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A square matrix A € C"™ " is unitarily diagonalizable if there exists a

diagonal matrix D = diag(di,...,d,) € C"*" and a unitary matrix
X € C"™" such that A = XDX"; equivalently, we have AX = XD.
Let X = (x1,...,Xp), where x1,...,X, are the columns of X, then then

Ax; = djx;, which shows that x; is a unit eigenvector that corresponds to
the eigenvalue d; for 1 </ < n. Also, we have

A= dixixi + - - + dpxpx)h.

which is the spectral decomposition of A. Note that each of the matrices
x;x!" is of rank 1.
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The SVD theorem extends this decomposition to rectangular matrices.

Theorem

If A€ C™*" is a complex matrix and rank(A) = r, then A can be factored
as A= UDV", where U € C™™ and V € C"*" are unitary matrices,

or 0 0 -~ 0 0
0 o O 0 0
pD=|0 0 - o - 0|ecm™n,
0 0 -~ 0 0
0 0 -~ 0 0

and o1 > ... > o, are real positive numbers.
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Proof

The square matrix A"A € C"*" is Hermitian, has the same rank as the
matrix A and is positive semidefinite. Therefore, there are r positive
eigenvalues of this matrix, denoted by af, ...,02, where
01209220, >0. Let v1,...,v, be the corresponding pairwise
orthogonal, unit eigenvectors in C". We have A"Av; = al-zv,- forl1 <i<r.
Let V be the matrix V = (v1 -+ v, v,41 --- v,) obtained by completing
the set {vi,...,v,} to an orthogonal basis for C". If V; = (v --- v,) and
Vo = (Vrg1 -+ V), we can write V = (Vi V,).

The equalities involving the eigenvectors can now be written as

A"AV; = V1 E?, where E = diag(o1,...,0,).
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Proof cont'd

Define Uy = AViE~! € C™*". We have U = E71VJ'A", so

U'Uy = ETYVPARAVIEY = ETYVPVIE2E L = |,

which shows that the columns of U; are pairwise orthogonal unit vectors.
Consequently, UFAV1E~1 = I, so Ul'AV; = E.
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Proof cont'd

If Uy =(u1 ---,u,), let Us = (up41,...,uy) be the matrix whose
columns constitute the extension of the set {u; --- ,u,} to an orthogonal
basis of C™. Define U € C™*™ as U = (U; U,). Note that

()0

L (URAVL UBAV,\  (URAVD UPAV,
- WA, USAV, ) ~ \USAV,  USAV,

U'AV, O\ (E O
o o0 0 0)°

U"AV

which is the desired decomposition.
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Observe that in the SVD described above (known as the full SVD) of A,
the diagonal matrix D has the same format as A, while both U and V are
square unitary matrices.

Definition

A number o € R+ is a singular value of a matrix A € C™*" if there exists
a pair of vectors (u,v) € C" x C"™ such that

Av = ou and A'u = ov. (1)

The vector u is the left singular vector and v is the right singular vector
associated to the singular value o.
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If (u,v) is a pair of vectors associated to o, then (au, av) is also a pair of
vectors associated with o for every a € C.

Let A€ C™ " and let A = UDV", where U € C"™*"™,

D = diag(o1,...,0,,0,...,0) € C™*" and V € C"*". Further, suppose
that U= (u; -+ up)and V = (vqg --- vp).

Since U and V are unitary matrices, we have U"u; = e; for 1 < j < m and
V'v; = e; for 1 <7 < n. Furthermore, De; = o;e; and De; = oje;, which
allows us to write:

AV,' = UDVHV,' = UDe,— = ojuj, and
AHuj VDUHUJ' = VDej = (TJ'VJ'.

Thus, the j*' column of the matrix U, u; and the j*™ column of the matrix
V, v; are left and right singular vectors, respectively, associated to the
singular value o;.
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Corollary

Let A € C™*" be a matrix and let A= UDV" be the singular value
decomposition of A. If || - || is a unitarily invariant norm, then

| All=ll D ||=| diag(o1,---,0r,0,...,0)] .

Proof.

This statement is a direct consequence of the previous Theorem because

the matrices U € C™*™ and V € C"*" are unitary.

Ol
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Thus, the value of a unitarily invariant norm of a matrix depends only on
its singular values. Since || - |2 and || - || are unitarily invariant, the
Frobenius norm can be written as
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The next definition extends to notion of unitarily equivalent to rectangular
matrices.

