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Vectors and Matrices in R

1.1 Vectors in R

Vectors are data structures that accommodate sequences of elements that have
the same type. A scalar in R is a vector of length 1.

A scalar is created using an assignment as we show next.

x <- 6.9

Its length obtained by length(x) is 0.
A vector of length n can be defined using the concatenation function c.

To create the vector (10, 20, 25) we write

y <- c(10,20,25)

The length of y is 3.
Individual components of a vector v can be accessed using the notation

v[i]. For example,

> y[2]

returns 20.
Vector components can be named. Consider the vector perfsq. To assign

names to its components we write:

perfsq <- c(1,4,9,16,25,36,49,64,81)

> names(perfsq) <- c("one","two","three","four","five","six","seven",

+ "eight","nine")

When the value of perfsq is inspected we get both the components of the
vector and their names:

> perfsq

one two three four five six seven eight nine

1 4 9 16 25 36 49 64 81

Portion of a vector defined by subsets of its index values can be extracted
by
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> perfs[2:5]

returning

[1] 4 9 16 25

Random samples can be constructed using the function sample.

Example 1. Let x be a vector of 10 integer created by

x <- 1:10

To sample five of its components we write

y <- sample(x,5)

which may return

> y

[1] 6 9 10 7 8

If the second argument is omitted, we obtain a random permutation of x as
in

> z <- sample(x)

> z

[1] 8 4 10 6 5 9 3 7 1 2

Samples with replacement can be obtained by using the parameter replace
= TRUE. For example, we have

w <- sample(x,replace=TRUE)

> w

[1] 8 10 10 10 3 9 1 8 5 7

Finally, to produce a quasi-random sequence of 20 binary digits we write

> sample(c(0,1),20,replace=TRUE)

[1] 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0

Let us consider other useful examples of manipulating vectors. Note that
the concatenation operation c is associative.

Example 2. If we define the vector ps as

ps <- c(1,4,9,16,25,36,49,64,81)

and then write
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ps <- c(ps,c(8,27,64,125))

the result is equivalent to writing

ps <- c(1,4,9,16,25,36,49,64,81,8,27,64,125)

A vector can be involved in a condition. This condition will be tested for
each of its component and a vector of Boolean values will be generated, as it
is shown below:

> v<- c(1,5,2,4,9,6)

> v <= 6

[1] TRUE TRUE TRUE TRUE FALSE TRUE

The condition can be used to extract the components of the vector that satisfy
a condition as in

> v[v<6]

[1] 1 5 2 4

Example 3. Let us index the components of ps with numbers between 1 and
13:

> names(ps) <- 1:13

> ps

1 2 3 4 5 6 7 8 9 10 11 12 13

1 4 9 16 25 36 49 64 81 8 27 64 125

To extract the components of ps corresponding to the fourth to the seventh
component we can write

> idx <- 4:7

> ps[idx]

4 5 6 7

16 25 36 49

To eliminate all components of ps between the 4th and the 7th we can use
negative indexes:

> ps[-idx]

1 2 3 8 9 10 11 12 13

1 4 9 64 81 8 27 64 125

Similarly, to obtain components of ps outside the range from 2 to 7 of the
index we can use:

> ps[-2:-7]

1 8 9 10 11 12 13

1 64 81 8 27 64 125
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A vector can be sorted using the function sort. When applied to ps we obtain

> pt <- sort(ps)

> pt

1 2 10 3 4 5 11 6 7 8 12 9 13

1 4 8 9 16 25 27 36 49 64 64 81 125

This allows us to identify the indexes of ps that correspond to the components
that are less than 40 by writing

pt[pt < 40]

which yields:

pt[pt < 40]

1 2 10 3 4 5 11 6

1 4 8 9 16 25 27 36

Finally, to extract the indices of the original vector that correspond to com-
ponents less than 40 we write:

ll <- as.integer(names(pt[pt<40]))

which gives the desired answer:

> ll

[1] 1 2 10 3 4 5 11 6

1.2 Lists

Lists are structures similar to vectors. The main difference is that there is
no homogeneity requirements for lists. In other words, list elements may be
numbers, strings, or logical values.

Unlike vectors (which can be created using the c() functions, lists are
created using the function list. Elements can be named, which allows a dual
access for list components: either by name or by their numbered position. For
instance, a list created as

> student <- list(name = "John Doe", grad = TRUE, gpa = 3.7)

allows us to access its first component either by

> student$name

[1] "John Doe"

or by

> student[1]

$name

[1] "John Doe"
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1.3 Arrays

Arrays are structures that accomodate multidimensional collections of data.
Array components are accessed using the square bracket notation.

To create an array that has three dimension containing 4× 2× 5 elements
(40 elements in total), we write

> a <- array(1:40,c(4,2,5))

The content of this array is shown below. Note that for each of the five
values of the last index we have a 4× 2 array, as shown below.

> a

, , 1

[,1] [,2]

[1,] 1 5

[2,] 2 6

[3,] 3 7

[4,] 4 8

, , 2

[,1] [,2]

[1,] 9 13

[2,] 10 14

[3,] 11 15

[4,] 12 16

, , 3

[,1] [,2]

[1,] 17 21

[2,] 18 22

[3,] 19 23

[4,] 20 24

, , 4

[,1] [,2]

[1,] 25 29

[2,] 26 30

[3,] 27 31

[4,] 28 32

, , 5

[,1] [,2]

[1,] 33 37
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[2,] 34 38

[3,] 35 39

[4,] 36 40

To extract the subarray that corresponds to the value 1 of the first index and
the value 2 of the last we write

> a[1, ,2]

which results in

[1] 9 13

1.4 Matrices

Matrices are bidimensional arrays. Data is entered in matrices columnwise. If
we write

> m <- matrix(c(1,2,3,4,5,6),nrow=3)

we obtain the 3× 2 matrix:

> m

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Similarly,

p <- matrix(c(2,4,6,5,7,9),ncol=3)

creates the matrix 2× 3 matrix:

> p

[,1] [,2] [,3]

[1,] 2 6 7

[2,] 4 5 9

To compute the product of these matrices we write

q <- m %*% p

r <- p %*% m

which yield the matrices

> q

[,1] [,2] [,3]

[1,] 18 26 43

[2,] 24 37 59

[3,] 30 48 75

> r

[,1] [,2]

[1,] 35 80

[2,] 41 95
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Rows and columns can be added to a matrix using the function rbind and
cbind, respectively.

Example 4. We can generate a two-column matrix that contains the coordi-
nates of 50 points in R2 centered around (0, 0), distributed according to a
normal distribution N(0, 0.3) by writing

matrix(rnorm(100,sd=0.3), ncol = 2)

Another 50 points centered around (1, 1) can be obtained as

matrix(rnorm(100,mean =1, sd=0.3),ncol = 2)

To put together these matrices we can write

x <- rbind(matrix(rnorm(100,sd=0.3),ncol=2),

+ matrix(rnorm(100,mean=1,sd=0.3),ncol=2))

and thus, obtain a matrix x with 100 rows and two columns.

To compute the determinant of a square matrix defined by

s <- matrix(c(1,0,-1,2,3,4,1,8,9),nrow=3)

we write

> det(s)

[1] -18

The inverse of of a matrix can be computed using the function ginv of the
library MASS.

Example 5. > library(MASS)

> ginv(s)

[,1] [,2] [,3]

[1,] 0.2777778 0.7777778 -0.7222222

[2,] 0.4444444 -0.5555556 0.4444444

[3,] -0.1666667 0.3333333 -0.1666667

>

The transpose of a matrix is computed using the function t.

X <- matrix(c(1,2,3,4,5,6),nrow=2)

Example 6. > X <- matrix(c(1,2,3,4,5,6),nrow=2)

> X

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> ncol(X)
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[1] 3

> Y <- t(X)

> Y

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

The distance between rows of a matrix can be computed by the function
dist which produces a triangular object as in

> m <- matrix(c(1,2,3,4,2,3,4,5,3,4,5,6),nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 4 4

[2,] 2 2 5 5

[3,] 3 3 3 6

> dist(m)

1 2

2 2.645751

3 3.162278 2.645751

The value returned by dist is useful for various functions in the package
class that compute various types of classifications. However, if a matrix form
of these distances is needed we can use the function as.matrix:

> as.matrix(dist(m))

1 2 3

1 0.000000 2.645751 3.162278

2 2.645751 0.000000 2.645751

3 3.162278 2.645751 0.000000

1.5 Data Frames

The dataframe is a similar to a matrix, so it is a tabular object. However,
unlike matrices, its columns may vary in type.

The definition of a data frame begins with the definitions of the vectors
that constitute its columns. Then, these columns are assembled into a data
frame using the function data.frame.

Example 7. A data frame wh can be created as follows:

> weight <- c(180,150,210,140,170)

> height <- c(1.78,1.64,1.90,1.50,1.89)

> wh <- data.frame(weight,height)

This results in the data frame wh shown below:
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> wh

weight height

1 180 1.78

2 150 1.64

3 210 1.90

4 140 1.50

5 170 1.89

An alternative technique for creating a data frame is reading its content
from a csv file by using the function read.csv.

Example 8. Suppose that we have a csv file named consEU.csv. By default, R assumes
that the file contains a header and, in our case, the header consists of

code prot fat

Thus, upon writing

fatprot <- read.csv("C:/Users/Dan/Desktop/cs724-SPRING2014/handouts/consEU.csv")

and

> fatprot

System R will return:

code prot fat

1 AL 97 87

2 AT 107 155

3 BY 88 97

4 BE 97 164

5 BA 86 67

6 BG 79 101

7 HR 74 97

8 CY 99 133

9 CZ 95 121

10 DK 108 135

11 EE 88 96

12 FI 105 127

13 FR 117 164

14 GE 77 58

15 DE 99 142

16 GR 117 146

17 HU 90 145

18 IS 128 143

19 IE 115 135

20 IT 113 158
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21 LV 87 116

22 LT 112 105

23 LU 124 164

24 MK 72 102

25 MT 116 110

26 MD 73 59

27 NL 103 135

28 NO 104 144

29 PL 100 113

30 PT 114 137

31 RO 110 107

32 RU 92 87

33 YU 75 116

34 SK 72 108

35 SI 102 131

36 ES 109 152

37 CH 91 152

fatprot is a new data frame.

The country codes can be obtained using the “$” operator:

fatprot$code

which returns

> fatprot$code

[1] AL AT BY BE BA BG HR CY CZ DK EE FI FR GE DE GR HU IS IE IT LV LT LU MK MT

[26] MD NL NO PL PT RO RU YU SK SI ES CH

37 Levels: AL AT BA BE BG BY CH CY CZ DE DK EE ES FI FR GE GR HR HU IE ... YU

The categorical attribute code has 37 values in its domain; these values are
the levels of the attribute code.

If the operator “$” is used in conjunction with a numerical attribute as in

fatprot$fat

R returns the list of values that occur in the data frame under fat:

> fatprot$fat

[1] 87 155 97 164 67 101 97 133 121 135 96 127 164 58 142 146 145 143 135

[20] 158 116 105 164 102 110 59 135 144 113 137 107 87 116 108 131 152 152

Projections of a dataframe can be obtained by enclosing a list of attributes
between square brackets. For example, we can write:

fatprot[c("fat","prot")]

This will return
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fat prot

1 87 97

2 155 107

3 97 88

4 164 97

5 67 86

6 101 79

7 97 74

8 133 99

9 121 95

10 135 108

11 96 88

12 127 105

13 164 117

14 58 77

15 142 99

16 146 117

17 145 90

18 143 128

19 135 115

20 158 113

21 116 87

22 105 112

23 164 124

24 102 72

25 110 116

26 59 73

27 135 103

28 144 104

29 113 100

30 137 114

31 107 110

32 87 92

33 116 75

34 108 72

35 131 102

36 152 109

37 152 91

Equivalently, we could enter

fatprot[2:3]

To extract the projection of a selected set of rows of the data frame we
need to specify two arrays between the square brackets that designate the
projection. To return the code prot of the first four rows we can write:

> fatprot[c(1,2,3,4),c(1,2)]

code prot

1 AL 97

2 AT 107
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3 BY 88

4 BE 97

To inspect the structure of an R object one could use the function str.

Example 9. The function call str(fatprot) returns

> str(fatprot)

’data.frame’: 37 obs. of 3 variables:

$ code: Factor w/ 37 levels "AL","AT","BA",..: 1 2 6 4 3 5 18 8 9 11 ...

$ prot: int 97 107 88 97 86 79 74 99 95 108 ...

$ fat : int 87 155 97 164 67 101 97 133 121 135 ...

1.6 Numeric Computations in R

R provides the usual arithmetic operators, +,−, ∗, and ,̂ standing for addi-
tion, subtraction, multiplication and power. In addition x%%y stands for “x
modulo y”.

Trigonometric computations can be performed using

sin cos tan asin acos atan

The hyperbolic functions

sinh cosh tanh asinh acosh atanh

are also present. Exponentials and logarithms are computed with

exp log log10 logb,

where log computes natural logarithms, log10 computes base 10 logarithms,
and log2 computes base 2 logarithms. The general form log(x, base) com-
putes logarithms with base base. In addition, log1p(x) computes log(1+x)

accurately for |x| << 1.
The functions gamma and lgamma compute the Euler function Γ (a) =∫∞

0
ta−1e−t dt and ln |Γ (a)|, respectively, when a 6∈ {n ∈ Z | n 6 0}.
The functions beta and lbeta compute the beta function B(a, b) =

Γ (a)Γ (b)
Γ (a+b) and the natural logarithm of the beta function, respectively.

The number of combinations of k among of n objects is computed by
choose(n,k) and its logarithm is calculated with lchoose(n,k). Finally,
factorial(n) computes n! and its logarithm is produced by lfactorial(x).

Example 10. An approximation of
√

1 + x can be computed using the binomial

series
∑∞
k=0

( 1
2
k

)
xk. For x = 0.25 we obtain, using the first 6 terms of this series,

the value

> k <- 0:5

> sum(choose(1/2,k)* 0.25^k)

[1] 1.118038
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1.7 Functions in R

If the package matlab is obtained and loaded, it is possible to define the
function centmat that will compute the centering matrix Hn = In − 1

n111′n111n
as

> centmat <- function(n)

+ { return (eye(n) - (1/n) * ones(n,n))

+ }

using the MATLAB functions eye and ones.
Build-in R functions return, in general a list, whose components can be

accessed using the “$” notation. For example, the function eigen computes
the eigenvalues and the eigenvectors of a matrix m, as sown next.

m <- matrix(c(1,2,5,0,2,1,3,1,4),ncol=3)

> m

[,1] [,2] [,3]

[1,] 1 0 3

[2,] 2 2 1

[3,] 5 1 4

> eigen(m)

$values

[1] 6.934914 1.598564 -1.533479

$vectors

[,1] [,2] [,3]

[1,] 0.4239582 0.17942954 0.7412273

[2,] 0.3417759 -0.98311922 -0.2423938

[3,] 0.8387185 0.03580004 -0.6259611

The components of the list are:
• values, a vector containing the eigenvalues of m, sorted in decreasing

order, according to their absolute values in the asymmetric case when
they might be complex (even for real matrices);

• vectors, which is either a square matrix whose columns contain the eigen-
vectors of m; the vectors are normalized to unit length.
To verify the previous computation we write

> r <- eigen(m)

> V <- r$vectors

> lam <- r$values

> D = diag(lam)

> V %*% D %*% ginv(V)

which results in:

[,1] [,2] [,3]

[1,] 1 -2.775558e-16 3

[2,] 2 2.000000e+00 1

[3,] 5 1.000000e+00 4
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Of course, be sure that you load in advance the package MASS which contains
the function ginv.

Singular value decompositions can be achieved using the function svd. For
a matrix M ∈ Cn×p the format is

svd(m, nu = min(n, p), nv = min(n, p))

Here nu is the number of left singular vectors to be computed which must
between 0 and n, while nv is the number of right singular vectors to be com-
puted; must be between 0 and p.

The list returned by svd contains the components:
• d: the vector of singular values;
• u: a matrix whose columns are the nu left singular vectors:
• v: a matrix whose columns are the nv right singular vectors.

Example 11. For the matrix defined by

> m <- matrix(c(1,0,2,1,1,3,4,5,6),ncol=3)

the function call

svd(m,nu=2,nv=2)

returns

$d

[1] 9.4974302 1.6090358 0.4580641

$u

r[,1] [,2]

[1,] -0.4442681 -0.1088962

[2,] -0.5202254 -0.7767400

[3,] -0.7293774 0.6203359

$v

[,1] [,2]

[1,] -0.2003724 0.7033874

[2,] -0.3319451 0.6061838

[3,] -0.9217718 -0.3711973

Scaling of a data matrix entails centering the data and, if desired, scaling
the columns of the matrix. The default format of the function is

scale(m, center = TRUE, scale = TRUE)
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If the arguments center and scale are omitted these defaults are applied.
The argument center may be a vector with a number of components equal
to the number of columns (features) of the data matrix, or a logical value.
If center is a vector, then each column has the corresponding component
subtracted from it. If center is TRUE then the column means are subtracted
from the corresponding column.

The value of scale specifies how the column scaling is performed. If scale
is a vector as above, then each column of m is divided by the corresponding
value from scale. If scale is TRUE then scaling is done by dividing the centered
columns of m by their standard deviations. If scale is FALSE, no scaling is
done.

Example 12. Consider the scaling performed by

> scale(fatprot[,2-3])

This returns a standardized matrix where all columns have a mean of zero
and a standard deviation of 1.

prot fat

[1,] -0.08009906 -1.20414084

[2,] 0.56417599 1.14440052

[3,] -0.65994661 -0.85876711

[4,] -0.08009906 1.45523687

[5,] -0.78880162 -1.89488829

[6,] -1.23979415 -0.72061762

[7,] -1.56193168 -0.85876711

[8,] 0.04875595 0.38457831

[9,] -0.20895407 -0.02987016

[10,] 0.62860350 0.45365306

[11,] -0.65994661 -0.89330448

[12,] 0.43532098 0.17735408

[13,] 1.20845104 1.45523687

[14,] -1.36864916 -2.20572465

[15,] 0.04875595 0.69541467

[16,] 1.20845104 0.83356416

[17,] -0.53109160 0.79902679

[18,] 1.91715360 0.72995204

[19,] 1.07959603 0.45365306

[20,] 0.95074102 1.24801264

[21,] -0.72437411 -0.20255702

[22,] 0.88631352 -0.58246813

[23,] 1.65944358 1.45523687

[24,] -1.69078669 -0.68608024

[25,] 1.14402354 -0.40978126

[26,] -1.62635918 -2.17118728

[27,] 0.30646597 0.45365306

[28,] 0.37089348 0.76448942
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[29,] 0.11318345 -0.30616914

[30,] 1.01516853 0.52272781

[31,] 0.75745851 -0.51339338

[32,] -0.40223659 -1.20414084

[33,] -1.49750417 -0.20255702

[34,] -1.69078669 -0.47885601

[35,] 0.24203847 0.31550357

[36,] 0.69303100 1.04078840

[37,] -0.46666409 1.04078840

attr(,"scaled:center")

prot fat

98.24324 121.86486

attr(,"scaled:scale")

prot fat

15.52132 28.95414

>

The functions head(l) and tail(l) return, respectively, an initial and a
final part of a list l.

