CS724: Topics in Algorithms Variational Results in Linear Algebra

Prof. Dan A. Simovici

Theorem

(Ky Fan's Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix such that $spec(A) = \{\lambda_1, \ldots, \lambda_n\}$, where $\lambda_1 \geqslant \cdots \geqslant \lambda_n$ and let $V = (\mathbf{v}_1 \cdots \mathbf{v}_n)$ be a matrix whose columns consists of the corresponding unit eigenvectors of A,

Let $\{\mathbf{x}_1,\ldots,\mathbf{x}_q\}$ be an orthonormal set of vectors in \mathbb{R}^n . For any positive integer $q\leqslant n$, the sums $\sum_{i=1}^q \lambda_i$ and $\sum_{i=1}^q \lambda_{n+1-i}$ equal, respectively, the maximum and minimum of $\sum_{j=1}^q \mathbf{x}_j' A \mathbf{x}_j$.

The maximum of $\sum_{j=1}^{q} \mathbf{x}_{j}' A \mathbf{x}_{j}$ is obtained by choosing the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}$ as the first q columns of V; the minimum is obtained by assigning to $\mathbf{x}_{1}, \ldots, \mathbf{x}_{q}$ the last q columns of V.

Let $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ be an orthonormal set of eigenvectors of A and let $X=(\mathbf{x}_1\cdots\mathbf{x}_q)\in\mathbb{C}^{n\times q}$. Note that, by hypothesis, X is an orthogonal matrix.

The vectors \mathbf{x}_i can be expressed as linear combinations of the vectors in V as

$$\mathbf{x}_i = \mathbf{v}_1 b_{1i} + \cdots + \mathbf{v}_n b_{ni} = V \mathbf{b}_i$$

for $1 \leqslant i \leqslant q$, or in matrix form as

$$(\mathbf{x}_1 \cdots \mathbf{x}_q) = (\mathbf{v}_1 \cdots \mathbf{v}_n)B$$

where $B = (\mathbf{b}_1 \cdots \mathbf{b}_q) \in \mathbb{C}^{q \times q}$. More succinctly, we have for X = VB. Note that $X'X = B'V'VB = B'B = I_q$, so B is also orthogonal.

We have

$$\mathbf{x}'_{j}A\mathbf{x}_{j}$$

$$= \mathbf{b}'_{j}V'AV\mathbf{b}_{j}$$

$$= \mathbf{b}'_{j}\operatorname{diag}(\lambda_{1}, \dots, \lambda_{n})\mathbf{b}_{j} = \sum_{i=1}^{n} \lambda_{i}b_{ij}^{2}$$

$$= \lambda_{q}\sum_{p=1}^{n} b_{pj}^{2} + \sum_{p=1}^{q} (\lambda_{p} - \lambda_{q})b_{pj}^{2} + \sum_{p=q+1}^{n} (\lambda_{p} - \lambda_{q})b_{pj}^{2}.$$

This implies $\mathbf{x}_j' A \mathbf{x}_j \leqslant \lambda_q + \sum_{p=1}^q (\lambda_p - \lambda_q) b_{pj}^2$. Therefore,

$$\sum_{i=1}^{q} \lambda_i - \sum_{j=1}^{q} \mathbf{x}_j' A \mathbf{x}_j \geqslant \sum_{i=1}^{q} (\lambda_i - \lambda_q) \left(1 - \sum_{j=1}^{q} b_{ij}^2 \right).$$

We have $\sum_{j=1}^q b_{ij}^2 \leqslant \parallel \mathbf{x}_i \parallel^2 = 1$, so $\sum_{i=1}^q (\lambda_i - \lambda_q) \left(1 - \sum_{j=1}^q b_{ij}^2\right) \geqslant 0$.

The left member becomes 0, when $\mathbf{x}_i = \mathbf{v}_i$, so $\sum_{j=1}^q \mathbf{x}_j' A \mathbf{x}_j \leqslant \sum_{i=1}^q \lambda_i$.

The maximum of $\sum_{j=1}^{q} \mathbf{x}_j' A \mathbf{x}_j$ is obtained when $\mathbf{x}_j = \mathbf{v}_j$ for $1 \leqslant j \leqslant q$, that is, when X consists of the first q columns of V that correspond to eigenvectors of the top k largest eigenvalues.