Definition

Two matrices A, B € C™*" are unitarily equivalent (denoted by A =, B) if
there exist two unitary matrices W; and W, such that A = W'BW..
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Theorem

Let A and B be two matrices in C™*". If A and B are unitarily equivalent,
then they have the same singular values.

v

Proof.
Suppose that A =, B, that is, A = W;'BW, for some unitary matrices W
and W5. If A has the SVD A = U"diag(o1,...,0,,0,...,0)V, then

B = Wi AWS = (W4 UM)diag(o, ..., 0,0, ,0)(VIAL).

Since Wi U" and VW}' are both unitary matrices, it follows that the
singular values of B. Ol

v
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Let v € C" be an eigenvector of the matrix A"A that corresponds to a
non-zero, positive eigenvalue 2, that is, A"Av = o°v.
Define u = %Av. We have Av = gu. Also,

Ay = A" <1Av> =oV.
o

This implies AA"u = ¢?u, so u is an eigenvector of AA" that corresponds

to the same eigenvalue 2.
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Conversely, if u € C™ is an eigenvector of the matrix AA" that corresponds
to a non-zero, positive eigenvalue o2, we have AA"u = o?u. Thus, if
v= %Au we have Av = ou and v is an eigenvector of A"A for the

eigenvalue o2.
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The Courant-Fisher Theorem allows the formulation of a similar result for
singular values.

Theorem

Let A be a matrix, Ac C"™" [foy >00>--->0) = --- Is the
non-increasing sequence of singular values of A, then

= mi m A €S and =1
Ok dim(5)=|rr1]—k+1 ax{|| Ax [|2| x and || x |2= 1}
= m mi A € d =1 9
Ok B, in{[| Ax [l2| x € T and || x [[>=1}

where S and T range over subspaces of C".
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Proof

We give the argument only for the second equality of the theorem; the
first can be shown in a similar manner.

We saw that o equals the k'™ largest absolute value of the eigenvalue
|Ak| of the matrix A"A. By Courant-Fisher Theorem, we have

Ak = in{x"A"A e T and =1
K dimn(17a_;<:kmx|n{x X | x and || x |2=1}

= in{|| Ax ||3| x € T and =1},
dl_mn(wg):kmxm{ll x [l2] x and | x []2= 1}

which implies the second equality of the theorem.
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The theorem can be restated as follows;

Theorem
Let A be a matrix, Ac C™". Ifo1>00>--->0) = --- Is the
non-increasing sequence of singular values of A, then
ok = min  max{|| Ax |l2| x Lwi,...,x Lwy_1and || x|2=1}
Wi,...,Wk_1
= max min{|| Ax ||2] x Lwi,....,x Lw, 4 and || x|2=1}.

Wi,...;Wn—k
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Corollary

The smallest singular value of a matrix A € C™*" equals
min{|| Ax ||2| x € C" and || x |2=1}.
The largest singular value of a matrix A € C™*" equals

maX{“ AX ||2| X € (Cn and || X ||2: ]_}
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If A€ C™"is an invertible matrix and o is a singular value of A, then % is
a singular value of the matrix A~

Example

Let
ai

an

be a non-zero vector is C”, which can also be regarded as a matrix in
C"*1. The square of a singular value of A is an eigenvalue of the matrix

5131 cee 5,,31

3jay -+ apas
A'A =

aijan -+ apap

and we have seen that the unique non-zero eigenvalue of this matrix is
| a|l3. Thus, the unique singular value of a is || a ||
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Example

Let A € R3%2 be the matrix

A=

= = O
O = =

The matrices AA" and A"A are given by:

110
AA" = 1 2 1
011
WA (21
AA_<12.
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The eigenvalues of A"A are the roots of the polynomial A2 — 4\ + 3, and
therefore, they are Ay = 3 and \; = 1. The eigenvalues of AA" are 3,1
and 0.

Unit eigenvectors of A"A that correspond to 3 and 1 are
V2
Vi = o (ﬁ) )
2
V2
Vo = Q2 ( 2\/§> )
2

respectively, where «; € {—1,1} for i =1, 2.
Unit eigenvectors of A"A that correspond to 3,1 and 0 are:

4 7 2
2
=0 L =5 0 | u=p|-2],
V6 _V2 V3
6 2
respectively, where §; € {—1,1} for i =1,2,3. oaASS
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The choice of the columns of the matrices U and V must be done such
that for a pair of eigenvectors (u, v) that correspond to a singular values o
we have v = %AHu or, equivalently, u = %Av. For instance, if we choose
a1 = ap = 1, then

V2 V2

Vi = \2@ yV2 = %@ )
2 2

and u; = %Avl and up = Avy, that is

V6 _V2
6 2

u; = g , U2 = 0 5
V6 V2
6 2

which means that 87 = 1 and 3 = —1; the value of 83 that corresponds
to the the eigenvalue of 0 can be chosen arbitrarily. 7/
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Thus, an SVD of A is

—_ | Vo
A=l 0 =¥ 0 1)(5H %
N I AN VA
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@ The singular values of a matrix A € C™*" are uniquely determined.