Using the sample function we can construct the function rpm that com-
putes a random permutation matrix as

rpm <- function(n) {

require(matlab)

A <- mat.or.vec(n,n)

x <- sample(1:n)

for(i in 1:n) A[i,x[i]] <- 1

return(A)

}

The function call mat.or.vec(n,n) constructs a n×nmatrix whose entries
are 0. Then, matrix elements are modified in positions determined by the
random permutation x. For example, we can write

P <- rpm(5)

> P

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 0 0 0

[2,] 0 0 1 0 0

[3,] 1 0 0 0 0

[4,] 0 0 0 0 1

[5,] 0 0 0 1 0
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Data Sample Matrices

2.1 Introduction

Matrices are natural tools for organizing data sets. Let such a data set consist
of a sequence E of m vectors of Rn, (uuu1, . . . ,uuum). The jth components (uuui)j
of these vectors correspond to the values of a random variable Vj , where
1 ≤ j ≤ n. This data series will be represented as a matrix having m rows
uuu′1, . . . ,uuu

′
m and n columns vvv1, . . . , vvvn. We refer to matrices obtained in this

manner as sample matrices. The number m is the size of the sample.
In this chapter we present algebraic properties of vectors and matrices

associated with a sample matrix: the mean vector and the covariance matrix.

2.2 The Sample Matrix

Each row vector uuu′i corresponds to an experiment Ei in the series of exper-
iments E = (E1, . . . , Em); the experiment Ei consists of measuring the n
components of uuu′i = (xi1, . . . , xin), as shown below.

vvv1 · · · vvvn
uuu′1 x11 · · · x1n
uuu′2 x21 · · · x2n

...
...

...
...

uuu′m xm1 · · · xmn

The column vector

vvvj =


x1j
x2j

...
xmj
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represents the measurements of the jth variable Vj of the experiment, for
1 ≤ j ≤ n, as shown below. These variables are usually referred to as attributes
or features of the series E.

Definition 1. The mean of D is the vector D̃ = 1
mD

′111m ∈ Rn. D is centered

if D̃ = 000n.

In particular, if D = (vvv) ∈ Rm×1, then ṽvv = 1
mvvv
′111m.

Example 13. The following data matrix records the weights and heigths of five
individuals:

weight (lbs) height (m)
180 1.78
150 1.64
210 1.90
140 1.50
170 1.89

This data matrix D belongs to R5×2 and has two features: weight and
height, and five observations:(

180
1.78

)
,

(
150
1.64

)
,

(
210
1.90

)
,

(
140
1.50

)
,

(
170
1.89

)
We have D ∈ R5×2, so D̃ ∈ R2 is given by

D̃ =
1

5
D′1115

=
1

5

(
180 150 210 140 170
1.78 1.64 1.90 1.50 1.89

)
1
1
1
1
1


=

(
170
1.74

)
Theorem 1. Let D ∈ Rm×n be a data matrix and let

Hm = Im −
1

m
111m111′m = Im −

1

m
Jm,m.

HmD is a centered data matrix.

Proof: We have
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˜(HmD) =
1

m
D′H ′m111m =

1

m
D′
(
Im −

1

m
111m111′m

)′
111m

=
1

m
D′
(
Im −

1

m
111m111′m

)
111m =

1

m
D′
(

111m −
1

m
111m111′m111m

)
= 000n.

Theorem 2. The centering matrix Hm = Im − 1
m111m111′m is both symmetric

and idempotent; further, Hm111m = 000m.

Example 14. For D ∈ R5×2 the centering matrix is

H5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− 1

5


1
1
1
1
1

 (1 1 1 1 1),

so

H =


0.8000 −0.2000 −0.2000 −0.2000 −0.2000
−0.2000 0.8000 −0.2000 −0.2000 −0.2000
−0.2000 −0.2000 0.8000 −0.2000 −0.2000
−0.2000 −0.2000 −0.2000 0.8000 −0.2000
−0.2000 −0.2000 −0.2000 −0.2000 0.8000

 .

Thus, the centered matrix is

H5A =


10.0000 −0.1220
−20.0000 −0.0620
40.0000 0.1980
−30.0000 −0.2020

0 0.1880


Let

D =

uuu
′
1
...
uuu′m

 = (vvv1 · · · vvvn) ∈ Rm×n

be a data matrix and let zzz ∈ Rn.

Definition 2. The inertia of D relative to zzz is the number Izzz(D) =
∑m
j=1 ‖

uuuj − zzz ‖22.

Theorem 3. (Huygens’ Inertia Theorem) Let

D =

uuu
′
1
...
uuu′m
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be a data matrix. We have

Izzz(D)− ID̃(D) = m ‖ D̃ − zzz ‖22,

for every zzz ∈ Rn. The minimal value of the inertia Izzz(D) is achieved for
zzz = D̃.

Proof: The inertia of uuu relative to ũuu is

Iũuu(uuu) =

m∑
j=1

‖ uuuj − ũuu ‖22

=

m∑
j=1

(uuuj − ũuu)′(uuuj − ũuu)

=

m∑
j=1

(uuu′juuuj − ũuu
′uuuj − uuu′jũuu+ ũuu′ũuu).

Similarly, we have

Izzz(uuu) =

m∑
j=1

(uuu′juuuj − zzz′uuuj − uuu′jzzz + zzz′zzz).

This allows us to write

Izzz(uuu)− Iũuu(uuu) =

m∑
j=1

(ũuu− zzz)′uuuj +

m∑
j=1

uuu′j(ũuu− zzz) + zzz′zzz − ũuu′ũuu

= (ũuu− zzz)′
m∑
i=1

uuuj +

 m∑
j=1

uuuj

′ (ũuu− zzz) +m(zzz′zzz − ũuu′ũuu)

= m(ũuu− zzz)′ũuu+mũuu′(ũuu− zzz) +m(zzz′zzz − ũuu′ũuu)

= m ‖ ũuu− zzz ‖22,

which is the equality of the theorem.

Corollary 1. Let uuu = (uuu1, . . . ,uuum) ∈ Seqm(Rn). The minimal value of the
inertia Izzz(uuu) is achieved for zzz = ũuu.

Definition 3. The standard deviation of a vector vvv ∈ Rm is the number

svvv =

√√√√ 1

m− 1

m∑
i=1

(vi − ṽ)2,

where ṽ = 1
m

∑m
i=1 vi is the mean of the components of vvv.

The variance is var(vvv) = s2vvv.
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The standard deviation of a data matrix D ∈ Rm×n, where D = (vvv1 · · · vvvn)
is the row

sss = (svvv1 , . . . , svvvn) ∈ Rn.

The standard deviation of a data matrix D ∈ Rm×n, where D = (vvv1 · · · vvvn)
is the row sss = (svvv1 , . . . , svvvn) ∈ Rn.

Let uuu and www be two vectors in Rm, where m > 1, having the means ũ and
w̃, and the standard deviations su and sv, respectively.

The covariance coefficient of uuu and www is the number

cov(uuu,www) =
1

m− 1

m−1∑
i=1

(ui − ũ)(wi − w̃).

Definition 4. The correlation coefficient of uuu and www is the number

ρ(uuu,www) =
cov(uuu,www)

susw
.

The covariance matrix is of a data matrix D ∈ Rm×n is

cov(D) =
1

m− 1
D̃′D̃ ∈ Rn×n.

The total variance tvar(D) of D is

tvar(D) = trace(cov(X)).

Theorem 4. For vvv ∈ Rm we have

var(vvv) =
1

m− 1

(
‖ vvv ‖2 −mṽ2

)
.

Theorem 5. Let D ∈ Rm×n be a data matrix, where

D =

uuu
′
1
...
uuu′m

 = (vvv1 · · · vvvn).

The mean square distance between column vectors vvv1, . . . , vvvn is equal to twice
the sum of row variances,

∑m
i=1 var(uuui).

Proof: The mean square distance between the columns of D is
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2

n(n− 1)

∑
i<j

‖ vvvi − vvvj ‖2

=
2

n(n− 1)

 n∑
j=1

‖ vvvj ‖2 −2
∑
i<j

vvv′ivvvj


=

2

n(n− 1)

(
(n− 1) ‖ D ‖2F + ‖ D ‖2F −111′nDD

′111n
)

=
2

n(n− 1)

(
n ‖ D ‖2F −111′nDD

′111n
)
.

Since each vector uuuk belongs to Rn, the the sum of row variances is

m∑
k=1

var(uuuk) =

m∑
k=1

1

n− 1

(
‖ uuuk ‖2 −nũ2k

)
=

1

n− 1
‖ D ‖2F −

n

n− 1

n∑
k=1

ũ2k.

Taking into account that

ũk =
1

n
111′nD

′eeek =
1

n
e′kD111n,

we have ũ2k = 1
n2111′nD

′eeeke
′
kD111n, which implies

n∑
k=1

ũ2k =
1

n2
111′nD

′

(
n∑
k=1

eeekeee
′
k

)
D111n =

1

n2
111′nD

′D111n,

because
∑n
k=1 eeekeee

′
k = Im. The desired equality follows immediately.

Theorem 6. We have −1 ≤ ρ(uuu,www) ≤ 1 for any vectors uuu,www ∈ Rm.

Proof: By Cauchy-Schwarz Inequality we have∣∣∣∣∣
m∑
i=1

(ui − u)(wi − w)

∣∣∣∣∣ ≤
√√√√ m∑

i=1

(ui − u)2 ·

√√√√ m∑
i=1

(wi − w)2,

which implies
−1 ≤ ρ(uuu,www) ≤ 1.

Theorem 7. The covariance matrix of a data matrix D ∈ Rm×n can be writ-
ten as

cov(D) =
1

m− 1
D′HmD;

if D is centered, then cov(D) = 1
m−1D

′D.
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Theorem 8. Let
D ∈ Rm×n = (vvv1 · · · vvvn)

be a centered data matrix and let R ∈ Rn×n be an orthogonal matrix.
The matrix Z = DR ∈ Cm×n is centered and cov(DR) = R′cov(D)R.

Proof: By writing explicitly the rows of the matrix Z,

Z =

zzz1...
zzzm

 ,

we have zzzi = uuuiR for 1 ≤ i ≤ m because Z = XR.
Note that the mean of Z is

Z̃ ′ =
1

m
111′mZ =

1

m
111′mDR = D̃′R.

Since D is centered, we have D̃′ = 000′n, so Z is centered as well.
The covariance matrix of Z is

cov(Z) =
1

m− 1
Z ′Z =

1

m− 1
R′D′DR = R′cov(D)R.

Since the trace of two similar matrices are equal and cov(Z) is similar to
cov(D), the total variance of Z equals the total variance of D, that is,

tvar(Z) = trace(cov(Z)) = trace(cov(D)) = tvar(D).

Since the covariance matrix of a centered matrix D, cov(D) = 1
m−1D

′D ∈
Rn×n is symmetric cov(X) is orthonormally diagonalizable, so there exists an
orthogonal matrix R ∈ Rn×n such that R′cov(D)R = D, which corresponds
to a matrix Z = DR.

Let cov(Z) = D = diag(d1, . . . , dn). dp is the variance of the pth variable
of the data matrix, and the covariances of the form cov(Z)pq with p 6= q are
0. From a statistical point of view, this means that the components p and q
are uncorrelated.

2.3 Variance and Covariance

The R functions var, cov and cor compute the variance of of a vector, the
covariance of two vectors, or their correlation, respectively.

Example 15. Let xxx,yyy be the vectors defined by

> x <- c(1,2,3,4,5)

> y <- c(4,5,1,0,6)
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The function cov(x,y) returns −0.25; the function cor returns −0.06108472,
and the function var(x) returns 2.5.

If M and P are matrices having the same number of rows the covariances
or correlations between the columns of M and the columns of P are computed
by the functions cov and cor, respectively.

Example 16. Let M and P be the matrices having the same numbers of rows:

> M <- matrix(c(1,0,2,3,4,1,0,-1,0,1,3,-2),ncol=3)

> M

[,1] [,2] [,3]

[1,] 1 4 0

[2,] 0 1 1

[3,] 2 0 3

[4,] 3 -1 -2

and

> P <- matrix(c(-1,3,5,0,1,2,4,3),nrow=4)

> P

[,1] [,2]

[1,] -1 1

[2,] 3 2

[3,] 5 4

[4,] 0 3

then the function cov(M,P) returns the covariances between the columns of
the of the matrices:

> cov(M,P)

[,1] [,2]

[1,] -0.500000 1.000000

[2,] -2.666667 -2.333333

[3,] 4.833333 1.000000

Similarly, cor computes the correlations between the columns as in

> cor(M,P)

[,1] [,2]

[1,] -0.1406422 0.6000000

[2,] -0.4482655 -0.8366600

[3,] 0.8431515 0.3721042

The function call cov(M) returns the variances of the columns of M on
the diagonal of the resulting matrix, and the covariances of the columns of M
on the other elements, as we show below.
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> M

[,1] [,2] [,3]

[1,] 1 4 0

[2,] 0 1 1

[3,] 2 0 3

[4,] 3 -1 -2

> cov(M)

[,1] [,2] [,3]

[1,] 1.666667 -1.6666667 -1.0000000

[2,] -1.666667 4.6666667 0.3333333

[3,] -1.000000 0.3333333 4.3333333

> var(M[,1])

[1] 1.666667

> var(M[,2])

[1] 4.666667

> cov(M[,1],M[,3])

[1] -1
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Graphics in R

3.1 Histograms and Scatterplots

To create a histogram that shows the frequencies of countries where certain
levels of consumptions of fats occur we write

> hist(fatprot$fat,main="Fat Histogram",xlab="Fets")

A similar histogram can be produced for the proteins as

hist(fatprot$prot,main="Protein Histogram",xlab="Proteins")

The results are shown in Figure 3.1.
Scatterplots are representations of points in R2. To illustrate the technique

used in these representations, consider a 100×2-matrix S whose rows represent
100 points in R2. To be able to identify these points we will add a third column
to the matrix S containing the row numbers whose enties vary between 1 and
100 using

> Z <- cbind(S,1:100)

The first fifty points (grouped around the point (2, 2)) will be represented
on the graph by solid circles; the next fifty points (grouped arount the point
(3, 4)) will appear as solid squares. The shape of the points in the plot is spec-
ified using the parameter pch, whose value is determined by the conditional
expression

pch=ifelse((Z[,3]<=50),19,22)

If the third component of Z is between 1 and 50, pch will assume the value
19 (corresponding to a solid circle); if the third component is greater than
50, the value of pch will be 22 (corresponding to a square). This the plot is
achieved by

> plot(Z[,1:2],pch=ifelse((Z[,3]<=50),19,22),xlab="Z1",ylab="Z2")

and it is shown in Figure 3.2. Parameters xlab and ylab provide the needed
labels for the axes.

Three lines separating the two sets of points can be drawn using the func-
tion abline. To draw a full line we can write
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Fig. 3.1. Histograms showing the distibutions of fat and protein consumption
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Fig. 3.2. Scatterplot showing a set of points in R2 and three lines

abline(intercept, slope)

with an obvious significance. Dotted lines can be drawn adding the parameter
lty. Possible values for lty include one of the character strings "blank",
"solid", "dashed", "dotted", "dotdash", "longdash", or "twodash", where
"blank" uses invisible lines (i.e., does not draw them), or, equivalently, the
numbers from 0 to 6, respectively.

Thus, we placed three lines on the plot by writing

> abline(4.25,-0.5)

> abline(4.75,-0.5,lty="dashed")

> abline(3.75,-0.5,lty="dashed")

Individual points (shaped as diamonds) were added to mark the centers of
the two sets of point using the function points:

> points(2,2,pch=23,col="red",cex=1.5)

> points(3,4,pch=23,col="black",cex=1.5)

The parameter cex indicates the amount by which the ploted objects should
be scaled relative to the default.

Scatterplots allow the representation of the interdependency between two
variables. For example, to represent the interdependency between the protein
consumption and the fat consumption we write

> plot(prot ~ fat,data=fatprot)

> text(fatprot$fat,fatprot$prot,labels=fatprot$code)
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Fig. 3.3. Scatterplot showing the interdependency between protein and fat con-
sumption

The resulting scatter plot is shown in Figure 3.3.
We will discuss one of the most important graphics packages, namely

ggplot2 and will illustrate various graphics constructions with the help of
a data set named diamonds that comes as a part of this package and contains
pricing information for more than 50,000 cut diamonds. After loading this
package we can explore this data set by writing:

> package ggplot2 was built under R version 3.0.3

> data(diamonds)

> head(diamonds)

carat cut color clarity depth table price x y z

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63

5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
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6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

> tail(diamonds)

carat cut color clarity depth table price x y z

53935 0.72 Premium D SI1 62.7 59 2757 5.69 5.73 3.58

53936 0.72 Ideal D SI1 60.8 57 2757 5.75 5.76 3.50

53937 0.72 Good D SI1 63.1 55 2757 5.69 5.75 3.61

53938 0.70 Very Good D SI1 62.8 60 2757 5.66 5.68 3.56

53939 0.86 Premium H SI2 61.0 58 2757 6.15 6.12 3.74

53940 0.75 Ideal D SI2 62.2 55 2757 5.83 5.87 3.64

To plot the distribution of carats we can write in ggplot2:

> ggplot(data = diamonds)+geom_histogram(aes(x=carat))

This will result in the plot shown in Figure 3.5
Density plots give the probability of observations falling within an interval

of the set of values of a variable. A density plot of the prices can be obtained
using

> ggplot(data = diamonds)+geom_density(aes(x=carat),fill= "tomato")

Here "tomato" is the color used in the plot, shown in Figure 3.6.
The list of avialable colors can be obtained by entering

> color()

which results in a list of 655 colors.
The parameter aes of various geometric layers stands for aesthetic map.

The "+" sign stands for layer addition.
Scatter plots can be created using the aes parameter in the ggplot func-

tion. For examplr to create a scatter plot showing the dependency of the price
on the number of carats we write

> scp <- ggplot(diamonds,aes(x=carat,y=price))

The object scp has no layers yet, so it cannot be examined. To obtain a back
and white image we write

scp +geom_point()

which results in the scatterplot shown in Figure 3.6
To color the points of the scatterplots with a color that depends on the

color of the diamonds we write

scp + geom_point(aes(color=color))

This results in a scatterplot; the color of various points is explained in a legend
that is automatically generated (see Figure 3.7).

