CS724: Topics in Algorithms Matrix Reducibility

Prof. Dan A. Simovici

Definition

A *permutation* of the set $\{1,\ldots,n\}$ is a bijection

$$\phi: \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\}.$$

A permutation can be represented as

$$\phi:\begin{pmatrix}1&2&\cdots&n\\\phi(1)&\phi(2)&\cdots&\phi(n)\end{pmatrix}$$

Example

The permutation of $\{1, 2, 3, 4\}$ defined by

$$\phi(1) = 3, \phi(2) = 1, \phi(3) = 4, \phi(4) = 2$$

can be written as

$$\phi:\begin{pmatrix}1&2&3&4\\3&1&4&2\end{pmatrix}.$$

An alternative representation of permutations is by *permutation matrices*.

Definition

The permutation matrix of the permutation

$$\phi:\begin{pmatrix}1&2&\cdots&n\\\phi(1)&\phi(2)&\cdots&\phi(n)\end{pmatrix}$$

is the matrix P_{ϕ} given by

$$P_{\phi} = [\mathbf{e}_{\phi(1)} \; \mathbf{e}_{\phi(2)} \; \cdots \; \mathbf{e}_{\phi(n)}]$$

Example

The matrix of the permutation

$$\phi:\begin{pmatrix}1&2&3&4\\3&1&4&2\end{pmatrix}.$$

is

$$P_{\phi} = [\mathbf{e}_3 \ \mathbf{e}_1 \ \mathbf{e}_4 \ \mathbf{e}_2]$$

$$= \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

A permutation matrix has exactly a single 1 in every row and column.

If $A \in \mathbb{R}^{n \times n}$ is a matrix and $\phi : \{1, \dots, n\} \longrightarrow \{1, \dots, n\}$ is a permutation, then $P_{\phi}AP'_{\phi}$ is the matrix obtained from A by renumbering the rows and columns of A according to permutation ϕ .

Example

By using the permutation

$$\phi:\begin{pmatrix}1&2&3&4\\3&1&4&2\end{pmatrix}.$$

defined above row 1 and column 1 become row 3 and column 3, etc.

The result of the matrix product $P_{\phi}AP'_{\phi}$ can be observed below:

```
> P \leftarrow matrix(c(0,0,1,0,1,0,0,0,0,0,1,0,1,0,0),ncol=4)
> P
     [,1] [,2] [,3] [,4]
[1,]
       0
[2,]
[3,] 1
[4,]
> A <-matrix(c(1:16),4,4)
> A
     [,1] [,2] [,3] [,4]
[1,]
            5
                 9
                     13
[2,] 2 6 10
                     14
[3,] 3 7 11
                     15
[4,] 4
            8
                12
                     16
> P \%*\% A \%*\% t(P)
     [,1] [,2] [,3] [,4]
[1,]
       6
           14
                     10
[2,]
       8 16
                 4
                     12
[3,] 5
           13
[4,]
           15
                 3
                     11
```

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is *reducible* if there exists a permutation matrix P_ϕ such that

$$A = P_{\phi} \begin{pmatrix} U & V \\ O_{\rho,q} & W \end{pmatrix} P'_{\phi},$$

where $U \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{R}^{q \times q}$ are square matrices. Otherwise, A is said to be *irreducible*.

 $A \in \mathbb{R}^{n \times n}$ is irreducible if and only if there is no partition $\{I, J\}$ of the set $\{1, \ldots, n\}$ such that $a_{ij} = 0$ when $i \in I$ and $j \in J$. Note that if A is a reducible matrix.

$$A = \begin{pmatrix} U & V \\ O_{p,q} & W \end{pmatrix},$$

where $U \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{R}^{q \times q}$, and we seek to solve the linear system $A\mathbf{x} = \mathbf{b}$, by partitioning \mathbf{x} and \mathbf{b} as

$$\mathbf{x} = \begin{pmatrix} \mathbf{y} \\ \mathbf{z} \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix},$$

where $\mathbf{y}, \mathbf{c} \in \mathbb{R}^p$ and $\mathbf{z}, \mathbf{d} \in \mathbb{R}^q$, the original system can be replaced by the equivalent system

$$\label{eq:continuity} \begin{aligned} U\mathbf{y} + V\mathbf{z} &= \mathbf{c}, \\ W\mathbf{z} &= \mathbf{d}. \end{aligned}$$

The solution of the initial system has been reduced of solving this new system. It is clear that $\mathbf{z} = W^{-1}\mathbf{d}$ and $\mathbf{y} = U^{-1}(\mathbf{c} - VW^{-1}\mathbf{d})$. Let A be a symmetric matrix. The *degree of reducibility* of A is k, where $0 \le k \le n-1$ if there exists a partition $\{I_1, \ldots, I_{k+1}\}$ of $\{1, \ldots, n\}$ such that:

- any submatrix $A \begin{bmatrix} I_i \\ I_i \end{bmatrix}$ is irreducible for $1 \le i \le k+1$;
- $a_{pq} = 0$ whenever $p \in I_i$, $q \in I_j$, and $i \neq j$.

The degree of reducibility of A is denoted by red(A).

The adjacency matrix is the usual matrix representation of a directed graph (or a digraph). In this section we are concerned with the reverse process that associates a graph to a matrix.

Definition

Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. The *directed graph* of A is the graph $G_A = (\{1, \dots, n\}, E)$, where $(i, j) \in E$ if and only if $a_{ij} \neq 0$.

