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Definition

Let A ∈ Cm×m be a square matrix. A pair (λ, x) that consists of a complex
number λ ∈ C and a non-zero complex vector x is an eigenpair if Ax = λx.
The number λ is an eigenvalue of A, and x is an eigenvector of A.
The set of eigenvalues of A is known as the spectrum of A and is denoted
by spec(A). The spectral radius of A is the number

ρ(A) = max{|λ| | λ ∈ spec(A)}.
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Theorem

Let A ∈ Cn×n be a matrix and let λ1, . . . , λn distinct eigenvalues of A. If
v1, . . . , vn are eigenvectors of A that that correspond to distinct
eigenvalues, then the set {v1, . . . , vn} is linearly independent.
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Proof

If the vectors v1, . . . , vn were not linearly independent we would have a
linear combination of these vectors

ci1vi1 + · · ·+ cipvip = 0n,

containing a minimal number of vectors such that not every one of scalars
ci1 , . . . , cip is 0. This implies

ci1Avi1 + · · ·+ cipAvip
= ci1λi1vi1 + · · ·+ cipλipvip = 0.

These equalities imply

ci1(λi1 − λip)vi1 + · · ·+ cip−1(λip−1 − λip)vip−1 = 0n,

which contradicts the minimality of the number of terms. Thus, v1, . . . , vn
are linearly independent.
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Corollary

If A ∈ Cn×n then the set of eigenvalues of A does not contain more than n
distinct eigenvalues.

Proof.

Since the maximum size of a linearly independent set in Cn is n, it follows
that A cannot have more than n distinct eigenvalues.
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Definition

Let A ∈ Cn×n be a matrix. A subspace S of Cn is a right invariant
subspace of the matrix A if As ∈ S for every s ∈ S , and is a left invariant
subspace if AHs ∈ S for every s ∈ S .
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Definition

The geometric multiplicity of an eigenvalue λ of a matrix A ∈ Cn×n is
denoted by geomm(A, λ) and is equal to dim(SA,λ).
Equivalently, the geometric multiplicity of λ is

geomm(A, λ) = dim(NullSp(A− λIn)) = n − rank(A− λIn).
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Theorem

Let A ∈ Rn×n. We have 0 ∈ spec(A) if and only if A is a singular matrix.
Moreover, in this case, geomm(A, 0) = n − rank(A) = dim(NullSp(A)).
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Example

The matrix In has 1 as its unique eigenvalue. Its invariant subspace is the
entire space V ; therefore, the geometric multiplicity of 1 is dim(V ).
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Definition

Let A ∈ Cm×n be a matrix. An invariant subspace of A is a subspace S of
Rn such that x ∈ S implies Ax ∈ S .

the null space of a matrix A is an invariant subspace;
if x is an eigenvector of A, then {ax | a ∈ C} is an invariant subspace
of A.
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If λ is an eigenvalue of A ∈ Cn×n we have xHAx = λxHx, so

λ =
xHAx

xHx
.

In the real case we replace xH by x′: if A ∈ Rn×n, λ is an eigenvalue and x
is an eigenvector that corresponds to λ, then

λ =
x′Ax

x′x
.
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Theorem

Let A ∈ Cn×n and let S ⊆ Cn be an invariant subspace of A. If the
columns of a matrix X ∈ Cn×p constitute a basis of S, then there exists a
unique matrix L ∈ Cp×p such that AX = XL.
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Proof

Let X = (x1 · · · xp). Since Ax1 ∈ S it follows that Ax1 can be uniquely
expressed as a linear combination of the columns of X , that is,

Axj = x1`1j + · · ·+ xp`pj

for 1 6 i 6 p. Thus,

Axj = X

`1j...
`pj

 .

The matrix L is defined by L = (`ij).

Corollary

(λ, v) is an eigenpair of L if and only if (λ,Xv) is an eigenpair of A.
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Let A ∈ Cn×n be a matrix having the eigenvalues λ1, . . . , λn. If x1, . . . , xn
are n eigenvectors corresponding to these values, then we have

Ax1 = λ1x1, . . . ,Axn = λnxn.

By introducing the matrix X = (x1 · · · xn) ∈ Cn×n these equalities can be
written in a concentrated form as

AX = Xdiag(λ1, . . . , λn).

