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Definition

Let A € C™*™ be a square matrix. A pair (A, x) that consists of a complex
number A € C and a non-zero complex vector x is an eigenpair if Ax = Ax.
The number X is an eigenvalue of A, and x is an eigenvector of A.

The set of eigenvalues of A is known as the spectrum of A and is denoted

by spec(A). The spectral radius of A is the number

p(A) = max{|A| | A € spec(A)}.
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Theorem

Let A€ C"™" be a matrix and let Ay, ..., \, distinct eigenvalues of A.

v1i,...,V, are eigenvectors of A that that correspond to distinct
eigenvalues, then the set {vi,...,v,} is linearly independent.

If
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Proof

If the vectors vy, ..., v, were not linearly independent we would have a

linear combination of these vectors

ciyViy + -+ ¢ vi, = Op,

containing a minimal number of vectors such that not every one of scalars

Cips---5Ci, 15 0. This implies

C,'lAV,'1 + -+ C,'pAV,'p
= C,'l)\,'lv,'1 =+ -+ c;p)\,-pv,-p =0.

These equalities imply

ci (A = Ai)vip + -+ ¢y (Njpy — Aip)vi,_ = 0p,

which contradicts the minimality of the number of terms. WS, Vi,...

are linearly independent. umass
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Corollary

If A€ C™" then the set of eigenvalues of A does not contain more than n
distinct eigenvalues.

Proof.
Since the maximum size of a linearly independent set in C" is n, it follows
that A cannot have more than n distinct eigenvalues. O

v
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Definition

Let A € C"™" be a matrix. A subspace S of C" is a right invariant
subspace of the matrix A if As € S for every s € S, and is a left invariant
subspace if A"'s € S for every s € S.
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Definition

The geometric multiplicity of an eigenvalue X\ of a matrix A € C"™" is
denoted by geomm(A, X) and is equal to dim(Sa ).

Equivalently, the geometric multiplicity of X is

geomm(A, ) = dim(NullSp(A — Al,)) = n — rank(A — Al,).
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Theorem

Let A€ R™". We have 0 € spec(A) if and only if A is a singular matrix.
Moreover, in this case, geomm(A,0) = n — rank(A) = dim(NullSp(A)).
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Example

The matrix /, has 1 as its unique eigenvalue. Its invariant subspace is the
entire space V/; therefore, the geometric multiplicity of 1 is dim(V/).
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Definition

Let A € C™*" be a matrix. An invariant subspace of A is a subspace S of
R" such that x € S implies Ax € S.

@ the null space of a matrix A is an invariant subspace;
e if x is an eigenvector of A, then {ax | a € C} is an invariant subspace
of A.
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If \'is an eigenvalue of A € C"" we have x"Ax = AxHx, so

x" Ax

xHx

In the real case we replace x" by x": if A€ R"*", X is an eigenvalue and x
is an eigenvector that corresponds to A, then

x' Ax

A

x'x
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Theorem

Let A€ C"™" and let S C C" be an invariant subspace of A. If the
columns of a matrix X € C"*P constitute a basis of S, then there exists a
unique matrix L € CP*P such that AX = XL.
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Proof

Let X = (x1 --- Xp). Since Ax; € S it follows that Ax; can be uniquely
expressed as a linear combination of the columns of X, that is,

AXj = Xlglj + -+ prpj

for 1 < i< p. Thus,

€1J-
AXj =X
epj
The matrix L is defined by L = (¢j;).
Corollary
(A\,v) is an eigenpair of L if and only if (A, Xv) is an eigenpair of A. J
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Let A € C™" be a matrix having the eigenvalues A1,..., An. If x1,..., X,
are n eigenvectors corresponding to these values, then we have

Axy = AiX1, ..., AXp = ApXp.

By introducing the matrix X = (x1 -+ x,) € C"™" these equalities can be
written in a concentrated form as

AX = Xdiag(AL, - .., An)-

Obviously, since the eigenvalues can be listed in several ways, this equality
is not unique.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Eigenvalues of 14 /1




Suppose now that xi, ..., X, are unit vectors and that the eigenvalues
A1, ..., Ap are distinct. Then X is a unitary matrix, X~ = X" and we
obtain the equality

A = Xdiag(A1, .., Ap) X = Apxaxt + -+ 4 Apxpx

known as the spectral decomposition of the matrix A.
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If X is an eigenvalue of the matrix A € C"™*", there exists a non-zero
eigenvector x € C" such that Ax = Ax. Therefore, the linear system

(M, — A)x =0,

has a non-trivial solution. This is possible if and only if det(\, — A) =0,
so eigenvalues are the solutions of the equation

det(\, — A) = 0.

