CS724: Topics in Algorithms Singular Values of Matrices

Prof. Dan A. Simovici

A square matrix $A \in \mathbb{C}^{n \times n}$ is *unitarily diagonalizable* if there exists a diagonal matrix $D = \operatorname{diag}(d_1, \ldots, d_n) \in \mathbb{C}^{n \times n}$ and a unitary matrix $X \in \mathbb{C}^{n \times n}$ such that $A = XDX^H$; equivalently, we have AX = XD. Let $X = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$, where $\mathbf{x}_1, \ldots, \mathbf{x}_n$ are the columns of X, then then $A\mathbf{x}_i = d_i\mathbf{x}_i$, which shows that \mathbf{x}_i is a unit eigenvector that corresponds to the eigenvalue d_i for $1 \leqslant i \leqslant n$. Also, we have

$$A = d_1 \mathbf{x}_1 \mathbf{x}_1^{\mathsf{H}} + \cdots + d_n \mathbf{x}_n \mathbf{x}_n^{\mathsf{H}}.$$

which is the *spectral decomposition of A*. Note that each of the matrices $\mathbf{x}_i \mathbf{x}_i^H$ is of rank 1.

The SVD theorem extends this decomposition to rectangular matrices.

Theorem

If $A \in \mathbb{C}^{m \times n}$ is a complex matrix and rank(A) = r, then A can be factored as $A = UDV^H$, where $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary matrices,

$$D = \begin{pmatrix} \sigma_1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \sigma_2 & 0 & & 0 & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_r & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \in \mathbb{C}^{m \times n},$$

and $\sigma_1 \geqslant \ldots \geqslant \sigma_r$ are real positive numbers.

Proof

The square matrix $A^{\mathsf{H}}A \in \mathbb{C}^{n \times n}$ is Hermitian, has the same rank as the matrix A and is positive semidefinite. Therefore, there are r positive eigenvalues of this matrix, denoted by $\sigma_1^2, \ldots, \sigma_r^2$, where $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$. Let $\mathbf{v}_1, \ldots, \mathbf{v}_r$ be the corresponding pairwise orthogonal, unit eigenvectors in \mathbb{C}^n . We have $A^{\mathsf{H}}A\mathbf{v}_i = \sigma_i^2\mathbf{v}_i$ for $1 \leqslant i \leqslant r$. Let V be the matrix $V = (\mathbf{v}_1 \cdots \mathbf{v}_r \mathbf{v}_{r+1} \cdots \mathbf{v}_n)$ obtained by completing the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ to an orthogonal basis for \mathbb{C}^n . If $V_1 = (\mathbf{v}_1 \cdots \mathbf{v}_r)$ and $V_2 = (\mathbf{v}_{r+1} \cdots \mathbf{v}_n)$, we can write $V = (V_1 \ V_2)$. The equalities involving the eigenvectors can now be written as

 $A^{\mathsf{H}}AV_1 = V_1E^2$, where $E = \mathsf{diag}(\sigma_1, \ldots, \sigma_r)$.

Proof cont'd

Define
$$U_1=AV_1E^{-1}\in\mathbb{C}^{m imes r}.$$
 We have $U_1^{ ext{H}}=E^{-1}V_1^{ ext{H}}A^{ ext{H}},$ so

$$U_1^{\mathsf{H}}U_1 = E^{-1}V_1^{\mathsf{H}}A^{\mathsf{H}}AV_1E^{-1} = E^{-1}V_1^{\mathsf{H}}V_1E^2E^{-1} = I_r,$$

which shows that the columns of U_1 are pairwise orthogonal unit vectors. Consequently, $U_1^HAV_1E^{-1}=I_r$, so $U_1^HAV_1=E$.