Obviously, since the eigenvalues can be listed in several ways, this equality
is not unique.
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Suppose now that x1, . . . , xn are unit vectors and that the eigenvalues
λ1, . . . , λn are distinct. Then X is a unitary matrix, X−1 = X H and we
obtain the equality

A = Xdiag(λ1, . . . , λn)X H = λ1x1x
H
1 + · · ·+ λnxnx

H
n

known as the spectral decomposition of the matrix A.
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If λ is an eigenvalue of the matrix A ∈ Cn×n, there exists a non-zero
eigenvector x ∈ Cn such that Ax = λx. Therefore, the linear system

(λIn − A)x = 0n

has a non-trivial solution. This is possible if and only if det(λIn − A) = 0,
so eigenvalues are the solutions of the equation

det(λIn − A) = 0.

Note that det(λIn − A) is a polynomial of degree n in λ, known as the
characteristic polynomial of the matrix A. We denote this polynomial by
pA.
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Example

Let

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33


be a matrix in C3×3. Its characteristic polynomial is

pA =

∣∣∣∣∣∣
λ− a11 −a12 −a13
−a21 λ− a22 −a23
−a31 −a32 λ− a33

∣∣∣∣∣∣ = λ3 − (a11 + a22 + a33)λ2

+(a11a22 + a22a33 + a33a11 − a12a21 − a23a32 − a13a31)λ

−(a11a22a33 + a12a23a31 + a13a32a21 − a12a21a33 − a23a32a11 − a13a31a22).
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Theorem

Let A ∈ Cn×n. Then, spec(A) = spec(A′) and
spec(AH) = {λ | λ ∈ spec(A)}.

Proof: We have

pA′(λ) = det(λIn − A′) = det((λIn − A)′) = det(λIn − A) = pA(λ).

Thus, since A and A′ have the same characteristic polynomials, their
spectra are the same.
For AH we can write

pAH(λ) = det(λIn − AH) = det((λIn − A)H) = (pA(λ))H,

which implies the second part of the Theorem.
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The characteristic polynomial of a matrix can be computed in R using
the function charpoly of the pracma package.
For the matrix A defined in

> A <- matrix(c(1:6),3,3)

> A

[,1] [,2] [,3]

[1,] 1 4 1

[2,] 2 5 2

[3,] 3 6 3

the characteristic polynomial is λ3 − 9λ2 as returned by

> charpoly(A)

[1] 1 -9 0 0
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Let B be the matrix defined as

> B <- matrix(c(1,0,2,3,1,1,1,4,2),3,3)

> B

[,1] [,2] [,3]

[1,] 1 3 1

[2,] 0 1 4

[3,] 2 1 2
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If charpoly is called as in

> charpoly(B,info=TRUE)

then, in addition to the characteristic polynomial of B, its determinant and
inverse matrix are also returned as in

$cp

[1] 1 -4 -1 -20

$det

[1] 20

$inv

[,1] [,2] [,3]

[1,] -0.1 -0.25 0.55

[2,] 0.4 0.00 -0.20

[3,] -0.1 0.25 0.05
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To compute the eigenvalues of a matrix one could use the eigen function
of the base package of R .
The following call to eigen computes the eigenvalues of the matrix A
together with its characteristic vectors:

> A <- matrix(c(1:6),3,3)

> eigen(A)

eigen() decomposition

$values

[1] 9.000000e+00 2.497182e-09 -2.497182e-09

$vectors

[,1] [,2] [,3]

[1,] 0.3713907 -7.071068e-01 7.071068e-01

[2,] 0.5570860 -1.177183e-09 -1.177183e-09

[3,] 0.7427814 7.071068e-01 -7.071068e-01
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Equality of spectra of A and A′ does not imply that the eigenvectors or the
invariant subspaces of the corresponding eigenvalues are identical, as it
can be seen from the following example.
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Example

Consider the matrix A ∈ C2×2 defined by

A =

(
a 0
c b

)
,

where a 6= b and c 6= 0. It is immediate that spec(A) = spec(A′) = {a, b}.
For λ1 = a we have the distinct invariant subspaces:

SA,a =

{
k

(
a− b
c

) ∣∣∣k ∈ C
}

SA′,a =

{
k

(
1
0

) ∣∣∣k ∈ C
}
,

as the reader can easily verify.
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The leading term of the characteristic polynomial of A is generated by
(λ− a11)(λ− a22) · · · (λ− ann) and equals λn.
The fundamental theorem of algebra implies that pA has n complex
roots, not necessarily distinct. Observe also that, if A is a matrix with
real entries, the roots are paired as conjugate complex numbers.
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Definition

The algebraic multiplicity of an eigenvalue λ of a matrix A ∈ Cn×n,
algm(A, λ) equals k if λ is a root of order k of the equation pA(λ) = 0.
If algm(A, λ) = 1, we refer to λ as a simple eigenvalue.
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Let A ∈ R3×3 be the matrix

A =

1 1 1
0 1 2
2 1 0


The characteristic polynomial of A is

pA(λ) =

∣∣∣∣∣∣
λ− 1 −1 −1

0 λ− 1 −2
−2 −1 λ

∣∣∣∣∣∣ = λ3 − 2λ2 − 3λ.

Therefore, the eigenvalues of A are 3, 0 and −1.
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The eigenvalues of I3 are obtained from the equation

det(λI3 − I3) =

∣∣∣∣∣∣
λ− 1 0 0

0 λ− 1 0
0 0 λ− 1

∣∣∣∣∣∣ = (λ− 1)3 = 0.

Thus, I3 has one eigenvalue, 1, and algm(I3, 1) = 3.
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Theorem

Let A ∈ Rn×n be a matrix and let λ ∈ spec(A). Then, for any k ∈ P,
λk ∈ spec(Ak).

Proof.

The proof is by induction on k > 1. The base step, k = 1 is immediate.
Suppose that λk ∈ spec(Ak), that is Akx = λkx for some x ∈ V − {0}.
Then, Ak+1x = A(Akx) = A(λkx) = λkAx = λk+1x, so
λk+1 ∈ spec(Ak+1).
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Theorem

Let A ∈ Rn×n be a non-singular matrix and let λ ∈ spec(A). We have
1
λ ∈ spec(A−1) and the sets of eigenvectors of A and A−1 are equal.

Proof.

Since λ ∈ spec(A) and A is non-singular we have λ 6= 0 and Ax = λx for
some x ∈ V − {0}. Therefore, we have A−1(Ax) = λA−1x, which is
equivalent to λ−1x = A−1x, which implies 1

λ ∈ spec(A−1). In addition,
this implies that the set of eigenvectors of A and A−1 are identical.
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Theorem

Let pA(λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn be the characteristic

polynomial of the matrix A. Then, we have ci = (−1)iSi (A) for 1 6 i 6 n,
where Si (A) is the sum of all principal minors of order i of A.
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Proof
Since pA(λ) = λn + c1λ

n−1 + · · ·+ cn−1λ+ cn, it is easy to see that the
derivatives of pA(λ) are given by:

p
(1)
A (λ) = nλn−1 + (n − 1)c1λ

n−2 + · · ·+ cn−1,

p
(2)
A (λ) = n(n − 1)λn−2 + (n − 1)(n − 2)c1λ

n−3 + · · ·+ 2cn−2),

...

p
(k)
A (λ) = n(n − 1) · · · (n − k + 1)λn−k + · · ·+ k!cn−k),

...

p
(n)
A (λ) = n!c0.

This implies

cn−k = k!p
(k)
A (0)

for 0 6 k 6 n.
On other hand, cn−k = 1

k!(−1)kk!Sn−k(A) = (−1)n−kSn−k(A), which
implies the statement of theorem.
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By Viéte’s Theorem, taking into account Theorem 17 we have:

λ1 + · · ·+ λn = a11 + a22 + · · ·+ ann = trace(A) = −c1.

Another interesting fact is

λ1 · · ·λn = det(A).
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Theorem

Let A ∈ Cm×n and B ∈ Cn×m be two matrices. Then the set of non-zero
eigenvalues of the matrices AB ∈ Cm×m and BA ∈ Cn×n are the same and
algm(AB, λ) = algm(BA, λ) for each such eigenvalue.
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Proof
Consider the following straightforward equalities:(

Im −A
On,m λIn

)(
λIm A
B In

)
=

(
λIm − AB Om,n

−λB λIn

)
(
−Im Om,n

−B λIn

)(
λIm A
B In

)
=

(
−λIm −A
On,m λIn − BA

)
.