Other packages provide interesting graphical representations. The package
psych enables us to compute a suggestive visualization of correlations of data
matrices. This visualization consists of a collection of scatterplots arranged as
a rectangular array. To illustrate we shall use some of the numberical features
of the diamonds data frame provided by the package ggplot2, namely carat,
depth, and price. The function pairs is a part of the psych package. Thus,
as a response to
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Fig. 3.4. Histogram of carats in diamonds
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Fig. 3.5. Density plot for diamond prices
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Fig. 3.6. Black and white scatterplot for prices vs. carats
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Fig. 3.7. Colored scatterplot for prices vs. carats
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> pairs(diamonds[c("carat","depth","price")])

we obtain the plot array shown in Figure 3.9.
An alternative function of the package psych provides even more informa-

tion. As a response to

> pairs.panels(diamonds[c("carat","depth","price")])

we obtain the result shown in Figure ??.



3.1 Histograms and Scatterplots 41

carat

45 50 55 60 65 70 75 80

1
2

3
4

5

45
50

55
60

65
70

75
80

depth

1 2 3 4 5 0 5000 10000 15000

0
50

00
10

00
0

15
00

0
price

Fig. 3.8. Array of scatterplots obtained with the function pairs of the package
psych.
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Fig. 3.9. Array of correlation coefficients, histograms, and scatterplots obtained
with the function pairs.panels of the package psych.
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3.2 Biplots

Biplots introduced by K. R. Gabriel offer a succinct and powerful way of
representing graphically the elements of a matrix using two sets of vectors
(hence, the term biplot).

Essentially, biplots may be used for representing on the same page two
distinct sets of bi-dimensional vectors.

Example 17. Let

U =

{(
1.3
2.1

)
,

(
0.2
−1.5

)
,

(
1.3
1.3

)}
,

and

V =

{(
0.1
2

)
,

(
4.7
1.1

)
,

(
3.3
−2.1

)
,

(
1

0.5

)}
.

We will refer to U and V as the set of left vectors and the set of right vectors,
respectively.

Let us represent the vectors of U and V in a two-dimensional map shown
in Figure 3.10. This can be done in R using the function biplot that allows
us to place on the same picture both the vectors of U (as points) and the
vectors of V as arrows. To prepare the data for the function biplot we have
to structure it as two-column matrices by writing the vectors of U and V as
rows:

L <- matrix(c(1.3,0.2,1.3,2.1,-1.5,1.3),ncol=2)

R <- matrix(c(0.1,4.7,3.3,1,2,1.1,-2.1,0.5),ncol=2)

Then, we place a call to the function biplot:

> biplot(L,R,var.axes=TRUE,c(2,4))

The first argument and the second argument of biplot must be two-column
matrices. The parameter var.axes = TRUE indicates that the second set of
vectors have arrows; finally, col is a vector of length 2 that gives the colors
for the first and the second set of points including the axes.

Example 18. Biplots can be used to facilitate graphical representation of ma-
trices of rank 2. Let A ∈ R3×4 be the matrix

A =

 4 6 −1 1
−2 −1 2 0
2 9 4 2


which can be written as a product of two matrices, A = LR′, where L and R
are the matrices defined in Example 17. Let us write the matrices L and R as
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Fig. 3.10. Biplot that represents the sets of vectors that correspond to the rows of
L and R

L =

lll′1lll′2
lll′3

 ∈ R3×2 and R =


rrr′1
rrr′2
rrr′3
rrr′4

 ∈ R4×2,

where lll1, lll2, lll3, rrr1, . . . , rrr4 all belong to R2. Thus, the matrix A can be written
as

A =

lll′1rrr1 lll′1rrr2 lll′1rrr3 lll′1rrr4lll′2rrr1 lll
′
2rrr2 lll

′
2rrr3 lll

′
2rrr4

lll′3rrr1 lll
′
3rrr2 lll

′
3rrr3 lll

′
3rrr4

 ,

that is, aij = lll′irrrj =‖ lll′i ‖‖ rrrj ‖ cos∠(llli, rrrj) for 1 6 i 6 3 and 1 6 j 6 4.
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When the vectors rrrj are unit vectors the elements of A are the projections
of the vectors lll on the vectors rrr.

This approach can be directly applied to any kind of decomposition A =
PQ′ of the matrix A, when P ∈ Rm×n and P ∈ Rm×2 and Q ∈ Rn×2.

In general, the rank of a data matrix A is larger than 2. In this case,
approximative representations of A can be obtained by using the thin singular
value decomposition of matrices.

Let A be a matrix of rank r and let

A = UDV ′ =

r∑
i=1

σiuuuivvv
′
i,

be the thin SVD, where U ∈ Rm×r and V ∈ Rn×r are matrices of rank r
(and, therefore, full-rank matrices) having orthonormal sets of columns. Here
U = (uuu1 · · · uuur) and V = (vvv1 · · · vvvr).

The matrix D containing singular values can be split between U and V by
defining L = U

√
D and R =

√
DV ′.

By Eckhart-Young Theorem the best approximation of A in the sense of
the matrix norm ||| · |||2 in the class of matrix of rank k is the matrix defined
by

B(k) =

k∑
i=1

σiuuuivvv
′
i.

The same matrix B(k) is the best approximation of A in the sense of Frobenius
norm. The extent of the deficiency of this approximation is measured by ‖
A − B(k) ‖2F= σ2

k+1 + · · · + σ2
r . Since ‖ A ‖2F= σ2

1 + · · · + σ2
r , an absolute

measure of the quality of the approximation of A by B(k) is

qk = 1− ‖ A−B(k) ‖2F
‖ A ‖2F

=
σ2
1 + · · ·+ σ2

k

σ2
1 + · · ·+ σ2

r

In the special case, k = 2, the quality of the approximation is

q2 =
σ2
1 + σ2

2

σ2
1 + · · ·+ σ2

r

and it is desirable that this number is as close as one as possible. The rank-2
approximation of A is useful because we can apply biplots to the visualization
of A.

Example 19. Let A ∈ R5×4 be the matrix

> A

[,1] [,2] [,3] [,4]

[1,] -1 -2 0 1
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[2,] -3 -3 -3 0

[3,] -7 33 -12 9

[4,] -2 7 -6 -2

[5,] 1 11 6 11

Its singular value decomposition is

> S <- svd(A)

> S

$d

[1] 3.932769e+01 1.417821e+01 4.506787e+00 1.927126e-15

$u

[,1] [,2] [,3] [,4]

[1,] 0.03461325 0.01363572 0.44981361 -0.86565711

[2,] 0.03590229 -0.22915777 0.84346713 0.35308151

[3,] -0.93619495 -0.19064403 0.07026304 0.06591937

[4,] -0.19618241 -0.39940617 -0.26296837 -0.34664351

[5,] -0.28734025 0.86685082 0.11018915 -0.03826402

$v

[,1] [,2] [,3] [,4]

[1,] 0.1656865 0.25913072 -0.6292577 0.7137464

[2,] -0.9053516 0.07818087 -0.3860947 -0.1586103

[3,] 0.2690136 0.74570386 -0.2517565 -0.5551361

[4,] -0.2837573 0.60882245 0.6257670 0.3965258

An examination of its singular values reveals that the rank of A is 3 because
the last entry of d, 1.927126e−15 is very small. Let D ∈ R3×3 be the diagonal
matrix that contains the non-zero singular values:

> D <- matrix(c(3.932769e+01,0,0,0,1.417821e+01,0,0,0,4.506787e+00),ncol=3)

> D

[,1] [,2] [,3]

[1,] 39.32769 0.00000 0.000000

[2,] 0.00000 14.17821 0.000000

[3,] 0.00000 0.00000 4.506787

We factor A by allocating the matrix of singular values to the left factor,

> L <- S$u[,1:2] %*% D

> L

[,1] [,2]

[1,] 1.361259 0.193330
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[2,] 1.411954 -3.249047

[3,] -36.818385 -2.702991

[4,] -7.715401 -5.662865

[5,] -11.300428 12.290393

and by defining the right factor as

> R <- S$v[,1:2]

> R

[,1] [,2]

[1,] 0.1656865 0.25913072

[2,] -0.9053516 0.07818087

[3,] 0.2690136 0.74570386

[4,] -0.2837573 0.60882245

Thus, the rank-2 approximation of A is the matrix B given by

> B <- L %*% t(R)

> B

[,1] [,2] [,3] [,4]

[1,] 0.2756401 -1.217303 0.5103642 -0.2685636

[2,] -0.6079861 -1.532328 -2.0429920 -2.3787450

[3,] -6.8007388 33.122260 -11.9202787 8.8018436

[4,] -2.7457603 6.542422 -6.2983681 -1.2583778

[5,] 1.3124895 11.191734 6.1250240 10.6892462

The biplot of A is obtained with

> biplot(L,R,var.axes=TRUE,c(2,4))

and it is shown in Figure 3.11.
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Fig. 3.11. Biplot that represents the sets of vectors that correspond to the rank-2
approximation of matrix A
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Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique
that aims to create a few new, uncorrelated linear combinations of the vari-
ables of an experiments that “explain” the major parts of the data variability.

The conclusions of a PCA analysis of data are mainly qualitative.

4.1 Principal Components

Let

D =

uuu
′
1
...
uuu′m

 = (vvv1, . . . , vvvn) ∈ Rm×n

be a data sample matrix and let D̃ be the corresponding centered matrix. Since
cov(D) is a symmetric matrix, there exists a orthogonal matrix R diagonalizes
cov(D). Let R ∈ Rn×n be the orthogonal matrix that diagonalizes cov(D), that
is,

R′cov(D)R = diag(σ2
1 , σ

2
2 , . . . , σ

2
n),

or equivalently, cov(D)R = Rdiag(σ2
1 , σ

2
2 , . . . , σ

2
n).

There exists an immediate link between the diagonalization of cov(D) and
the SVD decomposition of the centered data matrix D̃. Recall that if (σ,rrr,sss)
is a singular triplet of the matrix D̃, then

D̃rrr = σsss, D̃′rrr = σrrr

and therefore, D̃′D̃rrr = σ2rrr and D̃D̃′sss = σ2sss. This shows that rrr, a left singular
vector of D̃ is an eigenvector of the covariance matrix cov(D). Thus, the
columns of the matrix R that diagonalizes cov(D) are the left singular vectors
of D̃.

Let uuu be a n-dimensional vector of observations that corresponds to vari-
ables V1, . . . ,Vn. We seek new variables such that the image of an observa-
tion vector uuu ∈ Rn of matrix D̃′ becomes zzz = R′uuu. The new variables are
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called principal components and the individual transformed observations will
be called scores.

Let D̃ = Udiag(σ1, . . . , σr)V
′ be the thin SVD of the centered data matrix

D̃ ∈ Rm×n, where U ∈ Rm×r, and V ∈ Rr×n are matrices having orthogonal
columns, and σ1 > · · · > σr > 0 are the non-zero singular values of D̃. For
the covariance matrix cov(D) we have

cov(D) =
1

m− 1
D̃′D̃ =

1

m− 1
V Z ′U ′UZV ′ =

1

m− 1
V Z ′ZV ′ =

1

m− 1
V Z2V ′,

where Z = diag(σ1, . . . , σr), due to the orthogonality of the columns of U .
The previous consideration show that

• the columns of V are the eigenvectors of cov(D) that correspond to the
top r eigenvalues of cov(D), so they are the first r columns of the matrix
R;

• the data matrix D̃ can be written as D̃ = SV , where S = UZ.
The matrix V is known as the matrix of loadings, while the matrix S =

UZ ∈ Rm×r is known as the matrix of scores.
Since the columns of V are orthogonal we also have S = D̃V .
The SVD of D̃ can be written as

D̃ =

r∑
i=1

σiuuuivvv
′
i.

This implies D̃′D̃vvvi = σ2
i vvvi. Since uuu′iD̃ = σivvv

′
i, it follows that vvv′i is a weighted

sum of the rows of the matrix D̃. Similarly, uuui are weighted sums of the
columns of D̃.

If
D̃ = (uuu1 · · · uuur)(σ1vvv′1 . . . σrvvvr)′,

then

Ir = (uuu1 · · · uuur)′(uuu1 · · · uuur)
(n− 1)D̃′D̃ = (uuu1 · · · uuur)(uuu1 · · · uuur)′

The sum of the elements of diag(σ2
1 , . . . , σ

2
n)’s main diagonal equals the

total variance tvar(D). The principal directions “explain” the sources of the
total variance: sample vectors grouped around rrr1 explain the largest portion
of the variance; sample vectors grouped around rrr2 explain the second largest
portion of the variance, etc.

Example 20. Let us compute the principal components of the fatprot data
set. Note that the country codes form the first column of fatprot. We con-
struct a new data frame referred as f1, where the country codes serve as labels
for the rows by writing
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> f1 <- fatprot[,c(2,3)]

> rownames(f1) <- fatprot[,1]

Next, we apply the princomp function:

> p1 <- princomp(f1)

which results in the object p1, that has the structure

> str(p1)

List of 7

$ sdev : Named num [1:2] 30.5 11

..- attr(*, "names")= chr [1:2] "Comp.1" "Comp.2"

$ loadings: loadings [1:2, 1:2] 0.374 0.927 -0.927 0.374

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:2] "prot" "fat"

.. ..$ : chr [1:2] "Comp.1" "Comp.2"

$ center : Named num [1:2] 98.2 121.9

..- attr(*, "names")= chr [1:2] "prot" "fat"

$ scale : Named num [1:2] 1 1

..- attr(*, "names")= chr [1:2] "prot" "fat"

$ n.obs : int 37

$ scores : num [1:37, 1:2] -32.8 34 -26.9 38.6 -55.5 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:37] "AL" "AT" "BY" "BE" ...

.. ..$ : chr [1:2] "Comp.1" "Comp.2"

$ call : language princomp(x = f1)

- attr(*, "class")= chr "princomp"

The loadings are:

loadings(p1)

Loadings:

Comp.1 Comp.2

prot 0.374 -0.927

fat 0.927 0.374

Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0

and the scores are

p1$scores

Comp.1 Comp.2

AL -32.796041 -11.89639300

AT 34.004205 4.28159227
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BY -26.891422 0.19225773

BE 38.607227 16.92327674

BA -55.459440 -9.18155469

BG -26.550694 10.03521992

HR -32.131362 13.17467004

CY 10.609020 3.46592223

CZ -2.015888 2.68380579

DK 15.832183 -4.13135140

EE -27.818737 -0.18202369

FI 7.290817 -4.34365731

FR 46.092855 -1.62302655

GE -67.173809 -4.20425104

DE 18.954856 6.83445506

GR 29.401182 -8.36009220

HU 18.368269 16.30313582

IS 30.736333 -19.68340329

IE 18.452153 -10.62255755

IT 39.031839 -0.15945444

LV -9.646715 8.23091998

LT -10.490146 -19.06905482

LU 48.712825 -8.11423270

MK -28.243349 16.90070750

MT -4.356445 -20.90690835

MD -67.743620 -0.12070895

NL 13.960776 0.50522442

NO 22.680894 2.94644209

PL -7.563002 -4.94702144

PT 19.932502 -8.94667954

RO -9.384079 -16.46586164

RU -34.667448 -7.25981718

YU -14.138092 19.35870196

SK -22.679458 19.14639605

SI 9.877234 -0.06458611

ES 31.970822 1.30411767

CH 25.233756 17.99579063

Finally, we apply the function biplot(p1) which results in Figure 4.1:

Example 21. The data set USArrests, a part of the base package of R con-
tains arrest records for all 50 states as well as the percentage of the urban
population. A call to the function class identifies USArrests as a data frame:

class(USArrests)

[1] "data.frame"

Columns of this data frame are retrieved by writing
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Fig. 4.1. Principal components of fat-protein consumption in European countries

names(USArrests)

[1] "Murder" "Assault" "UrbanPop" "Rape"

The names of the rows can be obtained with the function rownames:

rownames(USArrests)

[1] "Alabama" "Alaska" "Arizona" "Arkansas"

[5] "California" "Colorado" "Connecticut" "Delaware"

[9] "Florida" "Georgia" "Hawaii" "Idaho"

[13] "Illinois" "Indiana" "Iowa" "Kansas"

[17] "Kentucky" "Louisiana" "Maine" "Maryland"

[21] "Massachusetts" "Michigan" "Minnesota" "Mississippi"

[25] "Missouri" "Montana" "Nebraska" "Nevada"
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[29] "New Hampshire" "New Jersey" "New Mexico" "New York"

[33] "North Carolina" "North Dakota" "Ohio" "Oklahoma"

[37] "Oregon" "Pennsylvania" "Rhode Island" "South Carolina"

[41] "South Dakota" "Tennessee" "Texas" "Utah"

[45] "Vermont" "Virginia" "Washington" "West Virginia"

[49] "Wisconsin" "Wyoming"

To apply PCA a scaling is needed, so we write

> s <- scale(USArrests)

Principal component analysis is performed by the function pricomp that
returns an object p of the class princomp:

> p <- princomp(s)

> class(p)

[1] "princomp"

The structure of the object p is revealed as

str(p)

List of 7

$ sdev : Named num [1:4] 1.559 0.985 0.591 0.412

..- attr(*, "names")= chr [1:4] "Comp.1" "Comp.2" "Comp.3" "Comp.4"

$ loadings: loadings [1:4, 1:4] -0.536 -0.583 -0.278 -0.543 0.418 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"

.. ..$ : chr [1:4] "Comp.1" "Comp.2" "Comp.3" "Comp.4"

$ center : Named num [1:4] -7.39e-17 9.37e-17 -4.53e-16 1.02e-16

..- attr(*, "names")= chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"

$ scale : Named num [1:4] 1 1 1 1

..- attr(*, "names")= chr [1:4] "Murder" "Assault" "UrbanPop" "Rape"

$ n.obs : int 50

$ scores : num [1:50, 1:4] -0.976 -1.931 -1.745 0.14 -2.499 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:50] "Alabama" "Alaska" "Arizona" "Arkansas" ...