Example

The directed graph of the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 4 \\ -1 & 2 & 0 & 5 \\ -5 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

is shown next

Observe that if the vertices of the directed graph G_A are renumbered by replacing each number j by $\phi(j)$, where ϕ is a permutation of the set $\{1,\ldots,n\}$, the new resulting graph G' corresponds to the matrix $B=P_{\phi}A\Phi_{\phi}^{-1}=P_{\phi}A\Phi_{\phi}'$.

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is *reducible* if there exists a permutation matrix P_{ϕ} such that

$$A = P_{\phi} \left(egin{matrix} U & V \ O_{p,q} & W \end{matrix}
ight) P_{\phi}',$$

where $U \in \mathbb{R}^{p \times p}$ and $V \in \mathbb{R}^{q \times q}$ are square matrices. Otherwise, A is said to be *irreducible*.

 $A \in \mathbb{R}^{n \times n}$ is irreducible if and only if there is no partition $\{I, J\}$ of the set $\{1, \ldots, n\}$ such that $a_{ij} = 0$ when $i \in I$ and $j \in J$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a matrix. If G_A is a strongly connected digraph, then A is irreducible.

Proof.

Let $A \in \mathbb{R}^{n \times n}$ be a reducible matrix. There exists a partition $\{I, J\}$ of the set $\{1, \ldots, n\}$ such that $a_{ij} = 0$ when $i \in I$ and $j \in J$. Therefore, there is no edge from a vertex in J to a vertex in I, which implies that there exists a vertex $i \in I$ and a vertex $j \in J$ such that there is no path leading from j to i. Thus, G_A is not strongly connected. This shows that if G_A is strongly connected, then A is irreducible.

Theorem

The directed graph G_A of an irreducible matrix A is strongly connected.

Suppose that G_A is not strongly connected and let V_1, \ldots, V_k be the strong connected components of G_A , where k > 1. Since the condensed digraph $\mathsf{C}(G_A)$ is acyclic we may assume without loss of generality that its vertices V_1, \ldots, V_k are numbered in topological order. In other words, the existence of an edge (V_i, V_j) in $\mathsf{C}(G)$ implies i < j.

Assume initially that the vertices of the strong component V_i are

$$V_p, V_{p+1}, \ldots, V_{p+|V_i|-1},$$

where $p=1+\sum_{j=1}^{i-1}|V_j|$ for $1\leq i\leq j\leq k$. Under this assumption we have $a_{pq}=0$ if $v_p\in V_i$, $v_q\in V_\ell$ and $i>\ell$. In other words the matrix A has the form

$$A = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ O & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \cdots & \vdots \\ O & O & \cdots & A_{kk} \end{pmatrix},$$

where A_{ii} is the incidence matrix of the subgraph induced by V_i . Thus, A is not irreducible.

If the vertices of G_A are not numbered according to the previous assumptions, let ϕ be a permutation that rearranges the vertices in the needed order. Then $P_{\phi}AP'_{\phi}$ has the necessary form and, again, A is not irreducible.

Corollary

A matrix A is irreducible if and only if its directed graph G_A is strongly connected. Moreover, red(A) = k - 1 if and only if G_A has k strong components. In this case, there is a permutation matrix P_{ϕ} such that $P_{\phi}AP'_{\phi}$ is an upper block triangular matrix

$$P_{\phi}AP'_{\phi} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1k} \\ O & A_{22} & \cdots & A_{2k} \\ \vdots & \vdots & \cdots & \vdots \\ O & O & \cdots & A_{kk} \end{pmatrix},$$

having irreducible diagonal blocks.

Corollary

A matrix A is irreducible if and only if its transpose is irreducible.

Proof.

This statement follows immediately by observing that the digraph $G_{A'}$ is obtained from G_A by reversing the direction of all edges.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a non-negative matrix. For $m \ge 1$ we have $(A^m)_{ij} > 0$ if and only if there exists a path of length m in the graph G_A from i to j.

Proof

The argument is by induction on $m \ge 1$. The base case, m = 1, is immediate.

Suppose that the theorem holds for numbers less than m. Then, $(A^m)_{ij} = \sum_{k=1}^n (A^{m-1})_{ik} A_{kj}$. $(A^m)_{ij} > 0$ if and only if there is a positive term $(A^{m-1})_{ik} A_{kj}$ in the right-hand sum because all terms are non-negative. By the inductive hypothesis this is the case if and only if there exists a path of length m-1 joining i to k and an edge joining k to k, that is, a path of length k joining k to k.

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be an irreducible matrix such that $A \geq 0$. If $k_i > 0$ for $1 \leq i \leq n-1$, then $\sum_{i=0}^{n-1} k_i A^i > 0$.

Proof

Since A is an irreducible matrix, the graph G_A is strongly connected. Thus, there exists a path of length no larger than n-1 that joins any two distinct vertices i and j of the graph G_A . This implies that for some $m \leq n-1$ we have $(A^m)_{ij} > 0$. Since

$$\left(\sum_{i=0}^{n-1} k_i A^i\right)_{ij} = \sum_{i=0}^{n-1} k_i (A^m)_{ij},$$

and all numbers that occur in this equality are non-negative, it follows that for $i \neq j$ we have $\left(\sum_{i=0}^{n-1} k_i A^i\right)_{ij} > 0$. If i = j, the same inequality follows from the fact that $k_0 I > O$.

Corollary

Let $A \in \mathbb{R}^{n \times n}$ be an irreducible matrix such that $A \geq O$, then $(I + A)^n > 0$.

If we choose $k_i = \binom{n}{i}$ for $0 \le i \le n-1$ the desired inequality follows immediately.