Observe that

det

((
Im −A

On,m λIn

)(
λIm A
B In

))
= det

((
−Im Om,n

−B λIn

)(
λIm A
B In

))
,

and therefore,

det

(
λIm − AB Om,n

−λB λIn

)
= det

(
−λIm −A
On,m λIn − BA

)
.

The last equality amounts to

λnpAB(λ) = λmpBA(λ).

Thus, for λ 6= 0 we have pAB(λ) = pBA(λ), which gives the desired
conclusion.
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Corollary

Let

a =

a1
...
an


be a vector in Cn − {0}. Then, the matrix aaH ∈ Cn×n has one eigenvalue
distinct from 0, and this eigenvalue is equal to ‖ a ‖2.
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Theorem

Let A ∈ C(m+n)×(m+n) be a matrix partitioned as

A =

(
B C

On,m D

)
,

where B ∈ Cm×m, C ∈ Cm×n, and D ∈ Cn×n. Then,
spec(A) = spec(B) ∪ spec(D).
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Proof

Let λ ∈ spec(A) and let x ∈ Cm+n be an eigenvector that corresponds to
λ. If

x =

(
u
v

)
,

where u ∈ Cm and v ∈ Cn, then we have

Ax =

(
B C

On,m D

)(
u
v

)
=

(
Bu + Cv

Dv

)
= λ

(
u
v

)
.

This implies Bu + Cv = λu and Dv = λv. If v 6= 0, then λ ∈ spec(D);
otherwise, Bu = λu, which yields λ ∈ spec(B), so λ ∈ spec(B) ∪ spec(D).
Thus, spec(A) ⊆ spec(B) ∪ spec(D).
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To prove the converse inclusion, note that if λ ∈ spec(B) and u is an
eigenvector of λ, then Bu = λu, which means that

A

(
u
0

)
= λ

(
u
0

)
,

so spec(B) ⊆ spec(A). Similarly, spec(D) ⊆ spec(A), which implies the
equality of the theorem.
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Theorem

All eigenvalues of a Hermitian matrix A ∈ Cn×n are real numbers.
All eigenvalues of a skew-Hermitian matrix are purely imaginary numbers.

Proof.

Note that xHx is a real number for every x ∈ Cn. Since λ = xHAx
xHx

, λ is a
real number.
Suppose now that B is a skew-Hermitian matrix. Then, as above,
xHAx = −xHAx, which implies that the real part of xHAx is 0. Thus, xHAx
is a purely imaginary number and λ is a purely imaginary number.
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Corollary

If A ∈ Rn×n and A is a symmetric matrix, then all its eigenvalues are real
numbers.

Proof.

This statement follows from Theorem 21 by observing that the Hermitian
adjoint AH of a matrix A ∈ Rn×n coincides with its transposed matrix
A′.
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Corollary

Let A ∈ Cm×n be a matrix. The non-zero eigenvalues of the matrices AAH

and AHA are positive numbers and they have the same algebraic
multiplicities for the matrices AAH and AHA.
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Proof

We need to verify only that if λ is a non-zero eigenvalue of AHA, then λ is
a positive number. Since AHA is a Hermitian matrix, λ is a real number.
The equality AHAx = λx for some eigenvector x 6= 0 implies

λ ‖ x ‖22= λxHx = (Ax)HAx =‖ Ax ‖22,

so λ > 0.
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Corollary

Let A ∈ Cm×n be a matrix. The eigenvalues of the matrix
B = AHA ∈ Cn×n are real non-negative numbers.
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The matrix B defined above is clearly Hermitian and, therefore, its
eigenvalues are real numbers. Next, if λ is an eigenvalue of B, then

λ =
xHAHAx

xHx
=

(Ax)HAx

xHx
=
‖ Ax ‖
‖ x ‖

> 0,

where x is an eigenvector that corresponds to λ.
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If A is a Hermitian matrix, then AHA = A2, hence the spectrum of AHA is
{λ2 | λ ∈ spec(A)}.