Note that det(A/, — A) is a polynomial of degree n in A\, known as the
characteristic polynomial of the matrix A. We denote this polynomial by

PA-
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Example
Let

411 412 ai3
A= |axn ax» ax
a31 432 ass

be a matrix in C3*3. Its characteristic polynomial is

A—ann  —ar —a13
3 2
pa = | —ax1 A—ax» —ax A” — (a11 + a2 + a33)A
—az1 —az A —as3

+(a11a2 + axpasz + a33a11 — aipax — azazy — a13as1)A

—(811822333 + a12a23a31 + 3133832821 — 212a21433 — 3234832411 — 315
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Theorem
Let A€ C"™". Then, spec(A) = spec(A’) and
spec(A") = {\ | \ € spec(A)}.

Proof: We have
par(N) = det(Al, — A’) = det((AMlp — A)’) = det(Al, — A) = pa(N).

Thus, since A and A’ have the same characteristic polynomials, their
spectra are the same.
For A" we can write

pan(N) = det(M, — A") = det((AM, — A)") = (pa(M))",

which implies the second part of the Theorem.
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The characteristic polynomial of a matrix can be computed in R using

the function charpoly of the pracma package.
For the matrix A defined in

> A <- matrix(c(1:6),3,3)
> A
[,11 [,2] [,3]
[1,] 1 4 1
[2,1] 2 5 2
[3,] 3 6 3

the characteristic polynomial is A3 — 9\? as returned by

> charpoly(A)
[1] 1-9 0 O
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Let B be the matrix defined as

> B <- matrix(c(1,0,2,3,1,1,1,4,2),3,3)
> B
[,11 [,2] [,3]
[1,] 1 3 1
[2,1 0 1 4
[3,] 2 1 2
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If charpoly is called as in
> charpoly (B, info=TRUE)

then, in addition to the characteristic polynomial of B, its determinant and
inverse matrix are also returned as in

$cp
[1] 1 -4 -1 -20
$det
[1] 20
$inv

[,11 [,21 [,3]
[1,] -0.1 -0.25 0.55
[2,] 0.4 0.00 -0.20
[3,] -0.1 0.25 0.05
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To compute the eigenvalues of a matrix one could use the eigen function
of the base package of R .

The following call to eigen computes the eigenvalues of the matrix A
together with its characteristic vectors:

> A <- matrix(c(1:6),3,3)
> eigen(A)
eigen() decomposition

$values
[1] 9.000000e+00 2.497182e-09 -2.497182e-09

$vectors

[,1] [,2] [,3]
[1,] 0.3713907 -7.071068e-01 7.071068e-01
[2,] 0.5570860 -1.177183e-09 -1.177183e-09
[3,] 0.7427814 7.071068e-01 -7.071068e-01
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Equality of spectra of A and A’ does not imply that the eigenvectors or the
invariant subspaces of the corresponding eigenvalues are identical, as it
can be seen from the following example.
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Example
Consider the matrix A € C?*? defined by

a 0
A= (2 5)

where a # b and ¢ # 0. It is immediate that spec(A) = spec(A’) = {a, b}.

For A1 = a we have the distinct invariant subspaces:

Saa = {k<a;b>‘kec}
Swa = {k<é>|keC},

as the reader can easily verify.
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@ The leading term of the characteristic polynomial of A is generated by
(A —a11)(A — a22) -+ - (A — anpn) and equals A",

@ The fundamental theorem of algebra implies that ps has n complex
roots, not necessarily distinct. Observe also that, if A is a matrix with
real entries, the roots are paired as conjugate complex numbers.
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Definition

The algebraic multiplicity of an eigenvalue A of a matrix A € C"*",
algm(A, X) equals k if X is a root of order k of the equation pa(A) = 0.
If algm(A, \) = 1, we refer to A as a simple eigenvalue.
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Let A € R3*3 be the matrix

1
A=10
2

)
OoON =

The characteristic polynomial of A is
A-1 -1 -1

paN)=| 0 A—-1 —2[=x3-2)2_-3)\
-2 -1 A

Therefore, the eigenvalues of A are 3,0 and —1.

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Eigenvalues of 27 /1




The eigenvalues of I3 are obtained from the equation

A-1 0 0
det(AMs—hk)=| 0 X—-1 0 |=(0\-1P°=0.
0 0 A-1

Thus, 5 has one eigenvalue, 1, and algm(h,1) = 3.
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Theorem

Let A € R™" be a matrix and let A € spec(A). Then, for any k € P,
MK € spec(AK).