.. ..$ : chr [1:4] "Comp.1" "Comp.2" "Comp.3" "Comp.4"

$ call : language princomp(x = s)

- attr(*, "class")= chr "princomp"

The loadings are returned by the function loadings:

> loadings(p)

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4

Murder -0.536 0.418 -0.341 0.649

Assault -0.583 0.188 -0.268 -0.743
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UrbanPop -0.278 -0.873 -0.378 0.134

Rape -0.543 -0.167 0.818

Comp.1 Comp.2 Comp.3 Comp.4

SS loadings 1.00 1.00 1.00 1.00

Proportion Var 0.25 0.25 0.25 0.25

Cumulative Var 0.25 0.50 0.75 1.00

The result of the PCA is represented by the biplot shown in Figure 4.2,
which is obtained by

biplot(p)

Example 22. The data set that we are about to analyze originates in a study
of the health condition of Boston neighborhoods produced by the Health De-
partment of the City of Boston. The data includes incidence of various diseases
and health events that occur in the 16 neighborhoods of the city identified as

Neighborhood Code Neighborhood Code
Allston/Brighton AB North Dorchester ND
Back Bay BB North End NE
Charlestown CH Roslindale RO
East Boston EB Roxbury RX
Fenway FW South Boston SB
Hyde Park HP South End SE
Jamaica Plain JP South Dorchester SD
Mattapan MT West Roxbury WR

The codes of the neighborhoods are grouped into a vector

neighborhoods <- c("AB","BB","CH","EB","FW","HP","JP",

"MT","ND","NE","RS","RX","SB","SD","SE","WR")

which is used for assigning row names to the data frame dis that is used in
the analysis.

The diseases and the health conditions are listed as the vector categories
that will labels the columns of the data frame:

Category Code Category Code
Hepatitis B HepB Tuberculosis TBCD
Hepatitis C HepC Live Births B154
HIV/AIDS HIVA Low weight at birth LBWE
Chlamydia CHLA Infant Mortality INFM
Syphilis SYPH Children with Elevated Lead CELL
Gonorrhea GONO Subst. Abuse Treat. Admissions SATA

This allows us to put together the data frame dis shown next:

> dis

HepB HepC HIVA CHLA SYPH GONO TBCD B154 LBWE INFM CELL SATA

AB 38 57 13 168 5 22 20 607 40 7 13 624

BB 17 24 16 179 11 52 8 306 25 0 0 497

CH 10 13 0 46 0 8 0 284 25 0 0 489

EB 12 46 11 150 10 16 17 718 43 10 43 1009

FW 18 19 8 163 9 44 7 125 10 0 0 272
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Fig. 4.2. Principal components of the USArrest data set

HP 11 18 8 179 9 25 9 487 46 12 19 2781

JP 6 32 18 213 10 46 6 420 35 5 10 1071

MT 15 24 11 264 14 56 8 285 26 7 25 390

ND 42 76 22 611 15 135 29 1350 168 28 88 1492

NE 0 0 0 0 0 0 0 89 5 0 0 130

RS 13 22 0 115 6 31 0 488 39 6 28 330

RX 21 50 17 477 8 72 8 829 87 27 30 2075

SB 9 52 0 85 7 25 5 403 25 0 18 1335

SD 68 78 23 760 24 176 24 656 67 9 63 1464

SE 51 35 35 124 31 61 11 439 34 0 0 6064

WR 9 10 0 17 0 0 0 419 34 0 11 179

The data is scaled with
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> s <- scale(dis)

and the princomp object is obtained:

> p <- princomp(s)

The stucture of p is made visible using

> str(p)

List of 7

$ sdev : Named num [1:12] 2.684 1.441 0.912 0.649 0.473 ...

..- attr(*, "names")= chr [1:12] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...

$ loadings: loadings [1:12, 1:12] -0.291 -0.321 -0.267 -0.327 -0.243 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:12] "HepB" "HepC" "HIVA" "CHLA" ...

.. ..$ : chr [1:12] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...

$ center : Named num [1:12] -1.64e-17 6.94e-18 6.07e-18 8.67e-19 3.24e-17 ...

..- attr(*, "names")= chr [1:12] "HepB" "HepC" "HIVA" "CHLA" ...

$ scale : Named num [1:12] 1 1 1 1 1 1 1 1 1 1 ...

..- attr(*, "names")= chr [1:12] "HepB" "HepC" "HIVA" "CHLA" ...

$ n.obs : int 16

$ scores : num [1:16, 1:12] -0.509 1.042 2.857 -0.49 1.801 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:16] "AB" "BB" "CH" "EB" ...

.. ..$ : chr [1:12] "Comp.1" "Comp.2" "Comp.3" "Comp.4" ...

$ call : language princomp(x = s)

- attr(*, "class")= chr "princomp"

To obtain the loadings we write:

> loadings(p)

This results in

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

HepB -0.291 -0.273 -0.264 0.199 0.104 0.530 0.459 -0.254 -0.382

HepC -0.321 -0.159 0.437 0.272 -0.647 0.341 0.166

HIVA -0.267 -0.385 0.143 -0.576 -0.211 0.342 -0.195 -0.308

CHLA -0.327 -0.267 -0.421 -0.114 0.184 -0.198 -0.145 0.113 -0.414

SYPH -0.243 -0.465 -0.133 0.223 -0.453 -0.126 -0.249 0.474

GONO -0.321 -0.346 -0.420 0.109 0.187 0.322 0.100

TBCD -0.322 -0.144 0.493 -0.330 -0.329 0.112 -0.437 0.432

B154 -0.305 0.259 0.318 0.229 0.138 0.289 -0.279 -0.258

LBWE -0.306 0.266 0.273 0.441 0.333 0.361 0.343

INFM -0.265 0.321 0.383 -0.298 -0.304 0.117 -0.235 -0.432 -0.277 0.344

CELL -0.303 0.290 0.507 -0.434 -0.157 -0.205 -0.326
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SATA -0.142 -0.470 0.585 0.335 0.209 -0.156 -0.220 0.353 -0.237

Comp.11 Comp.12

HepB -0.108

HepC -0.187

HIVA -0.349

CHLA 0.321 0.494

SYPH 0.325 0.206

GONO -0.656

TBCD 0.137

B154 0.601 -0.267

LBWE -0.159 0.408

INFM -0.125 -0.177

CELL -0.446

SATA

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083

Cumulative Var 0.083 0.167 0.250 0.333 0.417 0.500 0.583 0.667 0.750

Comp.10 Comp.11 Comp.12

SS loadings 1.000 1.000 1.000

Proportion Var 0.083 0.083 0.083

Cumulative Var 0.833 0.917 1.000

The results can be visualized using

> biplot(p)

and yield the graphical representation from Figure 4.3.
The scores of variables relative to the principal components are obtained

by examining p$scores:

> p$scores

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

AB -0.5085882 0.23072335 -4.008224e-01 1.67763097 -0.8190283917 0.56642546

BB 1.0422861 -0.77211613 -6.151926e-01 -0.21556817 -0.6485752045 -0.23514907

CH 2.8565744 0.50076440 -3.630303e-02 -0.02026970 0.1596485885 0.49310899

EB -0.4896467 0.82410031 4.339108e-01 1.03454089 -0.0006699524 -0.86286927

FW 1.8010114 -0.57048155 -9.907785e-01 -0.26856720 -0.3520192539 -0.04134139

HP 0.4802148 -0.02526842 1.274354e+00 -0.29100091 0.1858231908 -0.08483288

JP 0.6237991 -0.31469275 1.469908e-01 -0.39932780 -0.5805264140 -0.35083371

MT 0.4745792 -0.13479898 -6.436400e-01 -0.69584218 -0.0913477252 -0.63312916

ND -6.5034700 2.20754750 6.605574e-01 0.09587301 0.1119336952 -0.32514060

NE 3.7082730 0.41804515 -1.779483e-01 -0.31813549 -0.0791396832 -0.08397898

RS 1.4321192 0.99691484 5.947052e-06 -0.32278874 0.7748890804 0.04466975

RX -2.2388386 1.13042682 1.313769e+00 -1.01507260 -0.5304667442 0.77884244

SB 1.3490577 0.26170528 -1.684187e-01 0.75128191 0.8279087192 0.22381039

SD -5.1815779 -0.96937971 -2.320808e+00 -0.35479234 0.4155555892 0.29227541
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Fig. 4.3. Principal components of incidence of diseases in Boston neighborhoods

SE -1.5470288 -4.69574695 1.383851e+00 0.22074136 0.2771234237 0.03849913

WR 2.7012350 0.91225685 1.404722e-01 0.12129701 0.3488910822 0.17964348

Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12

AB 0.09825324 -0.22520221 -0.127491071 0.067976782 -0.020297053 0.0025013114

BB 0.19087038 0.40924448 0.090290109 0.043316652 0.128225066 -0.0425442205

CH 0.33139626 0.07757677 0.120382476 -0.055282844 0.010492757 0.0328460307

EB -0.37692480 -0.20862902 -0.231975979 -0.162285599 0.026202258 -0.0129968454

FW 0.08360278 -0.19022238 0.139520376 0.203825809 0.030648418 -0.0088029984

HP -0.06144973 -0.70212058 0.339422467 -0.074186122 0.105160126 -0.0081502321

JP -0.35680261 0.60325268 0.083003097 -0.184804923 -0.044572371 0.0023532491

MT -0.18110324 -0.25242067 -0.207803525 0.185088441 -0.030148543 0.0826548062

ND 0.59568222 0.23733816 0.236481506 0.126518008 -0.042281228 0.0008062188

NE 0.20430032 -0.28503700 0.143873766 -0.070998961 -0.184143318 -0.0469753605
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RS 0.14343189 0.10416653 -0.430652352 0.119037486 0.025223042 -0.0702244031

RX -0.55315578 -0.03356923 -0.205895022 0.001439052 -0.001427040 0.0016547888

SB -0.87985197 0.35153510 0.281996313 0.129425789 -0.010066987 0.0110503512

SD -0.09619151 -0.19440008 -0.002535052 -0.197943853 0.004576351 -0.0066213763

SE 0.24695354 0.08950775 -0.094236800 0.038456169 -0.041110982 0.0022813426

WR 0.61098900 0.21897969 -0.134380309 -0.169581885 0.043519504 0.0601673376

The matrix score contains the data obtained by transforming the original
data into the space of the principal components.

4.2 A Geometric Perspective of PCA

Next, we present a geometric point of view of principal component analysis.
Let ttt ∈ Rn be a unit vector. The projection of a vector www ∈ Rn on the

subspace 〈〈〈ttt〉〉〉 generated by ttt is given by

proj〈〈〈ttt〉〉〉(www) = tttttt′www.

To simplify the notation we shall write projttt instead of proj〈〈〈ttt〉〉〉. Let D̃ ∈ Rm×n
be a centered sample matrix that corresponds to a sequence of experiments
(uuu1, . . . ,uuum), that is

W̃ =

uuu
′
1
...
uuu′m

 .

We seek to evaluate the inertia I000(projttt(D̃
′)) on the subspace generated by the

unit vector ttt ∈ Rn. Since D̃′ = (uuu1 · · · uuum), by the definition of the inertia,
we have:

I000(projttt(D̃
′)) =

m∑
j=1

‖ tttttt′uuuj ‖22

=

m∑
j=1

uuu′jtttttt
′tttttt′uuuj

=

m∑
j=1

uuu′jtttttt
′uuuj

(because ttt′ttt = 1)

=

m∑
j=1

ttt′uuujuuu
′
jttt

(because both uuu′jttt and ttt′uuuj are scalars)

= ttt′X ′Xttt.
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The necessary condition for the existence of extreme values of this inertia as
a function of ttt is

grad
(
I000(projttt(D̃

′)) + λ(1− ttt′ttt)
)

= grad
(
ttt′D̃′D̃ttt+ λ(1− ttt′ttt)

)
= 2D̃′D̃uuu− 2λttt = 000,

where λ is a Lagrange multiplier. This implies D̃′D̃ttt = λttt. In other words,
to achieve extreme values of the inertia I000(projttt(D̃

′)), ttt must be chosen as a
eigenvector of the covariance matrix of D̃.

The principal directions of a data sample matrix D̃ ∈ Rm×n can be ob-
tained directly from the data sample matrix D by applying Courant-Fisher
Theorem.

Suppose that the eigenvalues of D̃′D̃ are the numbers λ1 > · · · > λn. The
first principal direction ttt1 of D which corresponds to the largest eigenvalue of
D̃′D̃ is

ttt1 = arg max
ttt

{
ttt′D̃D̃′ttt | ttt ∈ Rn, ‖ ttt ‖2= 1

}
= arg max

ttt

{
‖ D̃′ttt ‖22 | ‖ ttt ‖2= 1

}
.

Suppose that we computed the principal directions ttt1, . . . , tttk of D̃. Then,
tttk+1 ∈ Rn is a unit vector ttt that maximizes

ttt′D̃D̃′ttt =‖ D̃′ttt ‖22

and belongs to the subspace orthogonal to the subspace generated by the first
k principal directions of D̃, that is,

tttk+1 = arg max
ttt

{
‖ D̃′ttt ‖22 | ttt ∈ Rn, ‖ ttt ‖2= 1, ttt ∈ 〈〈〈ttt1, . . . , tttk〉〉〉⊥

}
.

Note that for every vector zzz ∈ Rn we have

(I −
k∑
j=1

tttjttt
′
j)zzz = zzz − proj〈〈〈ttt1,...,tttk〉〉〉zzz ∈ 〈〈〈ttt1, . . . , tttk〉〉〉

⊥.

Therefore, xxx ∈ 〈〈〈ttt1, . . . , tttk〉〉〉⊥, is equivalent to xxx = (I −
∑k
j=1 tttjttt

′
j)xxx. Thus, we

can write

tttk+1 = arg max
ttt


∣∣∣∣∣
∣∣∣∣∣D̃(I −

k∑
j=1

tttjttt
′
j)ttt

∣∣∣∣∣
∣∣∣∣∣
2

| ‖ ttt ‖2= 1

 ,

for 0 ≤ k ≤ n− 1. This technique allows finding the principal directions of D̃
by solving a sequence of optimization problems involving the matrix D̃.

An r-dimensional subspace T of Rn is spanned by r linearly independent
vectors. Let T ∈ Rn×r be an matrix,



62 4 Principal Component Analysis

T = (ttt1, . . . , tttr)

whose columns ttt1, . . . , tttr form an orthonormal basis of the subspace. In other
words we have T ′T = Ir. Also, note that TT ′ ∈ Rn×n.

The projection of a vector xxx ∈ Rn on T is given by

projT (xxx) = (ttt′1xxx)ttt1 + · · ·+ (ttt′rxxx)tttr = TT ′xxx.

Therefore, for a matrix X ∈ Rn×p, the projection of its columns on T consist
of the columns of the matrix TT ′X. The difference M = X − TT ′X ∈ Rn×p
is the residual matrix.

Note that M = (In − TT ′)X ∈ Rn×p and that

(In − TT ′)(In − TT ′) = In − 2TT ′ + T (T ′T )T ′ = In − TT ′,

which means that InTT
′ is both idempotent and symmetric.

We seek a subspace T such that ‖M ‖F is minimized. Since

‖M ‖2F= trace(MM ′) = trace(M ′M).

and

trace(M ′M) = trace(X ′(In − TT ′)(In − TT ′)X)

= trace(X ′(In − TT ′)X) = trace(X ′X)− trace(X ′TT ′X),

the minimization of trace(M ′M) amounts to maximizing trace(X ′TT ′X) =
trace(TT ′XX ′) = trace(T ′XX ′T ). If XX ′ ∈ Rn×n can be diagonalized as
XX ′ = DΛD′, then we need to maximize trace(T ′DΛD′T ) = trace(P ′ΛP ),
where P = D′T ∈ is orthonormal matrix.

Note that if P is an orthonormal matrix that achieves this maximum,
and Q is an arbitrary orthonormal matrix, then then PQ also achieves the
maximum because

trace((PQ)′Λ(PQ)) = trace(Λ(PQ)(PQ)′) = trace(ΛPQQ′P ′) = trace(P ′ΛP ).

The expression to be minimized is

trace(P ′ΛP ) =
∑
i

∑
j

∑
k

(P ′)ijΛjk(P )ki

=
∑
i

∑
j

(P ′)ijλj(P )ji

=
∑
i

∑
j

λj(P )2ji

=
∑
j

∑
i

λj(P )2ji

=
∑
j

∑
i

λjfji,
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where fji = (Pji)
2. The orthonormality of P implies that 0 6 fji 6 1,∑n

i=1 fij = 1.
Thus, the problem of the minimization of the total values of the residues

has seen reduced to a linear programming problem in the indeterminates fij :

• maximize
∑
j

∑
i λjfji, subjected to

• – 0 6 fij 6 1;
–
∑n
i=1 fij = 1 for 1 6 j 6 r;

– 0 6
∑r
j=1 fij 6 1.
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Least Squares Approximation and Data Mining

5.1 Introduction

The least square method is used in data mining as a method of estimating
the parameters of a model by adopting the values that minimize the sum
of the squared differences between the predicted and the observed values of
data. This estimation process is also known as regression, and several types of
regression exist depending on the nature of the assumed model of dependency
between the predicted and the observed data.

5.2 Linear Regression

The aim of linear regression is to explore the existence of a linear relationship
between the outcome of an experiment and values of variables that are mea-
sured during the experiment. As we saw, experimental data often is presented
as a data sample matrix D ∈ Rm×n, where m is the number of experiments
and n is the number of variables measured. The results of the experiments are
the components of a vector

bbb =

 b1
...
bm

 .

Linear regression amounts to determining rrr ∈ Rn such that Drrr + k111m = bbb,
where k ∈ R. Solving this system allows us to express the components of rrr as
linear combinations of the values of the variables. Unfortunately, since m is
usually much larger than n, this system is overdetermined and, in general, is
inconsistent.

To simplify the presentation we will assume initially that k = 0. Note that
the more general case (when kkk 6= 0) can be dealt with by adding 111n as the
first column to D and k as the first component to rrr. For obvious reasons k is
referred to as the intercept.
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The variables V1, . . . ,Vn that correspond to the columns vvv1, . . . , vvvn of the
matrix D are referred to in this context as regressors; the linear combination
r1vvv1 + · · ·+ rnvvvn is the regression of bbb onto the regressors V1, . . . ,vn.

If the linear system Drrr = bbb has no solution, the “next best thing” is to
find a vector ccc ∈ Rn such that

‖ Dccc− bbb ‖2≤‖ Dwww − bbb ‖2

for every www ∈ Rn, an approach known as the least square method. We will refer
to the triple (D,rrr, bbb) as an instance of the least square problem.

Note that Drrr ∈ range(D) for any rrr ∈ Rn. Thus, solving this problem
amounts to finding a vector Drrr in the subspace range(D) such that Drrr is as
close to bbb as possible.

Let D ∈ Rm×n be a full-rank matrix such that m > n, so rank(D) = n.
The symmetric square matrix D′D ∈ Rn×n has the same rank n as the matrix
D. Therefore, the system (D′D)rrr = D′bbb a unique solution rrr = (D′D)−1D′bbb.
Moreover, D′D is positive definite because rrr′D′Drrr = (Drrr)′Drrr =‖ Drrr ‖22> 0
for rrr 6= 000.

Theorem 9. Let D ∈ Rm×n be a full-rank matrix such that m > n and let
bbb ∈ Rm. The unique solution of the system (D′D)rrr = D′bbb equals the projection
of the vector bbb on the subspace range(D).