Theorem

If A ∈ Cn×n is a Hermitian matrix and u, v are two eigenvectors that
correspond to two distinct eigenvalues λ1 and λ2, then u ⊥ v.
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Proof.

We have Au = λ1u and Av = λ2v. This allows us to write vHAu = λ1vHu.
Since A is Hermitian, we have

λ1v
Hu = vHAu = vHAHu = (Av)Hu = λ2v

Hu,

which implies vHu = 0, that is, u ⊥ v.
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Theorem

If A,B ∈ Cn×n and A ∼ B, then the two matrices have the same
characteristic polynomials and, therefore, spec(A) = spec(B).

Proof.

Since A ∼ B, there exists an invertible matrix X such that A = XBX−1.
Then, the characteristic polynomial det(A− λIn) can be rewritten as

det(A− λIn) = det(XBX−1 − λXInX−1)

= det
(
X (B − λIn)X−1

)
= det(X ) det(B − λIn) det(X−1)

= det(B − λIn),

which implies spec(A) = spec(B).
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Theorem

If A,B ∈ Cn×n and A ∼ B, then trace(A) = trace(B).

Proof.

Since the two matrices are similar, they have the same characteristic
polynomials, so both trace(A) and trace(B) equal −c1, where c1 is the
coefficient of λn−1 in both pA(λ) and pB(λ).
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Theorem

If A ∼u B, where A,B ∈ Cn×n, then the Frobenius norm of these matrices
are equal, that is, ‖ A ‖F=‖ B ‖F .

Proof.

Since A ∼u B, there exists a unitary matrix U such that A = UBUH.
Therefore,

AHA = UBHUHUBUH = UBHBUH,

which implies AHA ∼u BHB. Therefore, these matrices have the same
characteristic polynomials which allows us to infer that
trace(AHA) ∼u trace(BHB), which yields the desired equality.
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Theorem

Let A ∈ Cn×n and B ∈ Ck×k be two matrices. If there exists a matrix
U ∈ Cn×k having an orthonormal set of columns such that AU = UB,
then there exists V ∈ Cn×(n−k) such (U V ) ∈ Cn×n is a unitary matrix and

(U V )HA(U V ) =

(
B UHAV
O V HAV

)
.
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Proof

Since U has an orthonormal set of columns, there exists V ∈ Cn×(n−k)

such that (U V ) is a unitary matrix.
We have

UHAU = UHUB = IkB = B,

V HAU = V HUB = OB = O,

which allows us to write

(U V )HA(U V ) = (U V )H(AU AV ) =

(
UH

V H

)
(AU AV )

=

(
UHAU UHAV
V HAU V HAV

)
=

(
B UHAV
O V HAV

)
.
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Corollary

Let A ∈ Cn×n be a Hermitian matrix and B ∈ Ck×k be a matrix. If there
exists a matrix U ∈ Cn×k having an orthonormal set of columns such that
AU = UB, then there exists V ∈ Cn×(n−k) such that (U V ) is a unitary
matrix and

(U V )HA(U V ) =

(
B O
O V HAV

)
.

Proof.

Since A is Hermitian we have UHAV = UHAHV = (V HAU)H = O, which
produces the desired result.
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Corollary

Let A ∈ Cn×n, λ be an eigenvalue of A, and let u be an eigenvector of A
with ‖ u ‖= 1 that corresponds to λ. There exists V ∈ Cn×(n−1) such that
(u V ) ∈ Cn×n is a unitary matrix and

(u V )HA(u V ) =

(
λ uHAV

0n−1 V HAV

)
.

If A is a Hermitian matrix, then

(u V )HA(u V ) =

(
λ 0n−1

0n−1 V HAV

)
.
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Theorem

(Schur’s Triangularization Theorem) Let A ∈ Cn×n be a square matrix.
There exists a unitary matrix Q ∈ Cn×n and an upper-triangular matrix
T ∈ Cn×n such that A = QTQH and the diagonal elements of T are the
eigenvalues of A. Moreover, each eigenvalue λ occurs in the sequence of
diagonal values a number of algm(A, λ) times.
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Proof