Proof.

The proof is by induction on k > 1. The base step, k = 1 is immediate.
Suppose that \¥ € spec(AK), that is Akx = \¥x for some x € V — {0}.
Then, Aktlx = A(AKx) = A(M\Fx) = A Ax = A F1x, so

MHL € spec(AkH), O
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Theorem

Let A € R"™" be a non-singular matrix and let A € spec(A). We have
1+ € spec(A™1) and the sets of eigenvectors of A and A~! are equal.

Proof.

Since A € spec(A) and A is non-singular we have A # 0 and Ax = Ax for
some x € V — {0}. Therefore, we have A~}(Ax) = MA~1x, which is
equivalent to A™!x = A~!x, which implies % € spec(A1). In addition,
this implies that the set of eigenvectors of A and A~! are identical. Ol

v
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Theorem

Let pa(A) = A"+ ctA" "L + -~ + ¢c,_1\ + ¢, be the characteristic
polynomial of the matrix A. Then, we have ¢; = (—1)'S;(A) for 1 < i < n,
where S;(A) is the sum of all principal minors of order i of A.
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Proof
Since pa(A) = A"+ A"t -+ 1A+ cp, it is easy to see that the
derivatives of pa(\) are given by:

P = A" 4 (n—1)aN 24+ ch,
PO() = n(n—1A"2+(n—1)(n—2)a N+ +2¢, 2),

Pi\k)o‘) = nn=1)--(n—k+ A"+ + klc,_s),

pI(A")()\) = nlc.
This implies
cnk = kIp(0)
for0 < k< n.

On other hand, ch—x = 5 (—1)¥k!S,_k(A) = (- 1)”_"5,,_%, which
implies the statement of theorem.
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By Viéte's Theorem, taking into account Theorem 17 we have:
M+ -+ Ap=a11+an+ -+ ap, = trace(A) = —c.

Another interesting fact is

AL+ Ap = det(A).
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Theorem

Let A€ C™*" and B € C"™*™ be two matrices. Then the set of non-zero
eigenvalues of the matrices AB € C™*™ and BA € C"™" are the same and
algm(AB, \) = algm(BA, \) for each such eigenvalue.
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Proof

Consider the following straightforward equalities:
Im  —=A\ (Mm A _ (An—AB Onnp
Onm Alp B I,) —AB A,
—Ilm Omn\ (Mm A\ [(—Aln —A
—-B Al B I,) Onm M,—BA)~

Observe that

e ((Im =AY (M AN _ yo ([~ Oma) (Alm A
“\\owm M)\ B 1))~ B M, J\ B 1))’

and therefore,

det (M =AB Oma\ _ (A —A
S\ =aB AL ) T\ 00w M.—BA)

The last equality amounts to

A'pag(A) = A" pga(N).

Thus, for A # 0 we have pag(A) = pga()), which gives th?@swed
conclusion.
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Corollary

Let

be a vector in C" — {0}. Then, the matrix aa"” € C"*" has one eigenvalue
distinct from 0, and this eigenvalue is equal to || a ||°.
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Theorem

Let A e C(mtm>(m+n) pe 5 matrix partitioned as

B C
A= (onm 5)

where B € C™*™M C € C™", and D € C"™". Then,
spec(A) = spec(B) U spec(D).
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Proof

Let A € spec(A) and let x € C™"" be an eigenvector that corresponds to

<~ (%),

where u € C™ and v € C", then we have

(B C\(uy [(Bu+Cv\ | [(u
= lon 0) ()= ("2) ()
This implies Bu+ Cv = Au and Dv = Av. If v # 0, then \ € spec(D);

otherwise, Bu = Au, which yields A € spec(B), so A € spec(B) U spec(D).
Thus, spec(A) C spec(B) U spec(D).

A If
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To prove the converse inclusion, note that if A € spec(B) and u is an
eigenvector of A\, then Bu = Au, which means that

A(5)=2(6).

so spec(B) C spec(A). Similarly, spec(D) C spec(A), which implies the
equality of the theorem.
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Theorem

All eigenvalues of a Hermitian matrix A € C"™" are real numbers.
All eigenvalues of a skew-Hermitian matrix are purely imaginary numbers.

v

Proof.
xH Ax

Note that x"x is a real number for every x € C". Since A = %X, A is a
real number.

