Homework 4

Posted: April 10, 2019 Due: April 24, 2019

1. A series of five experiments involves recording three variables and produces the following data matrix:

	\mathcal{V}_1	\mathcal{V}_2	\mathcal{V}_3
\mathbf{u}_1	1	160	168
\mathbf{u}_2	0	150	148
\mathbf{u}_3	1	120	170
\mathbf{u}_4	0	100	120
\mathbf{u}_5	1	200	180

Scale the matrix using the $\,{\bf R}\,$ function scale.

Using singular value decompositions compute approximations of rank 1 and 2 of the *centered* matrix that corresponds to the data matrix given above.

- 2. Starting from the approximation of rank 2 of the data matrix defined above construct manually a biplot to represent data. What informations can be extracted from this biplot?
- 3. Consider the set of points that consists of two "entangled spirals" shown in Figure 1. Extract the coordinates of the points from Figure 1 and compute the dist object using the Euclidean metric. Apply spectral clustering to determine if the two sets of points of the two curves can be separated.
- 4. Let $D \in \mathbb{R}^{m \times n}$ be a centered data matrix and let $D = U \operatorname{diag}(\sigma_1 \cdots \sigma_r) V'$ be the thin SVD of D, where $U \in \mathbb{R}^{m \times r}$, $V \in \mathbb{R}^{n \times r}$, U and V have orthonormal columns. If

$$S = U \operatorname{diag}(\sigma_1 \cdots \sigma_r) = (\mathbf{s}_1 \cdots \mathbf{s}_r) = (\sigma_1 \mathbf{u}_1 \cdots \sigma_r \mathbf{u}_r) \in \mathbb{R}^{m \times r}$$

Figure 1: Two entangled curves

is the matrix of scores and $V \in \mathbb{R}^{n \times r}$ is the matrix of loadings, prove that

- (a) the variance of a score vector \mathbf{s}_i is $var(\mathbf{s}_i) = \frac{1}{m-1}\sigma_i^2$; (b) $D = \mathbf{s}_1\mathbf{v}_1' + \cdots + \mathbf{s}_r\mathbf{v}_r'$; (c) if $D_k = \mathbf{s}_1\mathbf{v}_1' + \cdots + \mathbf{s}_k\mathbf{v}_k'$, where $k \leq r$, then

$$\frac{\mathsf{TVAR}(D_k)}{\mathsf{TVAR}(D)} = \frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^r \sigma_i^2}.$$

In other words $\frac{\sum_{i=1}^k \sigma_i^2}{\sum_{i=1}^r \sigma_i^2}$ indicates the portion of the total variance of D explained by the first k scores.