Proof cont'd

If $U_1=(\mathbf{u}_1 \cdots, \mathbf{u}_r)$, let $U_2=(\mathbf{u}_{r+1}, \ldots, \mathbf{u}_m)$ be the matrix whose columns constitute the extension of the set $\{\mathbf{u}_1 \cdots, \mathbf{u}_r\}$ to an orthogonal basis of \mathbb{C}^m . Define $U \in \mathbb{C}^{m \times m}$ as $U=(U_1 \ U_2)$. Note that

$$U^{\mathsf{H}}AV = \begin{pmatrix} U_{1}^{\mathsf{H}} \\ U_{2}^{\mathsf{H}} \end{pmatrix} A(V_{1} \ V_{2})$$

$$= \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & U_{1}^{\mathsf{H}}AV_{2} \\ U_{2}^{\mathsf{H}}AV_{1} & U_{2}^{\mathsf{H}}AV_{2} \end{pmatrix} = \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & U_{1}^{\mathsf{H}}AV_{2} \\ U_{2}^{\mathsf{H}}AV_{1} & U_{2}^{\mathsf{H}}AV_{2} \end{pmatrix}$$

$$= \begin{pmatrix} U_{1}^{\mathsf{H}}AV_{1} & O \\ O & O \end{pmatrix} = \begin{pmatrix} E & O \\ O & O \end{pmatrix},$$

which is the desired decomposition.

Observe that in the SVD described above (known as the *full SVD*) of A, the diagonal matrix D has the same format as A, while both U and V are square unitary matrices.

Definition

A number $\sigma \in \mathbb{R}_{>0}$ is a *singular value* of a matrix $A \in \mathbb{C}^{m \times n}$ if there exists a pair of vectors $(\mathbf{u}, \mathbf{v}) \in \mathbb{C}^n \times \mathbb{C}^m$ such that

$$A\mathbf{v} = \sigma \mathbf{u} \text{ and } A^{\mathsf{H}} \mathbf{u} = \sigma \mathbf{v}.$$
 (1)

The vector \mathbf{u} is the *left singular vector* and \mathbf{v} is the *right singular vector* associated to the singular value σ .

If (\mathbf{u}, \mathbf{v}) is a pair of vectors associated to σ , then $(a\mathbf{u}, a\mathbf{v})$ is also a pair of vectors associated with σ for every $a \in \mathbb{C}$.

Let $A \in \mathbb{C}^{m \times n}$ and let $A = UDV^H$, where $U \in \mathbb{C}^{m \times m}$,

 $D = \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathbb{C}^{m \times n}$ and $V \in \mathbb{C}^{n \times n}$. Further, suppose that $U = (\mathbf{u}_1 \cdots \mathbf{u}_m)$ and $V = (\mathbf{v}_1 \cdots \mathbf{v}_n)$.

Since U and V are unitary matrices, we have $U^{\mathsf{H}}\mathbf{u}_{j} = \mathbf{e}_{j}$ for $1 \leqslant j \leqslant m$ and $V^{\mathsf{H}}\mathbf{v}_{i} = \mathbf{e}_{i}$ for $1 \leqslant i \leqslant n$. Furthermore, $D\mathbf{e}_{i} = \sigma_{i}\mathbf{e}_{i}$ and $D\mathbf{e}_{j} = \sigma_{j}\mathbf{e}_{j}$, which allows us to write:

$$A\mathbf{v}_i = UDV^H\mathbf{v}_i = UD\mathbf{e}_i = \sigma_i\mathbf{u}_i$$
, and $A^H\mathbf{u}_j = VDU^H\mathbf{u}_j = VD\mathbf{e}_j = \sigma_j\mathbf{v}_j$.

Thus, the $j^{\rm th}$ column of the matrix U, \mathbf{u}_j and the $j^{\rm th}$ column of the matrix V, \mathbf{v}_j are left and right singular vectors, respectively, associated to the singular value σ_i .

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix and let $A = UDV^H$ be the singular value decomposition of A. If $\|\cdot\|$ is a unitarily invariant norm, then

$$||A|| = ||D|| = ||diag(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)||$$
.

Proof.

This statement is a direct consequence of the previous Theorem because the matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ are unitary.

Thus, the value of a unitarily invariant norm of a matrix depends only on its singular values. Since $\|\cdot\|_2$ and $\|\cdot\|_F$ are unitarily invariant, the Frobenius norm can be written as

$$\parallel A \parallel_F = \sqrt{\sum_{i=1}^r \sigma_r^2}.$$

The next definition extends to notion of unitarily equivalent to rectangular matrices.