Proof. The n columns of the matrix D = (vvv1 · · · vvvn) constitute a basis of
the subspace range(D). Therefore, we seek the projection ccc of bbb on range(D)
as a linear combination ccc = Dttt, which allows us to reduce this problem to a
minimization of the function

f(ttt) = ‖ Dttt− bbb ‖22
= (Dttt− bbb)′(Dttt− bbb) = (ttt′D′ − bbb′)(Dttt− bbb)
= ttt′D′Dttt− bbb′Dttt− ttt′D′bbb+ bbb′bbb.

The necessary condition for the minimum is

(∇f)(ttt) = 2D′Dttt− 2D′bbb = 0,

which implies D′Dttt = D′bbb.

The linear system (D′D)ttt = D′bbb is known as the system of normal equa-
tions of D and bbb.

Suppose now that D ∈ Rm×n has rank k, where k < min{m,n}, and
U ∈ Rm×m, V ∈ Rn×n are orthonormal matrices such that D can be factored
as B = UMV ′, where

M =

(
R Ok,n−k

Om−k,k Om−k,n−k

)
∈ Rm×n,
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R ∈ Rk×k, and rank(R) = k.
For bbb ∈ Rm define ccc = U ′bbb ∈ Rm and let

ccc =

(
ccc1
ccc2

)
,

where ccc1 ∈ Rk and ccc2 ∈ Rm−k. Since rank(R) = k, the linear system Rzzz = ccc1
has a unique solution zzz1.

Theorem 10. All vectors rrr that minimize ‖ Brrr − bbb ‖2 have the form

rrr = V

(
zzz
www

)
,

for an arbitrary www.

Proof. We have

‖ Brrr − bbb ‖22 = ‖ UMV ′rrr − UU ′bbb ‖22
= ‖ U(MV ′rrr − U ′bbb) ‖22=‖MV ′rrr − U ′bbb ‖22

(because multiplication by an orthonormal matrix

is norm-preserving)

= ‖MV ′rrr − ccc ‖22=‖Myyy − ccc ‖22
= ‖ Rzzz − ccc1 ‖22 + ‖ ccc2 ‖22,

where zzz consists of the first r components of yyy. This shows that the minimal
value of ‖ Brrr − bbb ‖22 is achieved by the solution of the system Rzzz = ccc1 and is
equal to ‖ ccc2 ‖22. Therefore, the vectors rrr that minimize ‖ Brrr − bbb ‖22 have the

form

(
zzz
www

)
for an arbitrary www ∈ Rn−r.

Instead of the Euclidean norm we can use the ‖ · ‖∞. Note that we have
t =‖ Brrr − bbb ‖∞ if and only if −t111 ≤ Brrr − bbb ≤ t111, so finding rrr that minimizes
‖ · ‖∞ amounts to solving a linear programming problem: minimize t subjected
to the restrictions −t111 ≤ Brrr − bbb ≤ t111.

Similarly, we can use the norm ‖ · ‖p. If yyy = Brrr − bbb, then we need to
minimize ‖ yyy ‖pp= |y1|p + · · · + |ym|p, subjected to the restrictions −yyy ≤
Arrr − bbb ≤ yyy.

Example 23. In Figure 5.1 we represent (using the function plot of MATLAB ),
the number of calories consumed by a person per day vs. the gross national
product per person in European countries starting from the table included
below.
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Fig. 5.1. Calories vs. GDP in 10K units per person in Europe.

ccode gdp cal ccode gdp cal

’AL’ 0.74 2824.00 ’IT’ 3.07 3685.00
’AT’ 4.03 3651.00 ’LV’ 1.43 3029.00
’BY’ 1.34 2895.00 ’LT’ 1.59 3397.00
’BE’ 3.79 3698.00 ’LU’ 8.18 3778.00
’BA’ 0.66 2950.00 ’MK’ 0.94 2881.00
’BG’ 1.28 2813.00 ’MT’ 2.51 3535.00
’HR’ 1.75 2937.00 ’MD’ 0.25 2841.00
’CY’ 1.21 3208.00 ’NL’ 4.05 3240.00
’CZ’ 2.56 3346.00 ’NO’ 5.91 3448.00
’DK’ 3.67 3391.00 ’PL’ 1.88 3375.00
’EE’ 1.90 3086.00 ’PT’ 2.30 3593.00
’FI’ 3.53 3195.00 ’RO’ 1.15 3474.00
’FR’ 3.33 3602.00 ’RU’ 1.59 3100.00
’GE’ 0.48 2475.00 ’YU’ 1.10 2689.00
’DE’ 3.59 3491.00 ’SK’ 2.22 2825.00
’GR’ 3.02 3694.00 ’SI’ 2.84 3271.00
’HU’ 1.90 3420.00 ’ES’ 2.95 3329.00
’IS’ 3.67 3279.00 ’CH’ 4.29 3400.00
’IE’ 3.76 3685.00
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We seek to approximate the calorie intake as a linear function of the gdp of
the form

cal = r1 + r2 gdp.

This amounts to solving a linear system that consists of 37 equations and two
unknowns:

r1 + 0.74r2 = 2824

...

r1 + 4.29r2 = 3400

and, clearly such a system is inconsistent.
To accommodate a constant term r1 we construct the matrix D starting

from the data frame calgdp by a combining a column that consists of 1s with
the calgdp[,2] using the column binding function of R and the function
ones of the matlab package, cbind:

> D<- cbind(ones(37,1),calgdp[,2])

Thus, we work with matrix D ∈ R37×2 given by

D =

1 0.74
...

...
1 4.29


whose second column consists of the countries’ gross domestic products in
$10K units.

The matrix C = D′D is

C =

(
37.0000 94.4600
94.4600 333.6592

)
.

and the vector ccc is given by ccc = D′bbb.
Solving the normal system Cttt = ccc in R can be done using the function

solve(C,c)

which yields

> C <- t(D) %*% D

> c <- t(D) %*% b

> solve(C,c)

[,1]

[1,] 2894.1643

[2,] 142.3451
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Thus, the regression line is

cal = 142.3 ∗ gdp + 2894.2,

shown in Figure 5.2. This line can be drawn by writing

qplot(x = gdp,y=cal,data=calgdp)+geom_abline(intercept=2894,slope=142,color="red")

and is represented in Figure 5.2

2800

3200

3600

0 2 4 6 8
gdp

ca
l

Fig. 5.2. Regression Line

Another approach is offered by the lm (linear model) function of R :
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> cg <- calgdp[,2:3]

> calLM <- lm(cal ~ gdp,data=cg)

The function lm returns an object whose structure is given next:

> calLM

Call:

lm(formula = cal ~ gdp, data = cg)

Coefficients:

(Intercept) gdp

2894.2 142.3

> summary(calLM)

Call:

lm(formula = cal ~ gdp, data = cg)

Residuals:

Min 1Q Median 3Q Max

-487.49 -189.91 -27.42 233.83 416.14

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2894.16 76.91 37.629 < 2e-16 ***

gdp 142.35 25.61 5.558 2.96e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 246.3 on 35 degrees of freedom

Multiple R-squared: 0.4688, Adjusted R-squared: 0.4536

F-statistic: 30.89 on 1 and 35 DF, p-value: 2.957e-06

In Example 23 we had only one regressor, namely gdp. In many practical
problems we need to deal with several regressors.

Example 24. Consider again the diamonds data set of the ggplot2 package.
To find a regression of price on the regressors carat, cut, clarity, and
color. amounts to seeking an approximate solution of the system

(111 diamonds[c(1 : 4)])rrr = diamonds[7].

In R we use the function lm as follows:

priceRegr <- lm(price ~ carat + cut + clarity + color,data = diamonds)

The structure of the object priceRegr is obtained by
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> summary(priceRegr)

Call:

lm(formula = price ~ carat + cut + clarity + color, data = diamonds)

Residuals:

Min 1Q Median 3Q Max

-16813.5 -680.4 -197.6 466.4 10394.9

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3710.603 13.980 -265.414 < 2e-16 ***

carat 8886.129 12.034 738.437 < 2e-16 ***

cut.L 698.907 20.335 34.369 < 2e-16 ***

cut.Q -327.686 17.911 -18.295 < 2e-16 ***

cut.C 180.565 15.557 11.607 < 2e-16 ***

cut^4 -1.207 12.458 -0.097 0.923

clarity.L 4217.535 30.831 136.794 < 2e-16 ***

clarity.Q -1832.406 28.827 -63.565 < 2e-16 ***

clarity.C 923.273 24.679 37.411 < 2e-16 ***

clarity^4 -361.995 19.739 -18.339 < 2e-16 ***

clarity^5 216.616 16.109 13.447 < 2e-16 ***

clarity^6 2.105 14.037 0.150 0.881

clarity^7 110.340 12.383 8.910 < 2e-16 ***

color.L -1910.288 17.712 -107.853 < 2e-16 ***

color.Q -627.954 16.121 -38.952 < 2e-16 ***

color.C -171.960 15.070 -11.410 < 2e-16 ***

color^4 21.678 13.840 1.566 0.117

color^5 -85.943 13.076 -6.572 5.00e-11 ***

color^6 -49.986 11.889 -4.205 2.62e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1157 on 53921 degrees of freedom

Multiple R-squared: 0.9159, Adjusted R-squared: 0.9159

F-statistic: 3.264e+04 on 18 and 53921 DF, p-value: < 2.2e-16

The package coefplot contains the function coefplot that allows the visu-
alization of the results of the algorithm. If we write

require(coefplot)

coefplat(priceRgr)

this will result in the plot shown in Figure 5.3.
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Fig. 5.3. Coefficient plot for price regression
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Partitional Clustering

6.1 Introduction

Clustering is the process of grouping together objects that are similar. The
groups formed by clustering are referred to as clusters.

Clustering is possible when we have a similarity measure that apply to
pairs of objects, s : S × S −→ [0, 1], or a dissimilarity measure d : S × S −→
R>0 for objects.

The function s is a similarity if
• s(x, x) = 1 for x ∈ S;
• s(x, y) = s(y, x) for x, y ∈ S.

The function d : S×S −→ R>0 is a dissimilarity if Axioms for dissimilarity:
• d(x, x) = 0 for x ∈ S;
• d(x, y) = d(y, x) for x, y ∈ S.

If, in addition, d(x, y) = 0 implies x = y for x, y ∈ S, we say that d is a
definite dissimilarity.

There are several points of view for examining clustering techniques.
Clustering may or may not be exclusive, where an exclusive clustering tech-

nique yields clusters that are disjoint, while a nonexclusive technique produces
overlapping clusters. From an algebraic point of view, an exclusive clustering
algorithm generates a partition κ = {C1, . . . , Ck} of the set of objects whose
blocks C1, . . . , Ck are referred to as clusters.

Clustering may be intrinsic or extrinsic. Intrinsic clustering is an unsuper-
vised activity that is based only on the dissimilarities between the objects to
be clustered. Most clustering algorithms fall into this category. Extrinsic clus-
tering relies on information provided by an external source that prescribes, for
example, which objects should be clustered together and which should not.

Finally, clustering may be hierarchical or partitional.
Partitional clustering creates a partition of the set of objects whose blocks

are the clusters such that objects in a cluster are more similar to each other
than to objects that belong to different clusters. A typical representative al-
gorithm is the k-means algorithm and its many extensions.
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In hierarchical clustering algorithms, a sequence of partitions is con-
structed. In hierarchical agglomerative algorithms this sequence is increasing
and it begins with the least partition of the set of objects whose blocks con-
sist of single objects; as the clustering progresses, certain clusters are fused
together. As a result, an agglomerative clustering is a chain of partitions on
the set of objects that begins with the least partition αS of the set of objects
S and ends with the largest partition ωS . In a hierarchical divisive algorithm,
the sequence of partitions is decreasing. Its first member is the one-block par-
tition ωS , and each partitions is built by subdividing the blocks of the previous
partition.

Our presentation is organized around the last dichotomy. We start with
partitional algorithms and continue with a class of hierarchical agglomerative
algorithms. We conclude with an evaluation of clustering quality.

Clustering can be regarded as a special type of classification, where the
clusters serve as classes of objects. It is a widely used data mining activity with
multiple applications in a variety of scientific activities ranging from biology
and astronomy to economics and sociology.

6.2 The k-Means Algorithm

The k-means algorithm is a partitional algorithm that requires the specifica-
tion of the number of clusters k as an input. The set of objects to be clustered
{ooo1, . . . , ooon} is a subset of Rm. Due to its simplicity and its many implemen-
tations it is a very popular algorithm despite this requirement.

When data to be clustered are numerical (that is, when S ⊆ Rn), we can
define the centroid of a nonempty subset U of S as:

cccU =
1

|U |
∑
{ooo|ooo ∈ U}.

If π = {U1, . . . , Um} is a partition of S, then the sum of the squared errors of
π is the number

sse(π) =

m∑
i=1

∑
{d2(ooo,cccUi

)|ooo ∈ Ui}, (6.1)

where d is the Euclidean distance in Rn.
The k-means algorithm begins with a randomly chosen collection of k cen-

troids ccc1, . . . , ccck in Rm. An initial partition of the set S of objects is computed
by assigning each object oooi to its closest centroid cccj . Let Uj be the set of points
assigned to the centroid cccj .

The assignments of objects to centroids are expressed by a matrix (bij),
where

bij =

{
1 if oooi ∈ Uj ,
0 otherwise.
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Since each object is assigned to exactly one cluster, we have
∑k
j=1 bij = 1.

Also,
∑n
i=1 bij equals the number of objects assigned to the centroid cccj .

After these assignments, expressed by the matrix (bij), the centroids cccj

must be re-computed using the formula:

cccj =

∑n
i=1 bijooo

i∑n
i=1 bij

(6.2)

for 1 6 j 6 k.
The sum of squared errors of a partition π = {U1, . . . , Uk} of a set of

objects S was defined in Equality (6.1) as

sse(π) =

k∑
j=1

∑
ooo∈Uj

d2(ooo,cccj),

where cccj is the centroid of Uj for 1 6 j 6 k. The error of such an assignment
is the sum of squared errors of the partition π = {U1, . . . , Uk} defined as

sse(π) =

n∑
i=1

k∑
j=1

bij ||oooi − cccj ||2

=

n∑
i=1

k∑
j=1

bij

m∑
p=1

(
oip − cjp

)2
.

The choice of the centroids is justified by the goal of obtaining local minima
of the sum of squared errors of the clusterings.

The mk necessary conditions for a local minimum of sse(π) are

∂sse(π)

∂cjp
=

n∑
i=1

bij
(
−2(oip − cjp)

)
= 0,

for 1 6 p 6 m and 1 6 j 6 k, which can be written as

n∑
i=1

bijo
i
p =

n∑
i=1

bijc
j
p = cjp

n∑
i=1

bij ,

or as

cjp =

∑n
i=1 bijo

i
p∑n

i=1 bij

for 1 6 p 6 m. In vectorial form, these conditions amount to

cccj =

∑n
i=1 bijooo

i∑n
i=1 bij

,

which is exactly the formula (6.2) that is used to update the centroids.
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Since we have new centroids, objects must be reassigned, which means
that the values of bij must be recomputed, which, in turn, affects the values
of the centroids, etc.

The halting criterion of the algorithm depends on particular implementa-
tions and may involve
(i) performing a certain number of iterations;

(ii) lowering the sum of squared errors sse(π) is below a certain limit;
(iii) the current partition coinciding with the previous partition.

Algorithm 6.2.1: The k-means Algorithm

Data: the set of objects to be clustered S = {ooo1, . . . , ooon} and the number of
clusters k

Result: collection of k clusters
1 extract a randomly chosen collection of k vectors ccc1, . . . , ccck in Rn;

2 assign each object oooi to the closest centroid cccj ;

3 let π = {U1, . . . , Uk} be the partition defined by ccc1, . . . , ccck;
4 recompute the centroids of the clusters U1, . . . , Uk;
5 while halting criterion is not met do
6 compute the new value of the partition π using the current centroids;
7 recompute the centroids of the blocks of π;

8 end

The popularity of the k-means algorithm stems from its simplicity and its
low time complexity O(kn`), where n is the number of objects to be clustered
and ` is the number of iterations that the algorithm is performing.

There are several variants of the k-means algorithm and some of them
are implemented in R , as we shall see; these variants are designated as:
"Forgy" (or "Lloyd), "MacQueen", and "Hartigan-Wong, and, unless specified
otherwise by the parameter algorithm, the default is "Hartigan-Wong".

In the "Forgy" variant k instances are randomly chosen and used as the
initial centroids. This approach takes advantage of the fact that the random
selection increases the likelihood to choose a point near a cluster centre be-
cause this is where the highest density of points is located. However, it may
happen that we will choose two initial centroids near the centre of the same
cluster.

Later, McQueen proposed that after k instances are chosen at random,
one instance is assigned at a time to the nearest cluster centre. After each
instance is assigned, the k-means algorithm is run before the next instance is
assigned to a cluster. Since several iterations of the k- means algorithm are
needed after each instance is assigned, the algorith which is expensive when
the number of objects is high.

The Hartigan-Wong variant of the k-means algorithm redistributes objects
to clusters based on the effect of such a reassignment on the objective function.
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If sse(π) decreases, the object is moved and the two centroids of the affected
clusters are recomputed.

The function kmeans of R performs the k-means clustering on a data
matrix. The standard usage of this function is

kmeans(D, centers, iter.max = 10, nstart = 1, algorithm,trace)

and its arguments are:
• D: a matrix of data, or an object that can be coerced to such a matrix

(such as a numeric vector or a data frame with all numeric columns);
• centers: either the number of clusters, say k, or a set of initial (distinct)

cluster centroids. In the first case, a random set of (distinct) rows in D is
chosen as the set of initial centroids;

• iter.max: the maximum number of iterations allowed;
• nstart: if centers is a number, this parameter indicates the number of

random sets;
• algorithm: a string that indicates the variant of the algorithm, as dis-

cussed previously;
• trace: logical or integer number, currently only used in the default

method ("Hartigan-Wong"): if positive (or true), tracing information on
the progress of the algorithm is produced; higher values may produce more
tracing information.
The function kmeans returns an object which has a print and a fitted

method. It is a list with at least the following components:
• cluster: a vector of integers (from 1 to k) indicating the cluster to which

each point is allocated;
• centers: a matrix of cluster centres;
• totss: the total sum of squares;
• withinss: vector of within-cluster sum of squares, one component per

cluster;
• tot.withinss: total within-cluster sum of squares, that is, the sum(withinss);
• betweenss: the between-cluster sum of squares;
• size: the number of points in each cluster;
• iter: the number of (outer) iterations;
• ifault: an integer indicator of a possible algorithm problem.