The argument for the minimum is similar.

Observe that the orthonormality condition of the set $\{\mathbf{x}_1,\ldots,\mathbf{x}_q\}$ can be expressed as $Y_q'Y_q=I_q$, where $Y_q\in\mathbb{C}^{n\times q}$ is the matrix $Y_q=(\mathbf{x}_1\,\cdots\,\mathbf{x}_q)$. Also, the sum $\sum_{j=1}^q\mathbf{x}_j'A\mathbf{x}_j$ equals $trace(Y_q'AY_q)$. Therefore, Ky Fan's Theorem implies that the sums $\sum_{i=1}^q\lambda_i$ and $\sum_{i=1}^q\lambda_{n+1-i}$ are, respectively, the maximum and minimum of $trace(Y_q'AY_q)$, where $Y_q'Y_q=I_q$.

Theorem

(Rayleigh-Ritz Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues, where $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_n$. Define the Rayleigh-Ritz function $ral_A : \mathbb{R}^n - \{\mathbf{0}\} \longrightarrow \mathbb{R}$ as

$$ral_A(\mathbf{x}) = \frac{\mathbf{x}^H A \mathbf{x}}{\mathbf{x}^H \mathbf{x}}$$

Then,

$$\lambda_1 \geqslant ral_A(\mathbf{x}) \geqslant \lambda_n$$

for $\mathbf{x} \in \mathbb{C}^n - \{\mathbf{0}_n\}$.

Since A is Hermitian, there exists a unitary matrix P and a diagonal matrix T such that $A = P^H TP$ and the diagonal elements of T are the eigenvalues of A, that is, $T = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$. This allows us to write

$$\mathbf{x}^{\mathsf{H}}A\mathbf{x} = \mathbf{x}^{\mathsf{H}}P^{\mathsf{H}}TP\mathbf{x} = (P\mathbf{x})^{\mathsf{H}}TP\mathbf{x} = \sum_{j=1}^{n} \lambda_{i}|(P\mathbf{x})_{i}|^{2},$$

which implies

$$\lambda_1 \parallel P\mathbf{x} \parallel^2 \geqslant \mathbf{x}^H A\mathbf{x} \geqslant \lambda_n \parallel P\mathbf{x} \parallel^2.$$

Since P is unitary we also have

$$||P\mathbf{x}||^2 = \mathbf{x}^H P^H P \mathbf{x} = \mathbf{x}^H \mathbf{x},$$

which implies

$$\lambda_1 \mathbf{x}^\mathsf{H} \mathbf{x} \geqslant \mathbf{x}^\mathsf{H} A \mathbf{x} \geqslant \lambda_n \mathbf{x}^\mathsf{H} \mathbf{x},$$

for $\mathbf{x} \in \mathbb{C}^n$.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be its eigenvalues, where $\lambda_1 \geqslant \lambda_2 \geqslant \dots \geqslant \lambda_n$. We have

$$\begin{array}{rcl} \lambda_1 &=& \max\{\mathbf{x}^H A \mathbf{x} \ | \ \mathbf{x}^H \mathbf{x} = 1\}, \\ \lambda_n &=& \min\{\mathbf{x}^H A \mathbf{x} \ | \ \mathbf{x}^H \mathbf{x} = 1\}. \end{array}$$

Proof.

Note that if \mathbf{x} is an eigenvector that corresponds to λ_1 , then $A\mathbf{x} = \lambda_1\mathbf{x}$, so $\mathbf{x}^H A \mathbf{x} = \lambda_1 \mathbf{x}^H \mathbf{x}$; in particular, if $\mathbf{x}^H \mathbf{x} = 1$ we have $\lambda_1 = \mathbf{x}^H A \mathbf{x}$, so

$$\lambda_1 = \max\{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x}^{\mathsf{H}} \mathbf{x} = 1\}.$$

The equality for λ_n can be shown in a similar manner.

We discuss next an important result that is a generalization of Rayleigh-Ritz Theorem.