Definition

Two matrices $A, B \in \mathbb{C}^{m \times n}$ are *unitarily equivalent* (denoted by $A \equiv_u B$) if there exist two unitary matrices W_1 and W_2 such that $A = W_1^H B W_2$.

Theorem

Let A and B be two matrices in $\mathbb{C}^{m \times n}$. If A and B are unitarily equivalent, then they have the same singular values.

Proof.

Suppose that $A \equiv_u B$, that is, $A = W_1^H B W_2$ for some unitary matrices W_1 and W_2 . If A has the SVD $A = U^H \mathrm{diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0) V$, then

$$B = W_1 A W_2^{\scriptscriptstyle\mathsf{H}} = (W_1 U^{\scriptscriptstyle\mathsf{H}}) \mathsf{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) (V W_2^{\scriptscriptstyle\mathsf{H}}).$$

Since W_1U^H and VW_2^H are both unitary matrices, it follows that the singular values of B.

Let $\mathbf{v} \in \mathbb{C}^n$ be an eigenvector of the matrix A^HA that corresponds to a non-zero, positive eigenvalue σ^2 , that is, $A^HA\mathbf{v} = \sigma^2\mathbf{v}$. Define $\mathbf{u} = \frac{1}{\sigma}A\mathbf{v}$. We have $A\mathbf{v} = \sigma \mathbf{u}$. Also,

$$A^{\mathsf{H}}\mathbf{u} = A^{\mathsf{H}}\left(\frac{1}{\sigma}A\mathbf{v}\right) = \sigma\mathbf{v}.$$

This implies $AA^{H}\mathbf{u} = \sigma^{2}\mathbf{u}$, so \mathbf{u} is an eigenvector of AA^{H} that corresponds to the same eigenvalue σ^{2} .

Conversely, if $\mathbf{u} \in \mathbb{C}^m$ is an eigenvector of the matrix AA^{H} that corresponds to a non-zero, positive eigenvalue σ^2 , we have $AA^{\mathsf{H}}\mathbf{u} = \sigma^2\mathbf{u}$. Thus, if $\mathbf{v} = \frac{1}{\sigma}A\mathbf{u}$ we have $A\mathbf{v} = \sigma\mathbf{u}$ and \mathbf{v} is an eigenvector of $A^{\mathsf{H}}A$ for the eigenvalue σ^2 .

The Courant-Fisher Theorem allows the formulation of a similar result for singular values.

Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geq \sigma_2 \geqslant \cdots \geqslant \sigma_k \geqslant \cdots$ is the non-increasing sequence of singular values of A, then

$$\begin{array}{lll} \sigma_k & = & \min_{\dim(S)=n-k+1} \max\{\parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \in S \text{ and } \parallel \mathbf{x} \parallel_2 = 1\} \\ \sigma_k & = & \max_{\dim(T)=k} \min\{\parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \in T \text{ and } \parallel \mathbf{x} \parallel_2 = 1\}, \end{array}$$

where S and T range over subspaces of \mathbb{C}^n .

Proof

We give the argument only for the second equality of the theorem; the first can be shown in a similar manner.

We saw that σ_k equals the $k^{\rm th}$ largest absolute value of the eigenvalue $|\lambda_k|$ of the matrix $A^{\rm H}A$. By Courant-Fisher Theorem, we have

$$\begin{array}{lll} \lambda_k & = & \displaystyle \max_{\dim(T)=k} \min_{\mathbf{x}} \{\mathbf{x}^\mathsf{H} A^\mathsf{H} A \mathbf{x} \ | \ \mathbf{x} \in \mathcal{T} \ \text{and} \ \parallel \mathbf{x} \parallel_2 = 1 \} \\ & = & \displaystyle \max_{\dim(T)=k} \min_{\mathbf{x}} \{ \parallel A \mathbf{x} \parallel_2^2 | \ \mathbf{x} \in \mathcal{T} \ \text{and} \ \parallel \mathbf{x} \parallel_2 = 1 \}, \end{array}$$

which implies the second equality of the theorem.

