj − ci ‖2=
k∑

i=1

n∑
j=1

zij ‖ xj − ci ‖2,

where

zij =

{
1 if xj ∈ Ci ,

0 otherwise

are binary variables that indicate whether or not a data point xj belongs to
Ci . The matrix Z = (zij) belongs to Rk×n.
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We have:

k∑
i=1

zij = 1 for 1 6 j 6 n, and

n∑
j=1

zij = |Ci | = ni for 1 6 i 6 k.
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Let X = (x1 x2 · · · xn) ∈ Rm×n be a matrix whose columns are the data
points of the set S . The set C is represented by the matrix

M = (c1 c2 · · · ck) ∈ Rm×k .

The Frobenius norm of the matrix X is given by:

‖ X ‖2=
n∑

j=1

‖ xj ‖2=
n∑

j=1

x′jxj =
n∑

j=1

(X ′X )jj = trace(X ′X ).

Since each xj belongs to exactly one set Ci , if follows that each column of
Z contains exacly one entry of 1 and the remaining k − 1 entries of 0. This
immediately implies that the rows of Z are pairwise orthogonal because

zijzi ′j =

{
1 if i = i ′

0 otherwise.
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In turn, this implies that ZZ ′ ∈ Rk×k is a diagonal matrix where

(ZZ ′)ii ′ =
∑
j

(Z )ij(Z
′)ji ′ =

∑
j

zijzi ′j =

{
ni if i = i ′,

0 otherwise.
(1)
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Therefore,

(ZZ ′)−1 =


1
n1

0 0 · · · 0

0 1
n2

0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

nk
.


Let Y = Z ′(ZZ ′)−1 ∈ Rn×k . We have yji =

zij
ni

. The columns of the matrix

Y correspond to the clusters C1, . . . ,Ck and
∑n

j=1 yij = 1 for 1 6 i 6 n.
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Since

yji =
k∑

`=1

(Z ′)j`((ZZ ′)−1)`i

=
k∑

`=1

z`j((ZZ ′)−1)`i

= zij
1

ni
,

it follows that
∑n

j=1 yji = 1. In other words, the components of each
column yi of Y are non-negative numbers that sum up to 1, so they can
be regarded as probability distributions.
The entropy of the i th column yi is H(yi ) = −

∑n
j=1 yji log yji for

1 6 i 6 k.
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The next theorem shows that to minimize sse(πC ) amounts to minimizing
the norm of the matrix X −MZ , where M ∈ Rm×k and Z ∈ Rk×n, that is,
to find the best approximation of X as product MZ .

Theorem

(Baukhage’s Factorization Theorem) The following equality holds:

k∑
i=1

n∑
j=1

zij ‖ xj − ci ‖2=‖ X −MZ ‖2 .
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Proof
The left-hand member of the equality of the theorem can be written as

k∑
i=1

n∑
j=1

zij ‖ xj − ci ‖2

=
k∑

i=1

n∑
j=1

zij(xj − ci )
′(xj − ci )

=
k∑

i=1

n∑
j=1

zij(x
′
jxj − 2x′jci + c′ici )

= T1 − 2T2 + T3,

where

T1 =
k∑

i=1

n∑
j=1

zijx
′
jxj ,T2 =

k∑
i=1

n∑
j=1

zijx
′
jci ,

T3 =
k∑

i=1

n∑
j=1

zijc
′
ici .
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Proof (cont’d)

We can further write

T1 =
k∑

i=1

n∑
j=1

zijx
′
jxj =

k∑
i=1

n∑
j=1

zij ‖ xj ‖2=
n∑

j=1

‖ xj ‖2
k∑

i=1

zij

=
n∑

j=1

‖ xj ‖2= trace(X ′X ).
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Proof (cont’d)

T2 =
k∑

i=1

n∑
j=1

zijx
′
jci

=
k∑

i=1

n∑
j=1

zij

m∑
`=1

x`jc`i =
n∑

j=1

m∑
`=1

x`j

k∑
i=1

zijc`i

=
n∑

j=1

m∑
`=1

x`j(MZ )`j =
n∑

j=1

m∑
`=1

(X ′)j`(MZ )`j

=
n∑

j=1

(X ′MX )jj = trace(X ′MZ ).
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Proof (cont’d)

T3 =
k∑

i=1

n∑
j=1

zijc
′
ici =

k∑
i=1

n∑
j=1

zij ‖ ci ‖2

=
k∑

i=1

‖ ci ‖2
n∑

j=1

zij =
k∑

i=1

‖ ci ‖2 ni ,

where ni = |Ci |.
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Proof (cont’d)
For the right-hand member of the equality of the theorem we have

‖ X −MZ ‖2 = trace((X −MZ )′(X −MZ ))

= trace(X ′X )− 2trace(X ′MZ ) + trace(Z ′M ′MZ )

= T1 − 2T2 + T4,

where T4 = trace(Z ′M ′MZ ). Now, we have

T4 = trace(Z ′M ′MZ )

= trace(M ′MZZ ′)

(due to the cyclic permutation invariance of the trace)

=
k∑

i=1

(M ′MZZ ′)ii =
k∑

i=1

m∑
`=1

(M ′M)i`(ZZ
′)li

=
k∑

i=1

(M ′M)ii (ZZ
′)ii =

k∑
i=1

‖ ci ‖2 ni .