Theorem

(Courant-Fisher Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \geqslant \cdots \geqslant \lambda_n$. We have

$$\lambda_k = \min_{\dim(S) = n-k+1} \max_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \ | \ \mathbf{x} \in S \ \text{and} \ \| \ \mathbf{x} \ \|_2 = 1\},$$

and

$$\lambda_k = \max_{\dim(\mathcal{S}) = k} \min_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \ | \ \mathbf{x} \in \mathcal{S} \ \textit{and} \ \| \ \mathbf{x} \ \|_2 = 1\},$$

where S ranges over the subspaces of \mathbb{C}^n .

There exists a unitary matrix U and a diagonal matrix D such that $A = U^{\mathsf{H}}DU$ and the diagonal elements of D are the eigenvalues of A, that is, $D = \mathrm{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$.

We prove initially that

$$\lambda_k = \min_{\dim(S) = n-k+1} \max_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} D \mathbf{x} \ | \ \mathbf{x} \in S \ \mathsf{and} \ \| \ \mathbf{x} \ \|_2 = 1\}.$$

For $\dim(S) = n - k + 1$ define \tilde{S} as the set of unit vectors in the subspace S, that is,

$$\tilde{S} = \{ \mathbf{y} \in \mathbb{C}^n \ | \ y \in S \ \mathrm{and} \ \parallel \mathbf{y} \parallel = 1 \}$$

and $\hat{S} = S \cap \langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle$. We have $\hat{S} = S \cap \langle \mathbf{e}_1, \dots, \mathbf{e}_k \rangle \neq \{\mathbf{0}_n\}$ because otherwise the dimension of the subspace generated by $S \cup \{\mathbf{e}_1, \dots, \mathbf{e}_k\}$ would exceed n+1.

Therefore, \hat{S} consists of vectors of \tilde{S} having the form

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_k \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

such that $\sum_{i=1}^{k} y_i^2 = 1$. So, if dim(S) = n - k + 1 we have

$$\mathbf{y}^{\mathsf{H}} D \mathbf{y} = \sum_{i=1}^{k} \lambda_i |y_i|^2 \geqslant \lambda_k \sum_{i=1}^{k} |y_i|^2 = \lambda_k$$

for all $\mathbf{y} \in \hat{S}$.

Since $\hat{S} \subseteq \tilde{S}$ it follows that $\max_{\mathbf{y} \in \tilde{S}} \mathbf{y}^{\mathsf{H}} D \mathbf{y} \geqslant \max_{\mathbf{y} \in \hat{S}} \mathbf{y}^{\mathsf{H}} D \mathbf{y} \geqslant \lambda_k$, so

$$\min_{\dim(S)=n-k+1} \max_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} D \mathbf{x} \ | \ \mathbf{x} \in S \ \mathsf{and} \ \| \ \mathbf{x} \ \|_2 = 1 \} \geqslant \lambda_k.$$

Let now S be $S = \langle \mathbf{e}_1, \dots, \mathbf{e}_{k-1} \rangle^{\perp}$. Clearly, $\dim(S) = n - k + 1$. A vector $\mathbf{y} \in S$ has the form

$$\mathbf{y} = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ y_k \\ \vdots \\ y_n \end{pmatrix}$$

Therefore,

$$\mathbf{y}^{\mathsf{H}} D \mathbf{y} = \sum_{i=k}^{n} \lambda_{i} |y_{i}|^{2} \leq \lambda_{i} \sum_{i=k}^{n} |y_{i}|^{2} = \lambda_{i}$$

for all $\mathbf{y} \in {\mathbf{y} \in S \mid \|\mathbf{y}\|_2 = 1}$. This implies

$$\min_{\dim(S)=n-k+1} \max_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} D \mathbf{x} \ | \ \mathbf{x} \in S \ \mathsf{and} \ \parallel \mathbf{x} \parallel_2 = 1\} \leqslant \lambda_k,$$

which yields the desired equality.

The matrices A and D have the same eigenvalues. Also $\mathbf{x}^H A \mathbf{x} = \mathbf{x}^H A \mathbf{x} = \mathbf{x}^H U^H D U \mathbf{x} = (U \mathbf{x})^H D (U \mathbf{x})$ and $\|U \mathbf{x}\|_2 = \|\mathbf{x}\|_2$, because U is a unitary matrix. This yields the first equality of the theorem. The proof of the second part of the theorem is entirely similar.

