Homework 1

Posted: February 4, 2019 Due: February 20, 2019

- 1. List all partitions of the set $\{a, b, c, d\}$ and draw the Hesse diagram of the poset of these partitions.
- 2. Let \mathcal{C} be a non-empty collection of non-empty subsets of a set S. Prove that \mathcal{C} is a partition of S if and only if every element a of S belongs to exactly one member of the collection \mathcal{C} .

Let π be a partition of a set S. A subset T of S is π -saturated if it equals a union of blocks of π .

- 3. Let π be a partition having m blocks defined on a set having n elements, where $m \leq n$. How many of the subsets of S are π -saturated?
- 4. Prove that if $\pi, \pi' \in PART(S)$ and $\pi' \leq \pi$, then every π -saturated set is a π' -saturated set.
- 5. Let S be a set and let U be a subset of S. For $a \in \{0,1\}$, define the set

$$U^a = \begin{cases} U & \text{if } a = 1, \\ S - U & \text{if } a = 0. \end{cases}$$

(a) Prove that if $\mathcal{D} = \{D_1, \dots, D_r\}$ is a finite collection of subsets of S, then the collection $\pi_{\mathcal{D}}$ defined by

$$\pi_{\mathcal{D}} = \{ D_1^{a_1} \cap D_2^{a_2} \cap \dots \cap D_r^{a_r} \neq \emptyset \mid (a_1, a_2, \dots, a_r) \in \{0, 1\}^r \},$$

is a partition S.

(b) Prove that each set of \mathcal{D} is a $\pi_{\mathcal{D}}$ -saturated set.