@ The matrices U and V of the SVD of A are not unique. Once we
choose a column of the matrix V for a singular value o, the
corresponding column of U is determined by u = %Av.
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A variant of the SVD Decomposition Theorem is given next.

Corollary

(The Thin SVD Decomposition Corollary) Let A € C™*" be a matrix
having non-zero singular values o1, 0>, ...,0,, where
o1>=202>=---2=20,>0and r <min{m,n}. Then, A can be factored as
A = UDV", where U € C™*" and V € C"™" are matrices having
orthonormal sets of columns and D is the diagonal matrix

op 0 --- 0
0 op - 0
D = .
0 O o
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The decomposition described in above is known as a thin SVD
decomposition of the matrix A.

Example
The thin SVD decomposition of the matrix A,

01
A=|11
10

N

_¥2
o | (7 o)(i i)
/3 0 1)\ 2

2

>
I
olSelSels

v

Since U and V in the thin SVD have orthonormal columns it is easy to see
that

U = VRV = |, m
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Lemma

Let D € R™ " be a diagonal matrix, where D = diag(o1,...,0,) and

01>+ >0, Then, we have |D|2 = o1, and || D ||r= /> 14 a,-2.
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Proof
By the definition of ||D]||2 we have:

IDll2 = max{|| Dx |[2|[[ x [|=1}
r n

= max{, | Y o?xl? | > Ix[ =1}
i=1 i=1

Since
r r
S o2l < o? (z rx,-|2> <o,
i=1 i=1

because "7, |x;|> = 1, it follows that

r n
max E o?|x;[? E x> =13 =01
i=1 i=1 A
The second part is immediate. oSN
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Theorem

Let A € C™*" be a matrix whose singular values are o1 > --+- > o,. Then

IAll2 = o1, and || A llF= /327y o7

Proof.

Suppose that the SVD of A is A= UDV", where U and V are unitary
matrices. Then, we have:

Al = IUDV"||2 = [ID|2 = o1,

1Al | UDV™ [le=|l D |lF=

74
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Corollary

If A€ C™" is a matrix, then [|All2 <|| A |F< VallA].

Proof.
Suppose that o1(A) is the largest of the singular values of A. Then, since

| Allr=/>-1_; 02, we have

i

o1(A) <[| AllF< | /nmaxa;(A)? = a1(A)v/n,

which is desired double inequality. [
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Let A= UDV" be an SVD of A. If we write U and V using their columns
as
U=(U1 Um),V=(V1 Vn)a

then A can be written as

A = UDV"

o 0 - o 0
0 0'2 ... ... 0 H
. . . Vi

O I S !
. . . vm
0O 0 0 0 O
0'1VT

— (ul um) .
O’,-V':,

Y ) 7 (2)
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Since u; € C™ and v; € C", each of the matrices u;v! is a m x n matrix of
rank 1. Thus, the SVD yields an expression of A as a sum of r matrices of
rank 1, where r is the number of non-zero singular values of A.
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Theorem

orthogonal. Moreover, || uivf [[f=1 for1 <i<r.

The rank-1 matrices of the form ujv¥, where 1 < i < r are pairwise

Prof. Dan A. Simovici
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Proof

Fori#jand 1 <i,j < r we have:
trace (u,-v,“(ujv}*)H) = trace(ujvjvju;) =0,

because the vectors v; and v; are orthogonal. Thus, (u;v}, u;v!) = 0.
Therefore, we have

|uv? |2 = trace((uv?)"uv)

= trace(viuiluv) =1,

because the matrices U and V are unitary.
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Theorem

Let A € C™*" be a matrix that has the singular value decomposition
A = UDV". If rank(A) = r, then the first r columns of U form an
orthonormal basis for Ran(A), and the last n — r columns of V constitute

an orthonormal basis for NullSp(A).
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Proof

Since both U and V are unitary matrices, it is clear that {us,...,u,}, the
set of the first r columns of U, and {v,11,...,v,}, the set of the last
n — r columns of V/, are linearly independent sets. Thus, we only need to
show that (uy,...,u,) = Ran(A) and (v,41,...,v,) = NullSp(A).
We have

A=ouvl + - +ouvt.