The theorem can be restated as follows:

Theorem

Let A be a matrix, $A \in \mathbb{C}^{m \times n}$. If $\sigma_1 \geq \sigma_2 \geqslant \cdots \geqslant \sigma_k \geqslant \cdots$ is the non-increasing sequence of singular values of A, then

$$\begin{split} \sigma_k &= & \min_{\mathbf{w}_1, \dots, \mathbf{w}_{k-1}} \max\{ \parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \perp \mathbf{w}_1, \dots, \mathbf{x} \perp \mathbf{w}_{k-1} \text{ and } \parallel \mathbf{x} \parallel_2 = 1 \} \\ &= & \max_{\mathbf{w}_1, \dots, \mathbf{w}_{n-k}} \min\{ \parallel A\mathbf{x} \parallel_2 \mid \mathbf{x} \perp \mathbf{w}_1, \dots, \mathbf{x} \perp \mathbf{w}_{n-k} \text{ and } \parallel \mathbf{x} \parallel_2 = 1 \}. \end{split}$$

Corollary

The smallest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\min\{\parallel A\mathbf{x}\parallel_2 \mid \mathbf{x} \in \mathbb{C}^n \text{ and } \parallel \mathbf{x}\parallel_2 = 1\}.$$

The largest singular value of a matrix $A \in \mathbb{C}^{m \times n}$ equals

$$\max\{\parallel A\mathbf{x}\parallel_2 \mid \ \mathbf{x}\in\mathbb{C}^n \ \textit{and} \ \parallel \mathbf{x}\parallel_2=1\}.$$

If $A \in \mathbb{C}^{n \times n}$ is an invertible matrix and σ is a singular value of A, then $\frac{1}{\sigma}$ is a singular value of the matrix A^{-1} .

Example

Let

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

be a non-zero vector is \mathbb{C}^n , which can also be regarded as a matrix in $\mathbb{C}^{n\times 1}$. The square of a singular value of A is an eigenvalue of the matrix

$$A^{\mathsf{H}}A = \begin{pmatrix} \bar{a}_1 a_1 & \cdots & \bar{a}_n a_1 \\ \bar{a}_1 a_2 & \cdots & \bar{a}_n a_2 \\ \vdots & \cdots & \vdots \\ \bar{a}_1 a_n & \cdots & \bar{a}_n a_n \end{pmatrix}$$

and we have seen that the unique non-zero eigenvalue of this matrix is $||a||_2^2$. Thus, the unique singular value of **a** is $||a||_2$.

Example

Let $A \in \mathbb{R}^{3 \times 2}$ be the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

The matrices AA^H and A^HA are given by:

$$AA^{H} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

 $A^{H}A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$

The eigenvalues of $A^{\rm H}A$ are the roots of the polynomial $\lambda^2-4\lambda+3$, and therefore, they are $\lambda_1=3$ and $\lambda_1=1$. The eigenvalues of $AA^{\rm H}$ are 3, 1 and 0.

$$\mathbf{v}_1 = \alpha_1 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix},$$

$$\mathbf{v}_2 = \alpha_2 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix},$$

respectively, where $\alpha_i \in \{-1,1\}$ for i=1,2. Unit eigenvectors of A^HA that correspond to 3,1 and 0 are:

Unit eigenvectors of A^HA that correspond to 3 and 1 are

$$\mathbf{u}_1 = \beta_1 \begin{pmatrix} \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \end{pmatrix}, \mathbf{u}_2 = \beta_2 \begin{pmatrix} \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \end{pmatrix}, \mathbf{u}_3 = \beta_3 \begin{pmatrix} \frac{\sqrt{3}}{3} \\ -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix},$$

respectively, where $\beta_i \in \{-1,1\}$ for i=1,2,3.