Another form of Courant-Fishers Theorem can be obtained by observing that every p-dimesional subspace S of \mathbb{C}^n is the orthogonal space of an (n-p)-dimensional subspace. Therefore, for each p-dimensional subspace S there is a sequence of n-p vectors $\mathbf{w}_1,\ldots,\mathbf{w}_{n-p}$ (which is a basis of S^\perp) such that $S=\{\mathbf{x}\in\mathbb{C}^n\mid \mathbf{x}\perp\mathbf{w}_1,\ldots,\mathbf{x}\perp\mathbf{w}_{n-p}\}.$

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \geqslant \cdots \geqslant \lambda_n$. We have

$$\begin{array}{lll} \lambda_k & = & \min_{\mathbf{w}_1, \dots, \mathbf{w}_{k-1}} \max_{\mathbf{x}} \{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_1, \dots, \mathbf{x} \perp \mathbf{w}_{k-1} \ \text{and} \ \parallel \mathbf{x} \parallel_2 = 1 \}, \\ & = & \max_{\mathbf{w}_1, \dots, \mathbf{w}_{n-k}} \min_{\mathbf{x}} \{\mathbf{x}^H A \mathbf{x} \mid \mathbf{x} \perp \mathbf{w}_1, \dots, \mathbf{x} \perp \mathbf{w}_{n-k}, \ \text{and} \ \parallel \mathbf{x} \parallel_2 = 1 \}. \end{array}$$

An interesting special case occurs when $A \in \mathbb{C}^{n \times n}$ is a Hermitian matrix which has the least eigenvalue equal to 0 and the corresponding eigenvector $\mathbf{1}_n$. In this case, the second smallest eigenvalue λ_2 is given by

$$\lambda_2 = \min_{dim(S) = n-1} \max_{\mathbf{x}} \{ \mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x} \in S \text{ and } \parallel \mathbf{x} \parallel_2 = 1 \}, \tag{1}$$

and

$$\lambda_2 = \max_{\dim(S)=2} \min_{\mathbf{x}} \{ \mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \mathbf{x} \in S \text{ and } \parallel \mathbf{x} \parallel_2 = 1 \}, \tag{2}$$

where S is a subspace of \mathbb{C}^n .

Lemma

Let $\{\{i_1,\ldots,i_k\}$ be a subset of the set $\{1,\ldots,n\}$, where $i_1<\cdots< i_k$. Let $A\in\mathbb{C}^{n\times n}$ be a matrix and let $B=A\begin{bmatrix}i_1\cdots i_k\\i_1\cdots i_k\end{bmatrix}\in\mathbb{C}^{k\times k}$ be a principal submatrix of A. Let $\mathbf{y}\in\mathbb{C}^k$ and let $f:\{1,\ldots,k\}\longrightarrow\{1,\ldots,n\}$ be an injective function.

Define $\mathbf{x} \in \mathbb{C}^n$ such that

$$x_r = \begin{cases} y_i & \text{if } f(i) = r, \\ 0 & \text{otherwise} \end{cases}$$

for $1 \leqslant r \leqslant n$. We have $\mathbf{y}^H B \mathbf{y} = \mathbf{x}^H A \mathbf{x}$.

Observe that if r does not belong to the range of f then $x_r = 0$. The definition of \mathbf{x} implies

$$\mathbf{x}^{\mathsf{H}} A \mathbf{x} = \sum_{r=1}^{n} \sum_{s=1}^{n} \overline{x}_{r} a_{rs} x_{s}$$

$$= \sum_{i=1}^{k} \sum_{j=1}^{k} \overline{y}_{i} b_{ij} y_{j}$$

$$(\text{if } f(i) = r \text{ and } f(j) = s)$$

$$= \mathbf{y}^{\mathsf{H}} B \mathbf{y}.$$

Theorem

(Interlacing Theorem) Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let

$$B = A \begin{bmatrix} i_1 \cdots i_k \\ i_1 \cdots i_k \end{bmatrix}$$
 be a principal submatrix of A , $B \in \mathbb{C}^{k \times k}$. If $spec(A) = \{\lambda_1, \dots, \lambda_n\}$ and $spec(B) = \{\mu_1, \dots, \mu_k\}$, where $\lambda_1 \geqslant \dots \geqslant \lambda_n$ and $\mu_1 \geqslant \dots \geqslant \mu_k$, then $\lambda_j \geqslant \mu_j \geq \lambda_{n-k+j}$ for $1 \leqslant j \leqslant k$.