Thus, T4 = T3, and this completes the argument.
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The centroid matrix M = (c1 c2 · · · ck) that minimizes the objective
function

F (M) =‖ X −MZ ‖2

is obtained as
M = XZ ′(ZZ ′)−1 = XY , (2)

where Y is the matrix Y = Z ′(ZZ ′)−1 ∈ Rn×k previously introduced.
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PAM stands for “partition around medoids”. The algorithm is intended to
find a sequence of medoids that are centrally located in clusters. Objects
that are tentatively defined as medoids are placed into a set S of selected
objects. If O is the set of objects that the set U = O − S is the set of
unselected objects.
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The algorithm has two phases:
In the first phase, BUILD, a collection of k objects are selected for an
initial set S .
In the second phase, SWAP, one tries to improve the quality of the
clustering by exchanging selected objects with unselected objects.

The goal of the algorithm is to minimize the average dissimilarity of
objects to their closest selected object. Equivalently, we can minimize the
sum of the dissimilarities between object and their closest selected object.
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For each object p we maintain two numbers:
Dp, the dissimilarity between p and the closest object in S , and
Ep, the dissimilarity between p and the second closest object in S .

These numbers must be updated every time when the sets S and U
change. Note that Dj 6 Ej and that we have p ∈ S if and only if Dp = 0.
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The BUILD phase entails the following steps:
Initialize S by adding to it an object for which the sum of the
distances to all other objects is minimal.
Consider an object i ∈ U as a candidate for inclusion into the set of
selected objects.
For an object j ∈ U compute Dj , the dissimilarity between j and the
closest object in S .
If Dj > d(i , j) object j will contribute to the decision to select object
i (because the quality of the clustering may benefit); let
Cji = max{Dj − d(j , i), 0}.
Compute the total gain obtained by adding i to S as gi =

∑
j∈U Cji .

Choose that object i that maximizes gi ; let S := S ∪ {i} and
U = U − {i}.

These steps are performed until k objects have been selected.
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The second phase, SWAP, attempts to improve the the set of selected
objects and, therefore, to improve the quality of the clustering.
This is done by considering all pairs (i , h) ∈ S × U and consists of
computing the effect Tih on the sum of dissimilarities between objects and
the closest selected object caused by swapping i and h, that is, by
transferring i from S to U and transferring h to from U to S .
The computation of Tih involves the computation of the contribution Kjih

of each object j ∈ U to the swap of i and h.
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Kjih is computed taking into account the following cases:
I if d(j , i) > Dj and d(j , h) > Dj (which means that there is ` ∈ S such

that d(j , h) > d(j , `)) then Kjih = 0;
I if d(j , i) = Dj , then two cases occur:

F if d(j , h) < Ej , where Ej is the dissimilarity between j and the second
closest selected object, then Kjih = d(j , h)− d(j , i); note that Kjih can
be either positive or negative.

F if d(j , h) ≥ Ej , then Kjih = Ej − Dj ; in this case Kjih > 0.
I if d(j , i) > Dj and d(j , h) < Dj , then

Kjih = d(j , h)− Dj .

Compute the total result of the swap as

Tih =
∑
{Kjih | j ∈ U}.

Select a pair (i , h) ∈ S × U that minimizes Tih.
If Tih < 0 the swap is carried out, Dp and Ep are updated for every
object p, and we return at Step 1. If minTih > 0, the value of the
objective cannot be decreased and the algorithm halts. This happends
when all values of Tih are positive (the halting condition of the
algorithm).
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Contribution Kjih of object j to the swap of i ∈ S with h ∈ U.

Ej

Ej

Dj

Dj

Dj

Dj

d(j , i) = Dj

d(j , i) = Dj

d(j , i)

d(j , i)

d(j , h)

d(j , h)

d(j , h)

d(j , h)

Kjih = d(j , h)− d(j , i)

Kjih = Ej − Dj

Kjih = d(j , h)− Dj

Kjih = 0

(a)

(b)-(i)

(b)-(ii)

(c)
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The function kmeans of R performs the k-means clustering on a data
matrix. The standard usage of this function is

kmeans(D, centers, iter.max = 10, nstart = 1, algorithm,trace)
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Its arguments are:
D: a matrix of data, or an object that can be coerced to such a matrix
(such as a numeric vector or a data frame with all numeric columns);
centers: either the number of clusters, say k , or a set of initial
(distinct) cluster centroids. In the first case, a random set of
(distinct) rows in D is chosen as the set of initial centroids;
iter.max: the maximum number of iterations allowed;
nstart: if centers is a number, this parameter indicates the
number of random sets;
algorithm: a string that indicates the variant of the algorithm, as
discussed previously;
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kmeans returns an object which the following components:
cluster: a vector of integers (from 1 to k) indicating the cluster to
which each point is allocated;
centers: a matrix of cluster centres;
totss: the total sum of squares;
withinss: vector of within-cluster sum of squares, one component
per cluster;
tot.withinss: total within-cluster sum of squares, that is, the
sum(withinss);
betweenss: the between-cluster sum of squares;
size: the number of points in each cluster;
iter: the number of (outer) iterations;
ifault: an integer indicator of a possible algorithm problem.
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The kmeans cluster produces the object sp in

sp <-kmeans(D,3)

that is plotted using plot(D,col=sp$cluster).
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The function pam, a component of the package clust implements the
algorithm discussed above.
To apply the algorithm to the data set D previously computed we write:

pamx <- pam(D, 3)
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