The choice of the columns of the matrices U and V must be done such that for a pair of eigenvectors (u, v) that correspond to a singular values σ we have $\mathbf{v} = \frac{1}{\sigma}A^{\mathsf{H}}\mathbf{u}$ or, equivalently, $\mathbf{u} = \frac{1}{\sigma}A\mathbf{v}$. For instance, if we choose $\alpha_1 = \alpha_2 = 1$, then

$$\textbf{v}_1 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix}, \textbf{v}_2 = \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix},$$

and $\mathbf{u}_1 = \frac{1}{\sqrt{3}}A\mathbf{v}_1$ and $\mathbf{u}_2 = A\mathbf{v}_2$, that is

$$\mathbf{u}_1 = \begin{pmatrix} \frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{3} \\ \frac{\sqrt{6}}{6} \end{pmatrix}, \mathbf{u}_2 = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{pmatrix},$$

which means that $\beta_1 = 1$ and $\beta_2 = -1$; the value of β_3 that corresponds to the the eigenvalue of 0 can be chosen arbitrarily.

Thus, an SVD of A is

$$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{3} & 0 & -\frac{\sqrt{3}}{3} \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} & \frac{\sqrt{3}}{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

- The singular values of a matrix $A \in \mathbb{C}^{m \times n}$ are uniquely determined.
- The matrices U and V of the SVD of A are not unique. Once we choose a column of the matrix V for a singular value σ , the corresponding column of U is determined by $\mathbf{u} = \frac{1}{\sigma}A\mathbf{v}$.

A variant of the SVD Decomposition Theorem is given next.

Corollary

(The Thin SVD Decomposition Corollary) Let $A \in \mathbb{C}^{m \times n}$ be a matrix having non-zero singular values $\sigma_1, \sigma_2, \ldots, \sigma_r$, where $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$ and $r \leqslant \min\{m, n\}$. Then, A can be factored as $A = UDV^H$, where $U \in \mathbb{C}^{m \times r}$ and $V \in \mathbb{C}^{n \times r}$ are matrices having orthonormal sets of columns and D is the diagonal matrix

$$D = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{pmatrix}.$$

The decomposition described in above is known as a *thin SVD decomposition* of the matrix *A*.

Example

The thin SVD decomposition of the matrix A,

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}.$$

is

$$A = \begin{pmatrix} \frac{\sqrt{6}}{6} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{6}}{3} & 0 \\ \frac{\sqrt{6}}{6} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}.$$

Since U and V in the thin SVD have orthonormal columns it is easy to see that

$$U^{\mathsf{H}}U = V^{\mathsf{H}}V = I_{\mathsf{p}}.$$

Lemma

Let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix, where $D = \text{diag}(\sigma_1, \dots, \sigma_r)$ and $\sigma_1 \geqslant \dots \geq \sigma_r$. Then, we have $||D||_2 = \sigma_1$, and $||D||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$.

Proof

By the definition of $||D||_2$ we have:

$$\begin{split} \| D \|_2 &= \max \{ \| \ D \mathbf{x} \ \|_2 \ | \ \| \ \mathbf{x} \ \| = 1 \} \\ &= \max \{ \sqrt{\sum_{i=1}^r \sigma_i^2 |x_i|^2} \ | \ \sum_{i=1}^n |x_i|^2 = 1 \}. \end{split}$$

Since

$$\sum_{i=1}^{r} \sigma_i^2 |x_i|^2 \le \sigma_1^2 \left(\sum_{i=1}^{r} |x_i|^2 \right) \leqslant \sigma_1^2,$$

because $\sum_{i=1}^{n} |x_i|^2 = 1$, it follows that

$$\max\left\{\sqrt{\sum_{i=1}^r \sigma_i^2 |x_i|^2} \;\middle|\; \sum_{i=1}^n |x_i|^2 = 1\right\} = \sigma_1.$$

The second part is immediate.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose singular values are $\sigma_1 \geqslant \cdots \geqslant \sigma_r$. Then $|||A|||_2 = \sigma_1$, and $||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$.

Proof.