Let $\{j_1,\ldots,j_q\}=\{1,\ldots,n\}-\{i_1,\ldots,i_k\}$, where $j_1<\cdots< j_q$ and k+q=n. By Courant-Fisher Theorem we have

$$\lambda_{j} = \min_{\mathcal{W}} \max_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \parallel \mathbf{x} \parallel_{2} = 1 \text{ and } \mathbf{x} \in \left\langle \mathcal{W} \right\rangle^{\perp} \},$$

where W ranges over sets of non-zero vectors in \mathbb{C}^n containing j-1 vectors. Therefore,

$$\begin{array}{ll} \lambda_j & \geqslant & \min \max_{\boldsymbol{W}} \{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{x} \in \langle \boldsymbol{W} \rangle^{\perp} \\ & \text{and } \boldsymbol{x} \in \langle \mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_q} \rangle^{\perp} \} \\ & = & \min_{\boldsymbol{U}} \max_{\mathbf{y}} \{\mathbf{y}^{\mathsf{H}} B \mathbf{y} \mid \parallel \mathbf{y} \parallel_2 = 1 \text{ and } \mathbf{y} \in \langle \boldsymbol{U} \rangle^{\perp} = \mu_j, \end{array}$$

where U ranges over sets of non-zero vectors in \mathbb{C}^k containing j-1 vectors.

Again, by Courant-Fisher Theorem,

$$\lambda_{n-k+j} = \max_{Z} \min_{\mathbf{x}} \{\mathbf{x}^{\mathsf{H}} A \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{x} \in \langle Z \rangle^{\perp} \},$$

where Z ranges over sets containing k-j non-zero vectors in \mathbb{C}^n . Consequently,

$$\begin{split} \lambda_{n-k+j} &\leqslant & \max_{Z} \min_{\mathbf{x}} \{\mathbf{x}^\mathsf{H} A \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{x} \in \langle Z \rangle^\perp \\ & \text{and } x \in \langle \mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_q} \rangle^\perp \} \\ &= & \max_{S} \min_{\mathbf{y}} \{\mathbf{y}^\mathsf{H} B \mathbf{y} \mid \parallel \mathbf{y} \parallel_2 = 1 \text{ and } \mathbf{y} \in \langle S \rangle^\perp \} = \mu_j, \end{split}$$

where S ranges over the sets of non-zero vectors in \mathbb{C}^k containing n-j vectors.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix and let $B = A \begin{bmatrix} i_1 \cdots i_k \\ i_1 \cdots i_k \end{bmatrix}$ be a principal submatrix of A, $B \in \mathbb{C}^{k \times k}$. The set spec(B) contains no more positive eigenvalues than the number of positive eigenvalues of A and no more negative eigenvalues than the number of negative eigenvalues of A.

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \geqslant \cdots \geqslant \lambda_n$. If $\mathbf{u}_1, \ldots, \mathbf{u}_n$ are eigenvectors that correspond to $\lambda_1, \ldots, \lambda_n$, respectively, $W = \{\mathbf{u}_1, \ldots, \mathbf{u}_k\}$ and $Z = \{\mathbf{u}_{k+2}, \ldots, \mathbf{u}_n\}$, then we have:

$$\begin{array}{rcl} \lambda_{k+1} & = & \max_{\mathbf{x}} \{\mathbf{x}^H A \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{x} \in \langle W \rangle^{\perp} \} \\ & = & \min_{\mathbf{x}} \{\mathbf{x}^H A \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{x} \in \langle Z \rangle^{\perp} \}. \end{array}$$

If $A = U^{\mathsf{H}}DU$, where U is a unitary matrix and D is a diagonal matrix, then \mathbf{u}_i , the i^{th} column of U^{H} can be written as $\mathbf{u}_i = U^{\mathsf{H}}\mathbf{e}_i$. Therefore, by the second part of the proof of Courant-Fisher's theorem, we have $\mathbf{x}A\mathbf{x} \leqslant \lambda_{k+1}$ if \mathbf{x} belongs to the subspace orthogonal to the subspace generated by the first k eigenvectors of A. Consequently, the Courant-Fisher Theorem implies the first equality of this theorem. The second equality can be obtained in a similar manner.