Suppose now that B is a skew-Hermitian matrix. Then, as above,

x"Ax = —x"Ax, which implies that the real part of x*Ax is 0. Thus, x"Ax
is a purely imaginary number and X is a purely imaginary number. [

v
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Corollary

If A€ R™" and A is a symmetric matrix, then all its eigenvalues are real
numbers. )

Proof.
This statement follows from Theorem 21 by observing that the Hermitian

adjoint A" of a matrix A € R"*" coincides with its transposed matrix
Al O

v

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Eigenvalues of 41 /1




Corollary

Let A€ C™*" be a matrix. The non-zero eigenvalues of the matrices AA”
and A"A are positive numbers and they have the same algebraic
multiplicities for the matrices AA" and A"A.
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Proof

We need to verify only that if \ is a non-zero eigenvalue of A"A, then \ is
a positive number. Since A"A is a Hermitian matrix, A is a real number.
The equality A"Ax = Ax for some eigenvector x # 0 implies

M x (3= Axfix = (Ax)"Ax =|| Ax |3,

so A > 0.
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Corollary

B = A"A € C"™" are real non-negative numbers.

Let A € C™*" be a matrix. The eigenvalues of the matrix

Prof. Dan A. Simovici
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The matrix B defined above is clearly Hermitian and, therefore, its
eigenvalues are real numbers. Next, if A is an eigenvalue of B, then

~ x'ATAx (Ax)"Ax || Ax || S0

x"x xix x| 7

A

where x is an eigenvector that corresponds to A.
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If Ais a Hermitian matrix, then A"A = A2, hence the spectrum of A"A is
{\2 | X € spec(A)}.
Theorem

If A€ C™" is a Hermitian matrix and u,v are two eigenvectors that
correspond to two distinct eigenvalues A1 and X\, then u L v.
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Proof.
We have Au = \ju and Av = X\yv. This allows us to write vi'Au = A\;vu.
Since A is Hermitian, we have

A1v'u = v Au = v A"u = (Av)"u = \pv'u,

which implies v'u = 0, that is, u L v. O

%

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Eigenvalues of 47 /1




Theorem

If A, B € C™" and A ~ B, then the two matrices have the same
characteristic polynomials and, therefore, spec(A) = spec(B).

Proof.

Since A ~ B, there exists an invertible matrix X such that A= XBX~!.
Then, the characteristic polynomial det(A — Al,) can be rewritten as

det(A—M,) = det(XBX!—AXI,X 1)
= det (X(B—Ma)X 1)
= det(X)det(B — Al,)det(X1)
= det(B — M),

which implies spec(A) = spec(B). O
7A
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Theorem

If A,B € C"™" and A ~ B, then trace(A) = trace(B).

Proof.

Since the two matrices are similar, they have the same characteristic
polynomials, so both trace(A) and trace(B) equal —ci, where ¢; is the
coefficient of A"~ in both pa()) and pg(\). O

V.
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Theorem

If A~, B, where A, B € C"*", then the Frobenius norm of these matrices
are equal, that is, | A ||[r=|| B ||F-

Proof.

Since A ~, B, there exists a unitary matrix U such that A= UBU".
Therefore,
A"A = UB"U"UBU" = UB"BU",

which implies A"A ~, B"B. Therefore, these matrices have the same
characteristic polynomials which allows us to infer that
trace(A"A) ~, trace(B"B), which yields the desired equality. O
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Theorem

Let A€ C"™" and B € CK*k be two matrices. If there exists a matrix
U € C"™¥ having an orthonormal set of columns such that AU = UB,
then there exists V € C"™("=k) such (U V) € C"™ " is a unitary matrix and

(U V)'A(U V) = (g g:ﬁ‘é) .
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Proof

Since U has an orthonormal set of columns, there exists V € C"*(n—k)
such that (U V) is a unitary matrix.
We have

U"AU = U"UB=IB =B,
VHAU = V"UB = 0B =0,

which allows us to write

(UV)PA(U V) = (U V) (AU AV) = ( :) (AU AV)

U
Vv
UMAU  UMAVY (B UMAV
VFAU VHAV ) T 0 vrAV )
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Corollary

Let A € C"™ " be a Hermitian matrix and B € CK*k be a matrix. If there
exists a matrix U € C"™*k having an orthonormal set of columns such that
AU = UB, then there exists VV € C"™("=k) such that (U V) is a unitary
matrix and

(U V)PA(U V) = (g V&V) .