Suppose that the SVD of A is $A = UDV^H$, where U and V are unitary matrices. Then, we have:

$$|||A||_2 = |||UDV^H||_2 = |||D||_2 = \sigma_1,$$
 $|||A||_F = |||UDV^H||_F = ||D||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}.$

Corollary

If $A \in \mathbb{C}^{m \times n}$ is a matrix, then $||A||_2 \leqslant ||A||_F \leq \sqrt{n} ||A||_2$.

Proof.

Suppose that $\sigma_1(A)$ is the largest of the singular values of A. Then, since

$$||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$
, we have

$$\sigma_1(A) \leqslant \parallel A \parallel_F \leqslant \sqrt{n \max_i \sigma_j(A)^2} = \sigma_1(A)\sqrt{n},$$

which is desired double inequality.

Let $A = UDV^H$ be an SVD of A. If we write U and V using their columns as

$$U=(\mathbf{u}_1 \cdots \mathbf{u}_m), V=(\mathbf{v}_1 \cdots \mathbf{v}_n),$$

then A can be written as

$$= UDV^{H}$$

$$= (\mathbf{u}_{1} \cdots \mathbf{u}_{n}) \begin{pmatrix} \sigma_{1} & 0 & \cdots & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & \cdots & 0 \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ 0 & 0 & \cdots & \sigma_{r} & 0 \\ \vdots & \vdots & \cdots & \cdots & \vdots \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1}^{H} \\ \vdots \\ \mathbf{v}_{m}^{H} \end{pmatrix}$$

$$= (\mathbf{u}_{1} \cdots \mathbf{u}_{m}) \begin{pmatrix} \sigma_{1} \mathbf{v}_{1}^{H} \\ \vdots \\ \sigma_{r} \mathbf{v}_{p}^{H} \end{pmatrix}$$

$$= \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{H} + \cdots + \sigma_{r} \mathbf{u}_{r} \mathbf{v}_{p}^{H}.$$

Since $\mathbf{u}_i \in \mathbb{C}^m$ and $\mathbf{v}_i \in \mathbb{C}^n$, each of the matrices $\mathbf{u}_i \mathbf{v}_i^H$ is a $m \times n$ matrix of rank 1. Thus, the SVD yields an expression of A as a sum of r matrices of rank 1, where r is the number of non-zero singular values of A.

Theorem

The rank-1 matrices of the form $\mathbf{u}_i \mathbf{v}_i^H$, where $1 \leq i \leqslant r$ are pairwise orthogonal. Moreover, $\parallel \mathbf{u}_i \mathbf{v}_i^H \parallel_F = 1$ for $1 \leqslant i \leqslant r$.

Proof

For $i \neq j$ and $1 \leqslant i, j \leqslant r$ we have:

$$trace\left(\mathbf{u}_{i}\mathbf{v}_{i}^{H}(\mathbf{u}_{j}\mathbf{v}_{j}^{H})^{H}\right)=trace\left(\mathbf{u}_{i}\mathbf{v}_{i}^{H}\mathbf{v}_{j}\mathbf{u}_{j}\right)=0,$$

because the vectors \mathbf{v}_i and \mathbf{v}_j are orthogonal. Thus, $(\mathbf{u}_i \mathbf{v}_i^H, \mathbf{u}_j \mathbf{v}_j^H) = 0$. Therefore, we have

because the matrices $\it U$ and $\it V$ are unitary.

Theorem

Let $A \in \mathbb{C}^{m \times n}$ be a matrix that has the singular value decomposition $A = UDV^H$. If rank(A) = r, then the first r columns of U form an orthonormal basis for Ran(A), and the last n - r columns of V constitute an orthonormal basis for NullSp(A).