If t € Ran(A), then t = As for some s € C". Therefore,

t = oruy(vys) + - -+ + o,u,(v)'s), and, since the every product vi's is a
scalar for 1 <j < r, it follows that t € {uy,...,u,), so

Ran(A) C (u1,...,u,).
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Proof cont'd

To prove the reverse inclusion note that

for 1 < i < r, due to the orthogonality of the columns of V. Thus,
(u1,...,u,) = Ran(A).

Note that

A= ouvi + -+ o.u,vy
implies that Av; =0 for r +1 <j < n, s0 (Vr41,...,Vs) C NullSp(A).
Conversely, suppose that Ar = 0. Since the columns of V form a basis of

C" we have r = ajvy + - -+ + apvp, so Ar = a1Avy; + ---+a,v, = 0. The

linear independence of {vi,...,v,} implies a; =--- =a, =0, so
r = a,41V,41 + - - + apVps, which shows that NullSp(A) C (v,+1,..., V).
Thus, NullSp(A) = (V/+1, ..., V). 7/
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Corollary

Let A € C™*" be a matrix that has the singular value decomposition
A = UDV". If rank(A) = r, then the first r transposed columns of V form
an orthonormal basis for the subspace of R" generated by the rows of A.

Proof.
This statement follows immediately from the theorem applied to A". []

v
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The SVD allows us to find the best approximation of of a matrix by a
matrices of limited rank.

Lemma
Let A= oquvy + - - - + o,u,v) be the SVD of a matrix A € R™*", where

o1>--+->0,>0. Forevery k, 1 < k < r the matrix
B(k) = Zf'(:l ojuivt has rank k.
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Proof

The null space of the matrix B(k) consists of those vectors x such that
Zf'(:l oiujvix = 0. The linear independence of the vectors u; and the fact
that o; > 0 for 1 </ < r implies the equalities vi'’x =0 for 1 <7 < r.
Thus,

NullSp(B(k)) = NullSp ((v1 --- vk)) .

Since vy, ...,V are linearly independent it follows that
dim(NullSp(B(k)) = n — k, which implies rank(B(k)) = k for 1 < k < r.
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Theorem

(Eckhart-Young Theorem) Let A € C™*" be a matrix whose sequence
of non-zero singular values is (o1, ...,0,). Assume thatoy > --- >0, >0
and that A can be written as

H H
A= o1uiVvy + -+ oupv,.

Let B(k) € C™*" be the matrix defined by
k
B(k) = ZU,’U,’V'?.
i=1

If e = inf{||JA— X]l2 | X € C™*" and rank(X) < k}, then
A = B(K)ll2 = rc = o1,

for 1 < k < r, where 0,41 = 0 and B(k) is the best approximation of A
among the matrices of rank no larger than k in the sense of the norm || - 2.
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Proof

Observe that

,
A=B(k)= > ouy},
i=k+1
and the largest singular value of the matrix Z:(:k—f—l ogiuivt is opyq.
Therefore,
A= B(K)ll2 = o1

forl<k<r.

We prove now that for every matrix X € C™*" such that rank(X) < k, we
have ||A — X|l2 = ok+1. Since dim(NullSp(X)) = n — rank(X), it follows
that dim(NullSp(X)) > n— k. If T is the subspace of R"” spanned by
Vi,...,Vk+1, we have dim(T) = k + 1. Since

dim(NullSp(X)) 4+ dim(T) > n, the intersection of these subspaces
contains a non-zero vector and, without loss of generality, we can assume
that this vector is a unit vector x. 7/
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Proof cont'd

We have x = ajvy + - - - agVy + ak41Vk+1 because x € T. The
orthogonality of v1, ...,V vk 1 implies || x [|3= foill la;|> = 1.
Since x € NullSp(X), we have Xx =0, so

k+1 k+1
(A= X)x = Ax = Z ajAv; = Z ajoju;.
i=1 i=1
Thus, we have

k+1 k+1
(A= X)xI3 =) loiail® > 0f41 Y lail* = of 11,
i=1 i=1

because uq,...,u, are also orthonormal. This implies
IA = Xll2 > oxr1 = |A = B(K)]l2-
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Singular vector decompositions of matrices can be computed using the
function svd. Its standard usage for an n x p-matrix x is

svd(x, nu, nv)

where nu is the number of left singular vectors to be computed (which
must be between 0 and n) and nv is the number of right singular vectors
to be computed (between 0 and p). The arguments nu and nv are
optional and have the default values n and p, respectively.
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> svd(x)
$d
[1] 9.5255181 0.5143006

$u

[,1] [,2]
[1,] -0.6196295 -0.7848945
[2,] -0.7848945 0.6196295

[,1] [,2]
[1,] -0.2298477 0.8834610
[2,] -0.5247448 0.2407825
[3,] -0.8196419 -0.4018960
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