Proof.
Since A is Hermitian we have U"AV = U"A"V = (VP AU)" = O, which
produces the desired result. O

v
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Corollary

Let A€ C"™", X\ be an eigenvalue of A, and let u be an eigenvector of A
with || u ||= 1 that corresponds to \. There exists V € C"("=1) such that

(u V) € C™" is a unitary matrix and

y (A wAv
@vraw )= (o Uiy

If A is a Hermitian matrix, then

H _ A 0n—1
vrawv) = (o Jia

).
).
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Theorem

(Schur’s Triangularization Theorem) Let A € C"*" be a square matrix.
There exists a unitary matrix Q € C"™" and an upper-triangular matrix

T € C"™" such that A= QTQ" and the diagonal elements of T are the
eigenvalues of A. Moreover, each eigenvalue \ occurs in the sequence of
diagonal values a number of algm(A, \) times.
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Proof

The argument is by induction on n > 1. The base case, n =1, is trivial.
So, suppose that the statement is true for matrices in C("~1)x(n—1),
Let A1 € C be an eigenvalue of A, and let u be an eigenvector that
corresponds to this eigenvalue. We have
)\1 uAvV
H _
@WAQ = <0n_1 VHAV) ’

where @ = (u|V) is an unitary matrix.

By the inductive hypothesis, since VFAV e C(r—D*(n=1) there exists a
unitary matrix S € C("~D*("=1) gych that VHAV = SHWS, where W is
an upper-triangular matrix.
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Proof (cont'd)

Then, we have

wom (A utVSTWS\ /N O
QAQ_(on_l s'ws ) T \0,1 W)

which shows that an upper triangular matrix T that is unitarily similar to

(a0
T_(On_l W).

A can be defined as
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Proof (cont'd)

Since T ~, A, it follows that the two matrices have the same

characteristic polynomials and therefore, the same spectra and algebraic
multiplicities for each eigenvalue.
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Example

Let A € R3*3 be the symmetric matrix

14 -10 -2
A=|-10 -5 5
=2 5 11

whose characteristic polynomial is:
pa(A) = A3 —20A% — 100\ + 2000.

The eigenvalues of A are Ay = 20, A\» = 10 and A3 = —10.
It is easy to see that

-2 1 -2
V] = 1 ,Vp = 0 ,V3 = -5
1 2 1

are eigenvectors that correspond to the eigenvalues A1, A\» and A3,

respectively.
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Example
The corresponding unit vectors are

2 1 _ 2
R (% %
u; = /6 , U = 0 , Uz = 30
v 2 P
V6 V5 V30

For @ = (u; uz u3) we have

QAQ = Q'(20u; 10u; — 10u3) = diag(20, 10, —10).
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The Schur decomposition of a square matrix can be computed in R using

the function Schur of the package Matrix.
For the matrix A considered before, we can write:

> A <- matrix(c(14,-10,-2,-10,-5,5,-2,5,11),3,3)
> A

(.11 [,2] [,3]

1,1 14 -10 -2
[2,] -10 -5 5
3,1 -2 5 11
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The call to the function Schur
> Schur (A,vectors=TRUE)

returns a result that has the following components:

$Q

[,1] [,2] [,3]
[1,] 0.3651484 0.8164966 4.472136e-01
[2,] 0.9128709 -0.4082483 -3.750263e-19
[3,] -0.1825742 -0.4082483 8.944272e-01

$T

[,1] [,2] [,3]
[1,] -10 -1.831868e-15 -1.160892e-15
[2,] 0 2.000000e+01 7.604338e-16
(3,1 0 0.000000e+00 1.000000e+01

$EValues

[1] -10 20 10 7/

UMASS
BOSTON

Prof. Dan A. Simovici CS724: Topics in Algorithms Eigenvalues of 62 /1



If the vectors parameter is set to FALSE the result includes $T and
$EValues.
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Corollary

Let A€ C™" and let f be a polynomial. If spec(A) = {\1,...,\n}
(including multiplicities), then spec(f(A)) = {f(A1),...,f(An)}.
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Proof

By Schur’s Triangularization Theorem there exists a unitary matrix

U € C"™" and an upper-triangular matrix T € C"™" such that A= U"TU
and the diagonal elements of T are the eigenvalues of A, A1,..., Ap.
Therefore Uf(A)U~1 = £(T), and the diagonal elements of f(T) are
f(M),,--.,f(Am). Since f(A) ~ f(T), we obtain the desired conclusion
because two similar matrices have the same eigenvalues with the same
algebraic multiplicities.
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The next statement presents a property of real matrices that admit real
Schur factorizations.

Theorem

Let A € R"™" be a real square matrix. If there exists a orthogonal matrix
U € R™" and an upper-triangular matrix T € R"*" such that

A= U"LTU, that is, a real Schur factorization, then the eigenvalues of A
are real numbers.

Proof.

If the above factorization exists we have T = UAU™!. Thus, the
eigenvalues of A are the diagonal components of T and, therefore, they
are real numbers. [

v
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