Proof

Since both U and V are unitary matrices, it is clear that $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$, the set of the first r columns of U, and $\{\mathbf{v}_{r+1},\ldots,\mathbf{v}_n\}$, the set of the last n-r columns of V, are linearly independent sets. Thus, we only need to show that $\langle \mathbf{u}_1,\ldots,\mathbf{u}_r\rangle=\mathrm{Ran}(A)$ and $\langle \mathbf{v}_{r+1},\ldots,\mathbf{v}_n\rangle=\mathrm{NullSp}(A)$. We have

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{H}} + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^{\mathsf{H}}.$$

If $\mathbf{t} \in \mathsf{Ran}(A)$, then $\mathbf{t} = A\mathbf{s}$ for some $\mathbf{s} \in \mathbb{C}^n$. Therefore, $\mathbf{t} = \sigma_1 \mathbf{u}_1(\mathbf{v}_1^\mathsf{H}\mathbf{s}) + \dots + \sigma_r \mathbf{u}_r(\mathbf{v}_r^\mathsf{H}\mathbf{s})$, and, since the every product $\mathbf{v}_j^\mathsf{H}\mathbf{s}$ is a scalar for $1 \leqslant j \leqslant r$, it follows that $\mathbf{t} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_r \rangle$, so $\mathsf{Ran}(A) \subseteq \langle \mathbf{u}_1, \dots, \mathbf{u}_r \rangle$.

Proof cont'd

To prove the reverse inclusion note that

$$A\left(\frac{1}{\sigma_i}\mathbf{v}_i\right)=\mathbf{u}_i,$$

for $1 \leqslant i \leqslant r$, due to the orthogonality of the columns of V. Thus, $\langle \mathbf{u}_1, \ldots, \mathbf{u}_r \rangle = \mathsf{Ran}(A)$.

Note that

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^{\mathsf{H}} + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_p^{\mathsf{H}}$$

implies that $A\mathbf{v}_j = 0$ for $r+1 \leqslant j \leqslant n$, so $\langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle \subseteq \text{NullSp}(A)$. Conversely, suppose that $A\mathbf{r} = \mathbf{0}$. Since the columns of V form a basis of \mathbb{C}^n we have $\mathbf{r} = a_1\mathbf{v}_1 + \cdots + a_n\mathbf{v}_n$, so $A\mathbf{r} = a_1A\mathbf{v}_1 + \cdots + a_r\mathbf{v}_r = \mathbf{0}$. The linear independence of $\{\mathbf{v}_1, \ldots, \mathbf{v}_r\}$ implies $a_1 = \cdots = a_r = 0$, so $\mathbf{r} = a_{r+1}\mathbf{v}_{r+1} + \cdots + a_n\mathbf{v}_n$, which shows that $\text{NullSp}(A) \subseteq \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle$. Thus, $\text{NullSp}(A) = \langle \mathbf{v}_{r+1}, \ldots, \mathbf{v}_n \rangle$.

Corollary

Let $A \in \mathbb{C}^{m \times n}$ be a matrix that has the singular value decomposition $A = UDV^H$. If rank(A) = r, then the first r transposed columns of V form an orthonormal basis for the subspace of \mathbb{R}^n generated by the rows of A.

Proof.

This statement follows immediately from the theorem applied to A^{H} .

The SVD allows us to find the best approximation of of a matrix by a matrices of limited rank.

Lemma

Let
$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^H + \cdots + \sigma_r \mathbf{u}_r \mathbf{v}_r^H$$
 be the SVD of a matrix $A \in \mathbb{R}^{m \times n}$, where $\sigma_1 \geqslant \cdots \geqslant \sigma_r > 0$. For every k , $1 \leqslant k \leqslant r$ the matrix $B(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^H$ has rank k .

Proof

The null space of the matrix B(k) consists of those vectors \mathbf{x} such that $\sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^\mathsf{H} \mathbf{x} = \mathbf{0}$. The linear independence of the vectors \mathbf{u}_i and the fact that $\sigma_i > 0$ for $1 \leqslant i \leqslant r$ implies the equalities $\mathbf{v}_i^\mathsf{H} \mathbf{x} = \mathbf{0}$ for $1 \leqslant i \leqslant r$. Thus,

$$NullSp(B(k)) = NullSp((\mathbf{v}_1 \cdots \mathbf{v}_k)).$$

Since $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent it follows that $\dim(\operatorname{NullSp}(B(k)) = n - k$, which implies $\operatorname{rank}(B(k)) = k$ for $1 \leq k \leq r$.