The argument is by induction on n > 1. The base case, n = 1, is trivial.
So, suppose that the statement is true for matrices in C(n−1)×(n−1).
Let λ1 ∈ C be an eigenvalue of A, and let u be an eigenvector that
corresponds to this eigenvalue. We have

QHAQ =

(
λ1 uHAV
0n−1 V HAV

)
,

where Q = (u|V ) is an unitary matrix.
By the inductive hypothesis, since V HAV ∈ C(n−1)×(n−1), there exists a
unitary matrix S ∈ C(n−1)×(n−1) such that V HAV = SHWS , where W is
an upper-triangular matrix.
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Proof (cont’d)

Then, we have

QHAQ =

(
λ1 uHVSHWS
0n−1 SHWS

)
=

(
λ1 O
0n−1 W

)
,

which shows that an upper triangular matrix T that is unitarily similar to
A can be defined as

T =

(
λ1 O
0n−1 W

)
.
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Proof (cont’d)

Since T ∼u A, it follows that the two matrices have the same
characteristic polynomials and therefore, the same spectra and algebraic
multiplicities for each eigenvalue.
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Example

Let A ∈ R3×3 be the symmetric matrix

A =

 14 −10 −2
−10 −5 5
−2 5 11


whose characteristic polynomial is:

pA(λ) = λ3 − 20λ2 − 100λ+ 2000.

The eigenvalues of A are λ1 = 20, λ2 = 10 and λ3 = −10.
It is easy to see that

v1 =

−2
1
1

 , v2 =

1
0
2

 , v3 =

−2
−5
1


are eigenvectors that correspond to the eigenvalues λ1, λ2 and λ3,
respectively.
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Example

The corresponding unit vectors are

u1 =

−
2√
6

1√
6
1√
6

 ,u2 =


1√
5

0
2√
5

 ,u3 =

−
2√
30

− 5√
30

1√
30

 .

For Q = (u1 u2 u3) we have

Q ′AQ = Q ′(20u1 10u2 − 10u3) = diag(20, 10,−10).
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The Schur decomposition of a square matrix can be computed in R using
the function Schur of the package Matrix.
For the matrix A considered before, we can write:

> A <- matrix(c(14,-10,-2,-10,-5,5,-2,5,11),3,3)

> A

[,1] [,2] [,3]

[1,] 14 -10 -2

[2,] -10 -5 5

[3,] -2 5 11
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The call to the function Schur

> Schur(A,vectors=TRUE)

returns a result that has the following components:

$Q

[,1] [,2] [,3]

[1,] 0.3651484 0.8164966 4.472136e-01

[2,] 0.9128709 -0.4082483 -3.750263e-19

[3,] -0.1825742 -0.4082483 8.944272e-01

$T

[,1] [,2] [,3]

[1,] -10 -1.831868e-15 -1.160892e-15

[2,] 0 2.000000e+01 7.604338e-16

[3,] 0 0.000000e+00 1.000000e+01

$EValues

[1] -10 20 10
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If the vectors parameter is set to FALSE the result includes $T and
$EValues.
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Corollary

Let A ∈ Cn×n and let f be a polynomial. If spec(A) = {λ1, . . . , λn}
(including multiplicities), then spec(f (A)) = {f (λ1), . . . , f (λn)}.
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Proof

By Schur’s Triangularization Theorem there exists a unitary matrix
U ∈ Cn×n and an upper-triangular matrix T ∈ Cn×n such that A = UHTU
and the diagonal elements of T are the eigenvalues of A, λ1, . . . , λn.
Therefore Uf (A)U−1 = f (T ), and the diagonal elements of f (T ) are
f (λ1), , . . . , f (λm). Since f (A) ∼ f (T ), we obtain the desired conclusion
because two similar matrices have the same eigenvalues with the same
algebraic multiplicities.
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The next statement presents a property of real matrices that admit real
Schur factorizations.

Theorem

Let A ∈ Rn×n be a real square matrix. If there exists a orthogonal matrix
U ∈ Rn×n and an upper-triangular matrix T ∈ Rn×n such that
A = U−1TU, that is, a real Schur factorization, then the eigenvalues of A
are real numbers.

Proof.

If the above factorization exists we have T = UAU−1. Thus, the
eigenvalues of A are the diagonal components of T and, therefore, they
are real numbers.
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