Example 25. We use the function setofpoints2 defined by

setofpoints2 <- function(n,center,stdev){

return(cbind(rnorm(n,center[1],stdev[1]),

rnorm(n,center[2],stdev[2])))

}

to generate n points in R2 normally distributed around the vector center and
having the standard deviations specified by the vector stdev. We begin by
producing three sets of points A, B and D, and, then by joining these sets into
the set D and naming the columns of this matrix as ("x") and ("y"):
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A <- setofpoints2(40,c(2,4),c(0.2,0.3))

B <- setofpoints2(30,c(3,2.5),c(0.3,0.3))

C <- setofpoints2(45,c(4,4),c(0.2,0.4))

D <- rbind(A,B,C)

colnames(D) <- c("x","y")

The plot of the set D is shown in Figure 6.1.
The kmeans cluster produces the object sp in

sp <-kmeans(D,3)

that is plotted in Figure 6.2 using plot(D,col=sp$cluster).

6.3 The PAM Algorithm

Another algorithm, named PAM (an acronym of “Partition Around Medoids”)
developed by Kaufman and Rousseeuw, also requires as an input parameter
the number k of clusters to be extracted.

The k clusters are determined based on a representative object from each
cluster, called the medoid of the cluster. The medoid of a cluster is one of the
objects that have a most central position in the cluster.

PAM begins with a set of objects S, where |S| = n, a dissimilarity n × n
matrix D, and a prescribed number of clusters k. The dij entry of the matrix
D is the dissimilarity d(oi, oj) between the objects oi and oj .

The algorithm has two phases:
(i) the building phase, and

(ii) the swapping phase.
The building phase aims to construct a set L of selected objects, L ⊆ S.

The set of remaining objects is denoted by R; clearly, R = S−L. To determine
the most centrally located object we compute Qi =

∑n
j=1 dij for 1 6 i 6 n.

The most central object oq is determined by q = arg miniQi. The set L is
initialized as L = {oq}.

Suppose now that we have constructed a set L of selected objects and
|L| < k. We need to add a new selected object to the set L. To do this, we
need to examine all objects that have not been included in L so far, that is, all
objects in R. The selection is determined by a merit function M : R −→ N.

To compute the merit M(o) of an object o ∈ R, we scan all objects in
R distinct from o. Let o′ ∈ R − {o} be such an object. If d(o, o′) < d(L, o′),
then adding o to L could benefit the clustering (from the point of view of o′)
because d(L, o′) will diminish. The potential benefit is d(o′, L) − d(o, o′). Of
course, if d(o, o′) > d(L, o′), no such benefit exists (from the point of view of
o′). Thus, we compute the merit of o as

M(o) =
∑

o′∈R−{o}

max{D(L, o′)− d(o, o′), 0}.
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Fig. 6.2. Plot of clustered objects

We add to L the unselected object o that has the largest merit value. The
building phase halts when |L| = k.

The objects in set L are the potential medoids of the k clusters that we
seek to build.

In the swapping phase swapping objects and existing medoids is considered.
A cost of a swap is defined with the intention of penalizing swaps that diminish
the centrality of the medoids in the clusters. Swapping continues as long as
useful swaps (that is, swaps with negative costs) can be found.

Let oi be a selected object, oi ∈ L, and let oh be an unselected object,
oh ∈ R = S − L. The cost C(oi, oh) of swapping oi and oh is determined by
the contribution of each unselected object oj .
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Let oj be an arbitrary unselected object and let d(L, oj) be the least dis-
similarity between oj and an object in L. Also, let e(oj) be the dissimilarity
between oj and the second most similar object in L.

The contribution cihj of oj to the cost of the swap between oi and oh is
defined as follows:
1. If d(oi, oj) and d(oh, oj) are greater than d(o, oj) for any o ∈ L − {oi},

then cihj = 0.
2. If d(oi, oj) = d(L, oj), then two cases must be considered depending e(oj):

a) If d(oh, oj) < e(oj), then cihj = d(oh, oj)− d(L, oj).
b) If d(oh, oj) > e(oj), then cihj = e(oj)− d(L, oj).

3. If d(oi, oj) > d(L, oj) > d(oh, oj) (that is, oj is more distant from oi than
from at least one other selected object and oj is closer to oh than to any
selected object), then cihj = d(oh, oj)− d(L, oj).
The cost of the swap is C(oi, oh) =

∑
oj∈R cihj . The pair that minimizes

C(oi, oj) is selected. If C(oi, oj) < 0, then the swap is carried out. All potential
swaps are considered.

The algorithm halts when no useful swap exists; that is, no swap with
negative cost can be found.

PAM is more robust than k-clustering because it minimizes the sum of the
dissimilarities instead of the sum of the squared errors.

The pseudocode of the algorithm is given in Algorithm 6.3.1.

Algorithm 6.3.1: The PAM algorithms

Data: a set of objects S, where |S| = n, a dissimilarity n× n matrix D, and
a prescribed number of clusters k

Result: a k-clustering of S
1 construct the set L of k medoids;
2 repeat
3 compute the costs C(oi, oh) for oi ∈ L and oh ∈ R;
4 select the pair (oi, oh) that corresponds to the minimum m = C(oi, oh);

5 until (m > 0);

Note that inside the loop repeat · · ·until there are l(n−l) pairs of objects
to be examined, and for each pair we need to involve n−l non-selected objects.
Thus, one execution of the loop requires O(l(n− l)2), and the total execution

may require up to O
(∑n−l

l=1 l(n− l)2
)

, which is O(n4). Thus, the usefulness of

PAM is limited to rather small data set (no more than a few hundred objects).
The function pam, a component of the package clust implements the al-

gorithm discussed above.

Example 26. To apply the algorithm to the data set D previously computed
we write:
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pamx <- pam(D, 3)

The summary of the object pamx returned by summary(pamx) is

Medoids:

ID x y

[1,] 39 2.018645 3.941830

[2,] 48 2.960442 2.410117

[3,] 85 4.021261 4.038188

Clustering vector:

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3

[75] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

[112] 3 3 3 3

Objective function:

build swap

0.4756183 0.3719818

Available components:

[1] "medoids" "id.med" "clustering" "objective" "isolation"

[6] "clusinfo" "silinfo" "diss" "call" "data"

Clusters can be visualized using the function clusplot which result in the
representation shown in Figure 6.3.

6.4 Evaluation of Clusterings

The silhouette method is an unsupervised method for evaluation of clusterings
that computes certain coefficients for each object. The set of these coefficients
allows an evaluation of the quality of the clustering.

Let S = {ooo1, . . . , ooon} be a collection of objects, d : S × S −→ R≥0 a
dissimilarity on S, and let {C1, . . . , Ck} be a clustering of S.

Suppose that oooi ∈ C`. The average dissimilarity of oooi is given by

a(oooi) =

∑
{d(oooi,uuu) | u ∈ C` − {oooi}}

|C`|
,

that is, the average dissimilarity between oooi to all other objects of C`, the
cluster to which oooi is assigned.

For oooi and a cluster C 6= C` let

d(oooi, C) =

∑
{d(oooi, u) | f(u) = C}

|C|
,

be the average dissimilarity between oooi and the objects of the cluster C.
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Fig. 6.3. Plot of clustered objects

Definition 5. Let {C1, . . . , Ck} be a clustering. A neighbor of oooi is a cluster
C 6= C` for which d(oooi, C) is minimal.

In other words, a neighbor of an object oooi is “the second best choice” for a
cluster for oooi. Let b : S −→ R≥0 be the function defined by

b(oooi) = min{d(oooi, C) | C 6= C`}.

Definition 6. The silhouette of the object oooi for which |C`| ≥ 2 is the number
sil(oooi) given by
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sil(oooi) =


1− a(oooi)

b(oooi)
if a(oooi) < b(oooi)

0 if a(oooi) = b(oooi)
b(oooi)
a(oooi)

− 1 if a(oooi) > b(oooi).

Equivalently, we have

sil(oooi) =
b(oooi)− a(oooi)

max{a(oooi), b(oooi)}

for oooi ∈ O.

Observe that −1 ≤ sil(oooi) ≤ 1. When sil(oooi) is close to 1, this means that
a(oooi) is much smaller than b(oooi) and we may conclude that oooi is well-classified.
When sil(oooi) is near 0, it is not clear which is the best cluster for oooi. Finally,
if sil(oooi) is close to −1, the average distance from u to its neighbor(s) is much
smaller than the average distance between oooi and other objects that belong
to the same cluster f(oooi). In this case, it is clear that oooi is poorly classified.

Definition 7. The average silhouette width of a cluster C is

sil(C) =

∑
{sil(u) | u ∈ C}

|C|
.

The average silhouette width of a clustering κ is

sil(κ) =

∑
{sil(u) | u ∈ O}

|O|
.

The silhouette of a clustering can be used for determining the “optimal”
number of clusters. If the average silhouette of the clustering is above 0.7, we
have a strong clustering.

Example 27. The sihouette plot of the pamx clustring discussed in Example 26
is shown in Figure 6.4. and is obtained with the command

sil <- silhouette(pamx)

plot(sil)

The function silhouette is a part of the package clust.
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Hierarchical Clustering

7.1 Introduction

7.2 Ultrametrics and Ultrametric Spaces

An ultrametric on a set S is a mapping d : S2 −→ R>0 that has the following
properties:
(i) d(x, y) = 0 if and only if x = y for x, y ∈ S;

(ii) d(x, y) = d(y, x) for x, y ∈ S;
(iii) d(x, y) 6 max{d(x, z), d(z, y)} for x, y, z ∈ S.

If property (i) is replaced by the weaker requirement that d(x, x) = 0 for
x ∈ S, then d is a quasi-ultrametric on S.

Example 28. Let π = {B,C} be a two-block partition of a nonempty set S.
Define the mapping dπ : S2 −→ R>0 by

dπ(x, y) =

{
0 if {x, y} ⊆ B or {x, y} ⊆ C
1 otherwise,

for x, y ∈ S. We claim that dπ is a quasi-ultrametric. Indeed, it is clear
that dπ(x, x) = 0 and dπ(x, y) = dπ(y, x) for x, y ∈ S. Now let x, y, z be
three arbitrary elements in S. If dπ(x, y) = 1, then x and y belong to two
distinct blocks of the partition π, say to B and C, respectively. If z ∈ B,
then dπ(x, z) = 0 and dπ(z, y) = 1; similarly, if z ∈ C, then dπ(x, z) = 1 and
dπ(z, y) = 0. In either case, the ultrametric inequality is satisfied.

Example 29. Let A be a finite set and let AN be the set of functions of the form
f : N −→ A. For f, g : N −→ A define δ(f, g) = min{n ∈ N | f(n) 6= g(n)}
and d(f, g) = 2−δ(f,g).

We claim that d is an ultrametric. Let f, g, h : N −→ A and let δ(f, g) = p
and δ(g, h) = q. Suppose that p 6 q. In this case, it follows that δ(f, h) =
p. Thus, d(f, g) = 2−p = d(f, h) > d(g, h) and the ultrametric inequality
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d(f, g) 6 max{d(f, h), d(g, h)} is satisfied. The remaining cases are left to the
reader.

Theorem 11. Let a0, a1, a2 ∈ R be three numbers. If ai 6 max{aj , ak} for
every permutation (i, j, k) of the set {0, 1, 2}, then two of the numbers are
equal and the third is not larger than the two others.

Proof. Suppose that ai is the least of the numbers a0, a1, a2 and aj , ak are the
remaining numbers. Since aj 6 max{ai, ak} = ak and ak 6 max{ai, aj} = aj ,
it follows that aj = ak > ai.

Triangles in ultrametric spaces have an interesting property that is given
next.

Corollary 2. Let (S, d) be an ultrametric space. For every x, y, z ∈ S, two of
the numbers d(x, y), d(x, z), d(y, z) are equal and the third is not larger than
the two other equal numbers.

Proof. Since d satisfies the ultrametric inequality, the statement follows im-
mediately from Theorem 11.

Theorem 12. Let B(x, r) be a closed sphere in the ultrametric space (S, d). If
z ∈ B(x, d), then B(x, r) = B(z, r). In other words, in an ultrametric space,
a closed sphere has all its points as centers.

Proof. Suppose that z ∈ B(x, r), so d(x, z) 6 r. Let y ∈ B(z, r). Since
d(y, x) 6 max{d(y, z), d(z, x)} 6 r, we have y ∈ B(x, r). Conversely, if
y ∈ B(x, r), we have d(y, z) 6 max{d(y, x), d(x, z)} 6 r, hence y ∈ B(z, r).

Both closed and open spheres in ultrametric spaces are clopen sets as we
show next.

Theorem 13. If d is an ultrametric on S, then any closed sphere B(t, r) and
any open sphere C(t, r) are clopen sets in the topological ultrametric space
(S,Od).

Proof. We already know that B(t, r) is closed. To prove that this set is also
open if d is an ultrametric, let s ∈ B(t, r). By Theorem 12 s is a center of the
sphere. Therefore, C

(
s, r2
)
⊆ B(t, r), so B(t, r) is open. We leave the proof

that C(t, r) is also closed to the reader.

By Theorem ??, the border of a closed sphere or of an open sphere in an
ultrametric space is empty.

Theorem 14. Let (S, d) be an ultrametric space, x, y ∈ S, and let S(x, y) ⊆
Seq(S) be the set of sequences that start with x and end with y. We have
d(x, y) = min{ampd(sss) | sss ∈ S(x, y)}.
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Proof. Since d is an ultrametric, we have d(x, y) 6 ampd(sss) for any nonnull
sequence sss = (s1, . . . , sn) such that s1 = x and sn = y. Therefore,

d(x, y) 6 min{ampd(sss) | sss ∈ S(x, y)}.

The equality of the theorem follows from the fact that (x, y) ∈ S(x, y).

Theorem 15. If two closed spheres B(x, r) and B(y, r′) of an ultrametric
space have a point in common, then one of the closed spheres is included in
the other.

Proof. The statement follows directly from Theorem 12.

Theorem 12 implies that the entire space S equals the closed sphere
B(x, diamS,d) for any point x ∈ S.

The next statement gives a method of constructing ultrametrics starting
from chains of equivalence relations.

Theorem 16. Let S be a finite set and let d : S × S −→ R>0 be a function
whose range is range(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if
and only if x = y. Define the relations ηri = {(x, y) ∈ S × S | d(x, y) 6 ri}
for 1 6 i 6 m.

The function d is an ultrametric on S if and only if the sequence of re-
lations ηr1 , . . . , ηrm is an increasing chain of equivalences on S such that
ηr1 = ιS and ηrm = θS.

Proof. Suppose that d is an ultrametric on S. We have (x, x) ∈ ηri because
d(x, x) = 0, so all relations ηri are reflexive. Also, it is clear that the symmetry
of d implies (x, y) ∈ ηri if and only if (y, x) ∈ ηri , so these relations are
symmetric.

The ultrametric inequality is essential for proving the transitivity of the
relations ηri . If (x, y), (y, z) ∈ ηri , then d(x, y) 6 ri and d(y, z) 6 ri, which
implies d(x, z) 6 max{d(x, y), d(y, z)} 6 ri. Thus, (x, z) ∈ ηri , which shows
that every relation ηri is transitive and therefore an equivalence.

It is straightforward to see that ηr1 6 ηr2 6 · · · 6 ηrm ; that is, this
sequence of relations is indeed a chain of equivalences.

Conversely, suppose that ηr1 , . . . , ηrm is an increasing sequence of equiva-
lences on S such that ηr1 = ιS and ηrm = θS , where ηri = {(x, y) ∈ S × S |
d(x, y) 6 ri} for 1 6 i 6 m and r1 = 0.

Note that d(x, y) = 0 is equivalent to (x, y) ∈ ηr1 = ιS , that is, to x = y.
We claim that

d(x, y) = min{r | (x, y) ∈ ηr}. (7.1)

Indeed, since ηrm = θS , it is clear that there is an equivalence ηri such that
(x, y) ∈ ηri . If (x, y) ∈ ηri , the definition of ηri implies d(x, y) 6 ri, so
d(x, y) 6 min{r | (x, y) ∈ ηr}. This inequality can be easily seen to become an
equality since (x, y) ∈ ηd(x,y). This implies immediately that d is symmetric.
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To prove that d satisfies the ultrametric inequality, let x, y, z be three
members of the set S. Let p = max{d(x, z), d(z, y)}. Since (x, z) ∈ ηd(x,z) ⊆ ηp
and (z, y) ∈ ηd(z,y) ⊆ ηp, it follows that (x, y) ∈ ηp, due to the transitivity
of the equivalence ηp. Thus, d(x, y) 6 p = max{d(x, z), d(z, y)}, which proves
the triangular inequality for d.

Of course, Theorem 16 can be formulated in terms of partitions.

Theorem 17. Let S be a finite set and let d : S × S −→ R>0 be a function
whose range is range(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if
and only if x = y. For u ∈ S and r ∈ R>0, define the set Du,r = {x ∈ S |
d(u, x) 6 r} and let πri = {D(u, ri) | u ∈ S} for 1 6 i 6 m.

The function d is an ultrametric on S if and only if the sequence πr1 , . . . , πrm
is an increasing sequence of partitions on S such that πr1 = αS and πrm = ωS.

Proof. The argument is entirely similar to the proof of Theorem 16 and is
omitted.

Hierarchies and Ultrametrics

Definition 8. Let S be a set. A hierarchy on S is a collection of sets H ⊆
P(S) that satisfies the following conditions:
(i) the members of H are nonempty sets;

(ii) S ∈ H;
(iii) for every x ∈ S, we have {x} ∈ H;
(iv) if H,H ′ ∈ H and H ∩H ′ 6= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H.

A standard technique for constructing a hierarchy on a set S starts with
a rooted tree (T , v0) whose nodes are labeled by subsets of the set S. Let V
be the set of vertices of the tree T . The function µ : V −→ P(S), which gives
the label µ(v) of each node v ∈ V , is defined as follows:
(i) the tree T has |S| leaves, and each leaf v is labeled by a distinct singleton

µ(v) = {x} for x ∈ S;
(ii) if an interior vertex v of the tree has the descendants v1, v2, . . . , vn, then

µ(v) =
⋃n
i=1 µ(vi).

The set of labels HT of the rooted tree (T , v0) forms a hierarchy on S.
Indeed, note that each singleton {x} is a label of a leaf. An easy argument by
induction on the height of the tree shows that every vertex is labeled by the
set of labels of the leaves that descend from that vertex. Therefore, the root
v0 of the tree is labeled by S.