Corollary

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix having the eigenvalues $\lambda_1 \geqslant \cdots \geqslant \lambda_n$. If $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are eigenvectors that correspond to $\lambda_1, \ldots, \lambda_k$, respectively, then a unit vector \mathbf{x} that maximizes $\mathbf{x}^H A \mathbf{x}$ and belongs to the subspace orthogonal to the subspace generated by the first k eigenvectors of A is an eigenvector that corresponds to λ_{k+1} .

Proof.

Let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be the eigenvectors of A and let $\mathbf{x} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle^{\perp}$ be a unit vector. We have $\mathbf{x} = \sum_{j=k+1}^n a_j \mathbf{u}_j$, and $\sum_{j=k+1}^n a_j^2 = 1$ which implies

$$\mathbf{x}^{\mathsf{H}}A\mathbf{x} = \sum_{j=k+1}^{n} \lambda_{j} a_{j}^{2} = \lambda_{k+1}.$$

This, in turn, implies $a_{k+1} = 1$ and $a_{k+2} = \cdots = a_n = 0$, so $\mathbf{x} = \mathbf{u}_{k+1}$.

BOSTON

Theorem

Let $A, B \in \mathbb{C}^{n \times}$ be two Hermitian matrices and let E = B - A. Suppose that the eigenvalues of A, B, E these are $\alpha_1 \geqslant \cdots \geqslant \alpha_n$, $\beta_1 \geqslant \cdots \geqslant \beta_n$, and $\epsilon_1 \geqslant \cdots \geqslant \epsilon_n$, respectively. Then, we have $\epsilon_n \leqslant \beta_i - \alpha_i \leqslant \epsilon_1$.

Note that E is Hermitian, so all matrices involved have real eigenvalues. By Courant-Fisher Theorem,

$$\beta_k = \min_{\mathbf{W}} \max_{\mathbf{x}} \{\mathbf{x}^\mathsf{H} B \mathbf{x} \mid \parallel \mathbf{x} \parallel_2 = 1 \text{ and } \mathbf{w}_i^\mathsf{H} \mathbf{x} = 0 \text{ for } 1 \leqslant i \leqslant k-1\},$$

where $W = \{\mathbf{w}_1, \dots, \mathbf{w}_{k-1}\}$. Thus,

$$\beta_k \leqslant \max_{\mathbf{x}} \mathbf{x}^{\mathsf{H}} B \mathbf{x} = \max_{\mathbf{x}} (\mathbf{x}^{\mathsf{H}} A \mathbf{x} + \mathbf{x}^{\mathsf{H}} E \mathbf{x}). \tag{3}$$

Let U be a unitary matrix such that $U^{\mathsf{H}}AU = \mathsf{diag}(\alpha_1, \dots, \alpha_n)$. Choose $\mathbf{w}_i = U\mathbf{e}_i$ for $1 \leqslant i \leqslant k-1$. We have $\mathbf{w}_i^{\mathsf{H}}\mathbf{x} = \mathbf{e}_i^{\mathsf{H}}U^{\mathsf{H}}\mathbf{x} = 0$ for $1 \leqslant i \leqslant k-1$.

Define $\mathbf{y} = U^H \mathbf{x}$. Since U is an unitary matrix, $\|\mathbf{y}\|_2 = \|\mathbf{x}\|_2 = 1$. Observe that $\mathbf{e}_i^H \mathbf{y} = y_i = 0$ for $1 \leqslant i \leqslant k$. Therefore, $\sum_{i=k}^n y_i^2 = 1$. This, in turn implies $\mathbf{x}^H A \mathbf{x} = \mathbf{y}^H U^H A U \mathbf{y} = \sum_{i=k}^n \alpha_i y_i^2 \leqslant \alpha_k$. From the Inequality (3) it follows that

$$\beta_{\textit{k}} \leqslant \alpha_{\textit{k}} + \max_{\mathbf{x}} \mathbf{x}^{\mathsf{H}} \textit{E} \mathbf{x} \leqslant \alpha_{\textit{k}} + \epsilon_{\textit{n}}.$$

Since A = B - E, by inverting the roles of A and B we have $\alpha_k \leq \beta_k - \epsilon_1$, or $\epsilon_1 \leq \beta_k - \alpha_k$, which completes the argument.