Theorem

(Eckhart-Young Theorem) Let $A \in \mathbb{C}^{m \times n}$ be a matrix whose sequence of non-zero singular values is $(\sigma_1, \ldots, \sigma_r)$. Assume that $\sigma_1 \geqslant \cdots \geqslant \sigma_r > 0$ and that A can be written as

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^H + \cdots + \sigma_r \mathbf{u}_r \mathbf{v}_r^H.$$

Let $B(k) \in \mathbb{C}^{m \times n}$ be the matrix defined by

$$B(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^H.$$

If $r_k = \inf\{|||A - X|||_2 \mid X \in \mathbb{C}^{m \times n} \text{ and } rank(X) \leqslant k\}$, then

$$||A - B(k)||_2 = r_k = \sigma_{k+1},$$

for $1 \leqslant k \leqslant r$, where $\sigma_{r+1} = 0$ and B(k) is the best approximation of A among the matrices of rank no larger than k in the sense of the norm $\|\cdot\|_2$.

Proof

Observe that

$$A - B(k) = \sum_{i=k+1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\mathsf{H}},$$

and the largest singular value of the matrix $\sum_{i=k+1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{H}}$ is σ_{k+1} . Therefore,

$$||A - B(k)||_2 = \sigma_{k+1}.$$

for $1 \leqslant k \leqslant r$.

We prove now that for every matrix $X \in \mathbb{C}^{m \times n}$ such that $rank(X) \leq k$, we have $||A - X||_2 \geq \sigma_{k+1}$. Since $\dim(\operatorname{NullSp}(X)) = n - rank(X)$, it follows that $\dim(\operatorname{NullSp}(X)) \geq n - k$. If T is the subspace of \mathbb{R}^n spanned by $\mathbf{v}_1, \ldots, \mathbf{v}_{k+1}$, we have $\dim(T) = k+1$. Since $\dim(\operatorname{NullSp}(X)) + \dim(T) > n$, the intersection of these subspaces contains a non-zero vector and, without loss of generality, we can assume that this vector is a unit vector \mathbf{x} .

Proof cont'd

We have $\mathbf{x} = a_1 \mathbf{v}_1 + \cdots + a_k \mathbf{v}_k + a_{k+1} \mathbf{v}_{k+1}$ because $\mathbf{x} \in T$. The orthogonality of $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}$ implies $\|\mathbf{x}\|_2^2 = \sum_{i=1}^{k+1} |a_i|^2 = 1$. Since $\mathbf{x} \in \text{NullSp}(X)$, we have $X\mathbf{x} = \mathbf{0}$, so

$$(A-X)\mathbf{x} = A\mathbf{x} = \sum_{i=1}^{k+1} a_i A \mathbf{v}_i = \sum_{i=1}^{k+1} a_i \sigma_i \mathbf{u}_i.$$

Thus, we have

$$|||(A-X)\mathbf{x}||_2^2 = \sum_{i=1}^{k+1} |\sigma_i \mathbf{a}_i|^2 \ge \sigma_{k+1}^2 \sum_{i=1}^{k+1} |\mathbf{a}_i|^2 = \sigma_{k+1}^2,$$

because $\mathbf{u}_1, \dots, \mathbf{u}_k$ are also orthonormal. This implies

$$|||A - X||_2 \geqslant \sigma_{k+1} = |||A - B(k)||_2.$$

Singular vector decompositions of matrices can be computed using the function svd. Its standard usage for an $n \times p$ -matrix x is

svd(x, nu, nv)

where nu is the number of left singular vectors to be computed (which must be between 0 and n) and nv is the number of right singular vectors to be computed (between 0 and p). The arguments nu and nv are optional and have the default values n and p, respectively.


```
> svd(x)
$d
「17 9.5255181 0.5143006
$u
          [,1]
                    [,2]
[1,] -0.6196295 -0.7848945
[2,] -0.7848945 0.6196295
$v
          [,1]
                    [,2]
[1,] -0.2298477 0.8834610
[2,] -0.5247448 0.2407825
```

[3,] -0.8196419 -0.4018960