Suppose that H,H ′ are labels of the nodes u, v of T , respectively. If H ∩
H ′ 6= ∅, then the vertices u, v have a common descendant. In a tree, this can
take place only if u is a descendant of v or v is a descendant of u; that is, only
if H ⊆ H ′, or H ′ ⊆ H, respectively. This gives the desired conclusion.
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Example 30. Let S = {s, t, u, v, w, x, y} and let T be a tree whose vertices are
labeled as shown in Figure 7.4. It is easy to verify that the family of subsets
of S that label the nodes of T ,

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w, x}, {s, t, u, v}, {w, x, y}, {s, t, u, v, w, x, y}}

is a hierarchy on the set S.

u u u u u u u
{s} {t} {u} {v} {w} {x} {y}

u u
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{s, t, u, y, w, x, y}

Fig. 7.1. Tree labeled by subsets of S.

Chains of partitions defined on a set generate hierarchies, as we show next.

Theorem 18. Let S be a set and let C = (π1, π2, . . . , πn) be an increasing
chain of partitions (PART(S),6) such that π1 = αS and πn = ωS. Then,
the collection HC =

⋃n
i=1 πi that consists of the blocks of all partitions in the

chain is a hierarchy on S.

Proof. The blocks of any of the partitions are nonempty sets, so HC satisfies
the first condition of Definition 10.

We have S ∈ HC because S is the unique block of πn = ωS . Also, since all
singletons {x} are blocks of αS = π1, it follows that HC satisfies the second
and the third conditions of Definition 10. Finally, let H and H ′ be two sets of
HC such that H ∩H ′ 6= ∅. Because of this condition, it is clear that these two
sets cannot be blocks of the same partition. Thus, there exist two partitions
πi and πj in the chain such that H ∈ πi and H ′ ∈ πj . Suppose that i < j.
Since every block of πj is a union of blocks of πi, H

′ is a union of blocks of πi
and H ∩H ′ 6= ∅ means that H is one of these blocks. Thus, H ⊆ H ′. If j > i,
we obtain the reverse inclusion. This allows us to conclude that HC is indeed
a hierarchy.

Theorem 25 can be stated in terms of chains of equivalences; we give the
following alternative formulation for convenience.
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Theorem 19. Let S be a finite set and let (ρ1, . . . , ρn) be a chain of equiv-
alence relations on S such that ρ1 = ιS and ρn = θS. Then, the collection
of blocks of the equivalence relations ρr (that is, the set

⋃
16r6n S/ρr) is a

hierarchy on S.

Proof. The proof is a mere restatement of the proof of Theorem 25.

Define the relation “≺” on a hierarchy H on S by H ≺ K if H,K ∈ H,
H ⊂ K, and there is no set L ∈ H such that H ⊂ L ⊂ K.

Lemma 1. Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H | H ≺ L} is a partition of the set L.

Proof. We claim that L =
⋃
PL. Indeed, it is clear that

⋃
PL ⊆ L.

Conversely, suppose that z ∈ L but z 6∈
⋃
PL. Since {z} ∈ H and there is

no K ∈ PL such that z ∈ K, it follows that {z} ∈ PL, which contradicts the
assumption that z 6∈

⋃
PL. This means that L =

⋃
PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since other-
wise we would have either K0 ⊂ K1 or K1 ⊂ K0, and this would contradict
the definition of PL.

Theorem 20. Let H be a hierarchy on a set S. The graph of the relation ≺
on H is a tree whose root is S; its leaves are the singletons {x} for every
x ∈ S.

Proof. Since ≺ is an antisymmetric relation on H, it is clear that the graph
(H,≺) is acyclic. Moreover, for each set K ∈ H, there is a unique path that
joins K to S, so the graph is indeed a rooted tree.

Definition 9. Let H be a hierarchy on a set S. A grading function for H is
a function h : H −→ R that satisfies the following conditions:
(i) h({x}) = 0 for every x ∈ S, and

(ii) if H,K ∈ H and H ⊂ K, then h(H) < h(K).
If h is a grading function for a hierarchy H, the pair (H, h) is a graded

hierarchy.

Example 31. For the hierarchy H defined in Example 35 on the set S =
{s, t, u, v, w, x, y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,
h({s, t, u}) = 3, h({w, x}) = 4, h({s, t, u, v}) = 5, h({w, x, y}) = 6,
h({s, t, u, v, w, x, y}) = 7,

is a grading function and the pair (H, h) is a graded hierarchy on S.

Theorem 25 can be extended to graded hierarchies.
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Theorem 21. Let S be a finite set and let C = (π1, π2, . . . , πn) be an increas-
ing chain of partitions (PART(S),6) such that π1 = αS and πn = ωS.

If f : {1, . . . , n} −→ R>0 is a function such that f(1) = 0, then the
function h : HC −→ R>0 given by h(K) = f (min{j | K ∈ πj}) is a grading
function for the hierarchy HC .

Proof. Since {x} ∈ π1 = αS , it follows that h({x}) = 0, so h satisfies the first
condition of Definition 11.

Suppose that H,K ∈ HC and H ⊂ K. If ` = min{j | H ∈ πj} it is
impossible for K to be a block of a partition that precedes π`. Therefore,
` < min{j | K ∈ πj}, so h(H) < h(K), and (HC , h) is indeed a graded
hierarchy.

A graded hierarchy defines an ultrametric, as shown next.

Theorem 22. Let (H, h) be a graded hierarchy on a finite set S. Define the
function d : S2 −→ R as d(x, y) = min{h(U) | U ∈ H and {x, y} ⊆ U} for
x, y ∈ S. The mapping d is an ultrametric on S.

Proof. Observe that for every x, y ∈ S there exists a set H ∈ H such that
{x, y} ⊆ H because S ∈ H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0.
Then, there exists H ∈ H such that {x, y} ⊆ H and h(H) = 0. If x 6= y,
then {x} ⊂ H, hence 0 = h({x}) < h(H), which contradicts the fact that
h(H) = 0. Thus, x = y.

The symmetry of d is immediate.
To prove the ultrametric inequality, let x, y, z ∈ S, and suppose that

d(x, y) = p, d(x, z) = q, and d(z, y) = r. There exist H,K,L ∈ H such
that {x, y} ⊆ H, h(H) = p, {x, z} ⊆ K, h(K) = q, and {z, y} ⊆ L, h(L) = r.
Since K ∩ L 6= ∅ (because both sets contain z), we have either K ⊆ L or
L ⊆ K, so K ∪ L equals either K or L and, in either case, K ∪ L ∈ H. Since
{x, y} ⊆ K ∪ L, it follows that

d(x, y) 6 h(K ∪ L) = max{h(K), H(L)} = max{d(x, z), d(z, y)},

which is the ultrametric inequality.

We refer to the ultrametric d whose existence is shown in Theorem 29 as
the ultrametric generated by the graded hierarchy (H, h).

Example 32. The values of the ultrametric generated by the graded hierarchy
(H, h) on the set S introduced in Example 36 are given in the following table:
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d s t u v w x y
s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0

The hierarchy introduced in Theorem 26 that is associated with an ul-
trametric space can be naturally equipped with a grading function, as shown
next.

Theorem 23. Let (S, d) be a finite ultrametric space. There exists a graded
hierarchy (H, h) on S such that d is the ultrametric associated to (H, h).

Proof. Let H be the collection of equivalence classes of the equivalences ηr =
{(x, y) ∈ S2 | d(x, y) 6 r} defined by the ultrametric d on the finite set S,
where the index r takes its values in the range Rd of the ultrametric d. Define
h(E) = min{r ∈ Rd | E ∈ S/ηr} for every equivalence class E.

It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every
x ∈ S.

Let [x]t be the equivalence class of x relative to the equivalence ηt.
Suppose that E and E′ belong to the hierarchy and E ⊂ E′. We have

E = [x]r and E′ = [x]s for some x ∈ X. Since E is strictly included in E′,
there exists z ∈ E′ − E such that d(x, z) 6 s and d(x, z) > r. This implies
r < s. Therefore,

h(E) = min{r ∈ Rd | E ∈ S/ηr} 6 min{s ∈ Rd | E′ ∈ S/ηs} = h(E′),

which proves that (H, h) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x, y) = min{h(B) | B ∈ H and {x, y} ⊆ B}
= min{r | (x, y) ∈ ηr} = min{r | d(x, y) 6 r} = d(x, y),

for x, y ∈ S; in other words, we have e = d.

Example 33. Starting from the ultrametric on the set S = {s, t, u, v, w, x, y}
defined by the table given in Example 37, we obtain the following quotient
sets:

Values of r S/ηr
[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w, x}, {y}
[5, 6) {s, t, u, v}, {w, x}, {y}
[6, 7) {s, t, u, v}, {w, x, y}
[7,∞) {s, t, u, v, w, x, y}
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We shall draw the tree of a graded hierarchy (H, h) using a special rep-
resentation known as a dendrogram. In a dendrogram, an interior vertex K
of the tree is represented by a horizontal line drawn at the height h(K). For
example, the dendrogram of the graded hierarchy of Example 36 is shown in
Figure 7.5.

By Theorem 29, the value d(x, y) of the ultrametric d generated by a
hierarchy H is the smallest height of a set of a hierarchy that contains both x
and y. This allows us to “read” the value of the ultrametric generated by H
directly from the dendrogram of the hierarchy.

u u u u u u u

6

s t u v w x y

1

2

3

4

5

6

7

Fig. 7.2. Dendrogram of graded hierarchy of Example 36.

Example 34. For the graded hierarchy of Example 36, the ultrametric ex-
tracted from Figure 7.5 is clearly the same as the one that was obtained
in Example 37.

The Poset of Ultrametrics

Let S be a set. Recall that we denoted the set of dissimilarities by DS . Define
a partial order 6 on DS by d 6 d′ if d(x, y) 6 d′(x, y) for every x, y ∈ S. It is
easy to verify that (DS ,6) is a poset.

The set US of ultrametrics on S is a subset of DS .

Theorem 24. Let d be a dissimilarity on a set S and let Ud be the set of
ultrametrics Ud = {e ∈ US | e 6 d}. The set Ud has a largest element in the
poset (DS ,6).

Proof. The set Ud is nonempty because the zero dissimilarity d0 given by
d0(x, y) = 0 for every x, y ∈ S is an ultrametric and d0 6 d.

Since the set {e(x, y) | e ∈ Ud} has d(x, y) as an upper bound, it is possible
to define the mapping e1 : S2 −→ R>0 as e1(x, y) = sup{e(x, y) | e ∈ Ud} for
x, y ∈ S. It is clear that e 6 e1 for every ultrametric e. We claim that e1 is an
ultrametric on S.
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We prove only that e1 satisfies the ultrametric inequality. Suppose that
there exist x, y, z ∈ S such that e1 violates the ultrametric inequality; that is,

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y) | e ∈ Ud} > max{sup{e(x, z) | e ∈ Ud}, sup{e(z, y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z) | e ∈ Ud}, and ê(x, y) > sup{e(z, y) | e ∈ Ud}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the
fact that ê is an ultrametric.

The ultrametric defined by Theorem 24 is known as the maximal subdom-
inant ultrametric for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of
ultrametrics because, in general, the infimum of a set of ultrametrics is not
necessarily an ultrametric.

For example, consider a three-element set S = {x, y, z}, four distinct non-
negative numbers a, b, c, d such that a > b > c > d and the ultrametrics d
and d′ defined by the triangles shown in Figures 7.3(a) and (b), respectively.
The dissimilarity d0 defined by d0(u, v) = min{d(u, v), d′(u, v)} for u, v ∈ S is
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Fig. 7.3. Two ultrametrics on the set {x, y, z}.

given by
d0(x, y) = b, d0(y, z) = d, and d0(x, z) = c,

and d0 is clearly not an ultrametric because the triangle xyz is not isosceles.
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In what follows, we give an algorithm for computing the maximal subdom-
inant ultrametric for a dissimilarity defined on a finite set S.

We define inductively an increasing sequence of partitions π1 ≺ π2 ≺ · · ·
and a sequence of dissimilarities d1, d2, . . . on the sets of blocks of π1, π2, . . .,
respectively.

For the initial phase, π1 = αS and d1({x}, {y}) = d(x, y) for x, y ∈ S.
Suppose that di is defined on πi. If B,C ∈ πi is a pair of blocks such that

di(B,C) has the smallest value, define the partition πi+1 by

πi+1 = (πi − {B,C}) ∪ {B ∪ C}.

In other words, to obtain πi+1, we replace two of the closest blocks B and C,
of πi (in terms of di) with new block B ∪ C. Clearly, πi ≺ πi+1 in PART(S)
for i > 1.

The collection of blocks of the partitions πi forms a hierarchy Hd on the
set S. The dissimilarity di+1 is given by

di+1(U, V ) = min{d(x, y) | x ∈ U, y ∈ V } (7.2)

for U, V ∈ πi+1.
We introduce a grading function hd on the hierarchy defined by this chain

of partitions starting from the dissimilarity d. The definition is done for the
blocks of the partitions πi by induction on i.

For i = 1 the blocks of the partition π1 are singletons; in this case we
define hd({x}) = 0 for x ∈ S.

Suppose that hd is defined on the blocks of πi, and let D be the block of
πi+1 that is generated by fusing the blocks B and C of πi. All other blocks of
πi+1 coincide with the blocks of πi. The value of the function hd for the new
block D is given by hd(D) = min{d(x, y) | x ∈ B, y ∈ C}. It is clear that hd
satisfies the first condition of Definition 11.

For a set U of Hd, define pU = min{i | U ∈ πi} and qU = max{i | U ∈
πi}. Note that pU is the first index i such that U is a block of πi, and qU is
the last i such that U is a block of πi. If H,K ∈ Hd and H ⊆ K, this means
that both H and K are blocks of some partitions πh and πk and we have

pH 6 qH 6 pK 6 qK ,

so qH 6 pK .
The construction of the sequence of partitions implies that there are

H0, H1 ∈ πpH−1 and K0,K1 ∈ πpK−1 such that H = H0 ∪ H1 and
K = K0 ∪K1. Therefore,

hd(H) = min{d(x, y) | x ∈ H0, y ∈ H1},
hd(K) = min{d(x, y) | x ∈ K0, y ∈ K1}.

Since H0 and H1 were fused (to produce the block H of the partition πpH )
before K0 and K1 were (to produce the block K of the partition πpK ), it
follows that hd(H) < hd(K).
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By Theorem 29, the graded hierarchy (Hd, hd) defines an ultrametric; we
denote this ultrametric by e and will prove that e is the maximal subdominant
ultrametric for d. Recall that e is given by

e(x, y) = min{hd(W ) | {x, y} ⊆W}

and that hd(W ) is the least value of d(u, v) such that u ∈ U, v ∈ V if W ∈ πpW
is obtained by fusing the blocks U and V of πpW−1. The definition of e(x, y)
implies that we have neither {x, y} ⊆ U nor {x, y} ⊆ V . Thus, we have either
x ∈ U and y ∈ V or x ∈ V and y ∈ U . Thus, e(x, y) 6 d(x, y).

We now prove that:

e(x, y) = min{ampd(sss) | sss ∈ S(x, y)}

for x, y ∈ S.
Let D be the minimal set in Hd that includes {x, y}. Then, D = B ∪ C,

where B and C are two disjoint sets of Hd such that x ∈ B and y ∈ C. If sss
is a sequence included in D, then there are two consecutive components of sss,
sk and sk+1, such that sk ∈ B and sk+1 ∈ C. This implies

e(x, y) = min{d(u, v) | u ∈ B, v ∈ C}
6 d(sk, sk+1)

6 ampd(sss).

If sss is not included in D, let sq and sq+1 be two consecutive components of
sss such that sq ∈ D and sq+1 6∈ D. Let E be the smallest set of Hd that
includes {sq, sq+1}. We have D ⊆ E (because sk ∈ D ∩ E) and therefore
hd(D) 6 hd(E). If E is obtained as the union of two disjoint sets E′ and E′′

of Hd such that sk ∈ E′ and sk+1 ∈ E′′, we have D ⊆ E′. Consequently,

hd(E) = min{d(u, v) | u ∈ E′, v ∈ E′′} 6 d(sk, sk+1),

which implies

e(x, y) = hd(D) 6 hd(E) 6 d(sk, sk+1) 6 ampd(sss).

Therefore, we conclude that e(x, y) 6 ampd(sss) for every sss ∈ S(x, y).
We now show that there is a sequence www ∈ S(x, y) such that e(x, y) >

ampd(www), which implies the equality e(x, y) = ampd(www). To this end, we prove
that for every D ∈ πk ⊆ Hd there exists www ∈ S(x, y) such that ampd(www) 6
hd(D). The argument is by induction on k.

For k = 1, the statement obviously holds. Suppose that it holds for
1, . . . , k − 1, and let D ∈ πk. The set D belongs to πk−1 or D is obtained
by fusing the blocks B,C of πk−1. In the first case, the statement holds by
inductive hypothesis. The second case has several subcases:
(i) If {x, y} ⊆ B, then by the inductive hypothesis, there exists a sequence

uuu ∈ S(x, y) such that ampd(uuu) 6 hd(B) 6 hd(D) = e(x, y).
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(ii) The case {x, y} ⊆ C is similar to the first case.
(iii) If x ∈ B and y ∈ C, there exist u, v ∈ D such that d(u, v) = hd(D).

By the inductive hypothesis, there is a sequence uuu ∈ S(x, u) such
that ampd(uuu) 6 hd(B) and there is a sequence vvv ∈ S(v, y) such that
ampd(vvv) 6 hd(C). This allows us to consider the sequence www obtained
by concatenating the sequences uuu, (u, v), vvv; clearly, www ∈ S(x, y) and
ampd(www) = max{ampd(uuu), d(u, v), ampd(vvv)} 6 hd(D).
To complete the argument, we need to show that if e′ is another ultrametric

such that e(x, y) 6 e′(x, y) 6 d(x, y), then e(x, y) = e′(x, y) for every x, y ∈ S.
By the previous argument, there exists a sequence sss = (s0, . . . , sn) ∈ S(x, y)
such that ampd(sss) = e(x, y). Since e′(x, y) 6 d(x, y) for every x, y ∈ S, it
follows that e′(x, y) 6 ampd(sss) = e(x, y). Thus, e(x, y) = e′(x, y) for every
x, y ∈ S, which means that e = e′. This concludes our argument.

7.3 Hierarchies on Sets

Definition 10. Let S be a set. A hierarchy on S is a collection of sets H ⊆
P(S) that satisfies the following conditions:
(i) the members of H are nonempty sets;
(ii) S ∈ H;
(iii) for every x ∈ S, we have {x} ∈ H;
(iv) if H,H ′ ∈ H and H ∩H ′ 6= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H.

A standard technique for constructing a hierarchy on a set S starts with
a rooted tree (T , v0) whose nodes are labeled by subsets of the set S. Let V
be the set of vertices of the tree T . The function µ : V −→ P(S), which gives
the label µ(v) of each node v ∈ V , is defined as follows:
(i) the tree T has |S| leaves, and each leaf v is labeled by a distinct singleton

µ(v) = {x} for x ∈ S;
(ii) if an interior vertex v of the tree has the descendants v1, v2, . . . , vn, then

µ(v) =
⋃n
i=1 µ(vi).

The set of labels HT of the rooted tree (T , v0) forms a hierarchy on S.
Indeed, note that each singleton {x} is a label of a leaf. An easy argument by
induction on the height of the tree shows that every vertex is labeled by the
set of labels of the leaves that descend from that vertex. Therefore, the root
v0 of the tree is labeled by S.

Suppose that H,H ′ are labels of the nodes u, v of T , respectively. If H ∩
H ′ 6= ∅, then the vertices u, v have a common descendant. In a tree, this can
take place only if u is a descendant of v or v is a descendant of u; that is, only
if H ⊆ H ′, or H ′ ⊆ H, respectively. This gives the desired conclusion.

Example 35. Let S = {s, t, u, v, w, x, y} and let T be a tree whose vertices are
labeled as shown in Figure 7.4. It is easy to verify that the family of subsets
of S that label the nodes of T ,



102 7 Hierarchical Clustering

H = {{s}, {t}, {u}, {v}, {w}, {x}, {y},
{s, t, u}, {w, x}, {s, t, u, v}, {w, x, y}, {s, t, u, v, w, x, y}}

is a hierarchy on the set S.

u u u u u u u
{s} {t} {u} {v} {w} {x} {y}

u u
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�{w, x}

{w, x, y}

{s, t, u}

{s, t, u, y}

{s, t, u, y, w, x, y}

Fig. 7.4. Tree labeled by subsets of S.

Chains of partitions defined on a set generate hierarchies, as we show next.

Theorem 25. Let S be a set and let C = (π1, π2, . . . , πn) be an increasing
chain of partitions (PART(S),6) such that π1 = αS and πn = ωS. Then,
the collection HC =

⋃n
i=1 πi that consists of the blocks of all partitions in the

chain is a hierarchy on S.

Proof. The blocks of any of the partitions are nonempty sets, so HC satisfies
the first condition of Definition 10.

We have S ∈ HC because S is the unique block of πn = ωS . Also, since all
singletons {x} are blocks of αS = π1, it follows that HC satisfies the second
and the third conditions of Definition 10. Finally, let H and H ′ be two sets of
HC such that H ∩H ′ 6= ∅. Because of this condition, it is clear that these two
sets cannot be blocks of the same partition. Thus, there exist two partitions
πi and πj in the chain such that H ∈ πi and H ′ ∈ πj . Suppose that i < j.
Since every block of πj is a union of blocks of πi, H

′ is a union of blocks of πi
and H ∩H ′ 6= ∅ means that H is one of these blocks. Thus, H ⊆ H ′. If j > i,
we obtain the reverse inclusion. This allows us to conclude that HC is indeed
a hierarchy.

Theorem 25 can be stated in terms of chains of equivalences; we give the
following alternative formulation for convenience.

Theorem 26. Let S be a finite set and let (ρ1, . . . , ρn) be a chain of equiv-
alence relations on S such that ρ1 = ιS and ρn = θS. Then, the collection
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of blocks of the equivalence relations ρr (that is, the set
⋃

16r6n S/ρr) is a
hierarchy on S.

Proof. The proof is a mere restatement of the proof of Theorem 25.

Define the relation “≺” on a hierarchy H on S by H ≺ K if H,K ∈ H,
H ⊂ K, and there is no set L ∈ H such that H ⊂ L ⊂ K.

Lemma 2. Let H be a hierarchy on a finite set S and let L ∈ H. The collection
PL = {H ∈ H | H ≺ L} is a partition of the set L.

Proof. We claim that L =
⋃
PL. Indeed, it is clear that

⋃
PL ⊆ L.

Conversely, suppose that z ∈ L but z 6∈
⋃
PL. Since {z} ∈ H and there is

no K ∈ PL such that z ∈ K, it follows that {z} ∈ PL, which contradicts the
assumption that z 6∈

⋃
PL. This means that L =

⋃
PL.

Let K0,K1 ∈ PL be two distinct sets. These sets are disjoint since other-
wise we would have either K0 ⊂ K1 or K1 ⊂ K0, and this would contradict
the definition of PL.

Theorem 27. Let H be a hierarchy on a set S. The graph of the relation ≺
on H is a tree whose root is S; its leaves are the singletons {x} for every
x ∈ S.

Proof. Since ≺ is an antisymmetric relation on H, it is clear that the graph
(H,≺) is acyclic. Moreover, for each set K ∈ H, there is a unique path that
joins K to S, so the graph is indeed a rooted tree.

Definition 11. Let H be a hierarchy on a set S. A grading function for H is
a function h : H −→ R that satisfies the following conditions:
(i) h({x}) = 0 for every x ∈ S, and

(ii) if H,K ∈ H and H ⊂ K, then h(H) < h(K).
If h is a grading function for a hierarchy H, the pair (H, h) is a graded

hierarchy.

Example 36. For the hierarchy H defined in Example 35 on the set S =
{s, t, u, v, w, x, y}, the function h : H −→ R given by

h({s}) = h({t}) = h({u}) = h({v}) = h({w}) = h({x}) = h({y}) = 0,
h({s, t, u}) = 3, h({w, x}) = 4, h({s, t, u, v}) = 5, h({w, x, y}) = 6,
h({s, t, u, v, w, x, y}) = 7,

is a grading function and the pair (H, h) is a graded hierarchy on S.

Theorem 25 can be extended to graded hierarchies.
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Theorem 28. Let S be a finite set and let C = (π1, π2, . . . , πn) be an increas-
ing chain of partitions (PART(S),6) such that π1 = αS and πn = ωS.

If f : {1, . . . , n} −→ R>0 is a function such that f(1) = 0, then the
function h : HC −→ R>0 given by h(K) = f (min{j | K ∈ πj}) is a grading
function for the hierarchy HC .

Proof. Since {x} ∈ π1 = αS , it follows that h({x}) = 0, so h satisfies the first
condition of Definition 11.

Suppose that H,K ∈ HC and H ⊂ K. If ` = min{j | H ∈ πj} it is
impossible for K to be a block of a partition that precedes π`. Therefore,
` < min{j | K ∈ πj}, so h(H) < h(K), and (HC , h) is indeed a graded
hierarchy.

A graded hierarchy defines an ultrametric, as shown next.

Theorem 29. Let (H, h) be a graded hierarchy on a finite set S. Define the
function d : S2 −→ R as d(x, y) = min{h(U) | U ∈ H and {x, y} ⊆ U} for
x, y ∈ S. The mapping d is an ultrametric on S.

Proof. Observe that for every x, y ∈ S there exists a set H ∈ H such that
{x, y} ⊆ H because S ∈ H.

It is immediate that d(x, x) = 0. Conversely, suppose that d(x, y) = 0.
Then, there exists H ∈ H such that {x, y} ⊆ H and h(H) = 0. If x 6= y,
then {x} ⊂ H, hence 0 = h({x}) < h(H), which contradicts the fact that
h(H) = 0. Thus, x = y.

The symmetry of d is immediate.
To prove the ultrametric inequality, let x, y, z ∈ S, and suppose that

d(x, y) = p, d(x, z) = q, and d(z, y) = r. There exist H,K,L ∈ H such
that {x, y} ⊆ H, h(H) = p, {x, z} ⊆ K, h(K) = q, and {z, y} ⊆ L, h(L) = r.
Since K ∩ L 6= ∅ (because both sets contain z), we have either K ⊆ L or
L ⊆ K, so K ∪ L equals either K or L and, in either case, K ∪ L ∈ H. Since
{x, y} ⊆ K ∪ L, it follows that

d(x, y) 6 h(K ∪ L) = max{h(K), H(L)} = max{d(x, z), d(z, y)},

which is the ultrametric inequality.

We refer to the ultrametric d whose existence is shown in Theorem 29 as
the ultrametric generated by the graded hierarchy (H, h).

Example 37. The values of the ultrametric generated by the graded hierarchy
(H, h) on the set S introduced in Example 36 are given in the following table:
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d s t u v w x y
s 0 3 3 5 7 7 7
t 3 0 3 5 7 7 7
u 3 3 0 5 7 7 7
v 5 5 5 0 7 7 7
w 7 7 7 7 0 4 6
x 7 7 7 7 4 0 6
y 7 7 7 7 6 6 0

The hierarchy introduced in Theorem 26 that is associated with an ul-
trametric space can be naturally equipped with a grading function, as shown
next.

Theorem 30. Let (S, d) be a finite ultrametric space. There exists a graded
hierarchy (H, h) on S such that d is the ultrametric associated to (H, h).

Proof. Let H be the collection of equivalence classes of the equivalences ηr =
{(x, y) ∈ S2 | d(x, y) 6 r} defined by the ultrametric d on the finite set S,
where the index r takes its values in the range Rd of the ultrametric d. Define
h(E) = min{r ∈ Rd | E ∈ S/ηr} for every equivalence class E.

It is clear that h({x}) = 0 because {x} is an η0-equivalence class for every
x ∈ S.

Let [x]t be the equivalence class of x relative to the equivalence ηt.
Suppose that E and E′ belong to the hierarchy and E ⊂ E′. We have

E = [x]r and E′ = [x]s for some x ∈ X. Since E is strictly included in E′,
there exists z ∈ E′ − E such that d(x, z) 6 s and d(x, z) > r. This implies
r < s. Therefore,

h(E) = min{r ∈ Rd | E ∈ S/ηr} 6 min{s ∈ Rd | E′ ∈ S/ηs} = h(E′),

which proves that (H, h) is a graded hierarchy.
The ultrametric e generated by the graded hierarchy (H, h) is given by

e(x, y) = min{h(B) | B ∈ H and {x, y} ⊆ B}
= min{r | (x, y) ∈ ηr} = min{r | d(x, y) 6 r} = d(x, y),

for x, y ∈ S; in other words, we have e = d.

Example 38. Starting from the ultrametric on the set S = {s, t, u, v, w, x, y}
defined by the table given in Example 37, we obtain the following quotient
sets:

Values of r S/ηr
[0, 3) {s}, {t}, {u}, {v}, {w}, {x}, {y}
[3, 4) {s, t, u}, {v}, {w}, {x}, {y}
[4, 5) {s, t, u}, {v}, {w, x}, {y}
[5, 6) {s, t, u, v}, {w, x}, {y}
[6, 7) {s, t, u, v}, {w, x, y}
[7,∞) {s, t, u, v, w, x, y}
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We shall draw the tree of a graded hierarchy (H, h) using a special rep-
resentation known as a dendrogram. In a dendrogram, an interior vertex K
of the tree is represented by a horizontal line drawn at the height h(K). For
example, the dendrogram of the graded hierarchy of Example 36 is shown in
Figure 7.5.

By Theorem 29, the value d(x, y) of the ultrametric d generated by a
hierarchy H is the smallest height of a set of a hierarchy that contains both x
and y. This allows us to “read” the value of the ultrametric generated by H
directly from the dendrogram of the hierarchy.

u u u u u u u

6

s t u v w x y

1

2

3

4

5

6

7

Fig. 7.5. Dendrogram of graded hierarchy of Example 36.

Example 39. For the graded hierarchy of Example 36, the ultrametric ex-
tracted from Figure 7.5 is clearly the same as the one that was obtained
in Example 37.

7.4 Hierarchical Clustering

Hierarchical clustering is a recursive process that begins with a metric space
of objects (S, d) and results in a chain of partitions of the set of objects. In
each of the partitions, similar objects belong to the same block and objects
that belong to distinct blocks tend to be dissimilar.

In agglomerative hierarchical clustering, the construction of this chain be-
gins with the unit partition π1 = αS . If the partition constructed at step k
is

πk = {Uk1 , . . . , Ukmk
},

then two distinct blocks Ukp and Ukq of this partition are selected using a
selection criterion. These blocks are fused and a new partition

πk+1 = {Uk1 , . . . , Ukp−1, Ukp+1, . . . , U
k
q−1, U

k
q+1, . . . , U

k
p ∪ Ukq }
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is formed. Clearly, we have πk ≺ πk+1. The process must end because the
poset (PART(S),6) is of finite height. The algorithm halts when the one-
block partition ωS is reached.

If two blocks U and V of a partition π are fused into a new block W to
yield a new partition π′ that covers π, then the variation of the sum of squared
errors is given by

sse(π′)− sse(π) =
∑
{d2(ooo,cccW )|ooo ∈ U ∪ V }

−
∑
{d2(ooo,cccU )|ooo ∈ U} −

∑
{d2(ooo,cccV )|ooo ∈ V }.

The centroid of the new cluster W is given by

cccW =
1

|W |
∑
{ooo|ooo ∈W} =

|U |
|W |

cccU +
|V |
|W |

cccV .

This allows us to evaluate the increase in the sum of squared errors:

sse(π′)− sse(π) =
∑
{d2(ooo,cccW ) | ooo ∈ U ∪ V }

−
∑
{d2(ooo,cccU ) | ooo ∈ U} −

∑
{d2(ooo,cccV ) | ooo ∈ V }

=
∑
{d2(ooo,cccW )− d2(ooo,cccU ) | ooo ∈ U}

+
∑
{d2(ooo,cccW )− d2(ooo,cccV ) | ooo ∈ V }.

Observe that:∑
{d2(ooo,cccW )− d2(ooo,cccU ) | ooo ∈ U}

=
∑
ooo∈U

((ooo− cccW )′(ooo− cccW )− (ooo− cccU )′(ooo− cccU ))

= |U |(ccc2W − ccc2U ) + 2(cccU − cccW )′
∑
ooo∈U

ooo

= |U |(ccc2W − ccc2U ) + 2|U |(cccU − cccW )′cccU

= |U |(cccW − cccU )2.

Using the equality cccW − cccU = |U |
|W |cccU + |V |

|W |cccV − cccU = |V |
|W | (cccV − cccU ), we

obtain
∑
{d2(ooo,cccW )− d2(ooo,cccU ) | ooo ∈ U} = |U ||V |2

|W |2 (cccV − cccU )
2
.

Similarly, we have∑
{d2(ooo,cccW )− d2(ooo,cccV ) | ooo ∈ V } =

|U |2|V |
|W |2

(cccV − cccU )
2
,

so,

sse(π′)− sse(π) =
|U ||V |
|W |

(cccV − cccU )
2
. (7.3)
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In each phase of hierarchical clustering two of the “closest” clusters are
merged. The notion of closest clusters is dependent on the specific dissimilarity
between clusters considered in each variant of the clustering algorithm. If U
and V are two clusters, the dissimilarity between them is be defined using
one of the following real-valued, two-argument functions defined on the set of
subsets of S:

sl(U, V ) = min{d(u, v)|u ∈ U, v ∈ V };
cl(U, V ) = max{d(u, v)|u ∈ U, v ∈ V };

gav(U, V ) =

∑
{d(u, v)|u ∈ U, v ∈ V }

|U | · |V |
;

cen(U, V ) = (cccU − cccV )2;

ward(U, V ) =
|U ||V |
|U |+ |V |

(cccV − cccU )
2
.

The names of the functions sl, cl, gav, and cen defined above are acronyms
of the terms “single link”, “complete link”, “group average”, and “centroid”,
respectively. They are linked to variants of the hierarchical clustering algo-
rithms that we discuss later. Note that in the case of the ward function the
value equals the increase in the sum of the square errors when the clusters
U, V are replaced with their union.

The specific selection criterion for fusing blocks defines the clustering al-
gorithm. All algorithms store the dissimilarities between the current clusters
πk = {Uk1 , . . . , Ukmk

} in an mk ×mk-matrix Dk = (dkij), where dkij is the dis-

similarity between the clusters Uki and Ukj . As new clusters are created by
merging two existing clusters, the distance matrix must be adjusted to reflect
the dissimilarities between the new cluster and existing clusters.

The general form of the algorithm is shown as Algorithm 7.4.1.

Algorithm 7.4.1: Agglomerative Clustering Algorithm

Data: the initial dissimilarity matrix D1

Result: the cluster hierarchy on the set of objects S, where |S| = n
1 k = 1;
2 initialize clustering: π1 = αS ;

3 while πk contains more than one block do
4 merge a pair of two of the closest clusters;
5 output new cluster;
6 k + +;

7 compute the dissimilarity matrix Dk;

8 end
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To evaluate the space and time complexity of hierarchical clustering, note
that the algorithm must handle the matrix of the dissimilarities between ob-
jects, and this is a symmetric n × n-matrix having all elements on its main

diagonal equal to 0; in other words, the algorithm needs to store n(n−1)
2 num-

bers. To keep track of the clusters, an extra space that does not exceed n− 1
is required. Thus, the total space required is O(n2).

The computation of the dissimilarity between a new cluster and existing
clusters is described next.

Theorem 31. Let U and V be two clusters of the clustering π that are joined
into a new cluster W . Then, if Q ∈ π − {U, V }, we have

sl(W,Q) =
1

2
sl(U,Q) +

1

2
sl(V,Q)− 1

2

∣∣∣sl(U,Q)− sl(V,Q)
∣∣∣;

cl(W,Q) =
1

2
cl(U,Q) +

1

2
cl(V,Q) +

1

2

∣∣∣cl(U,Q)− cl(V,Q)
∣∣∣;

gav(W,Q) =
|U |

|U |+ |V |
gav(U,Q) +

|V |
|U |+ |V |

gav(V,Q);

cen(W,Q) =
|U |

|U |+ |V |
cen(U,Q) +

|V |
|U |+ |V |

cen(V,Q)

− |U ||V |
(|U |+ |V |)2

cen(U, V );

ward(W,Q) =
|U |+ |Q|

|U |+ |V |+ |Q|
ward(U,Q) +

|V |+ |Q|
|U |+ |V |+ |Q|

ward(V,Q)

− |Q|
|U |+ |V |+ |Q|

ward(U, V ).

Proof. The first two equalities follow from the fact that

min{a, b} =
1

2
(a+ b)− 1

2
|a− b|,

max{a, b} =
1

2
(a+ b) +

1

2
|a− b|,

for every a, b ∈ R.
For the third equality, we have

gav(W,Q) =

∑
{d(w, q)|w ∈W, q ∈ Q}

|W | · |Q|

=

∑
{d(u, q)|u ∈ U, q ∈ Q}

|W | · |Q|
+

∑
{d(v, q)|v ∈ V, q ∈ Q}

|W | · |Q|

=
|U |
|W |

∑
{d(u, q)|u ∈ U, q ∈ Q}

|U | · |Q|
+
|V |
|W |

∑
{d(v, q)|v ∈ V, q ∈ Q}

|V | · |Q|

=
|U |

|U |+ |V |
gav(U,Q) +

|V |
|U |+ |V |

gav(V,Q).
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The equality involving the function cen is immediate. The last equality
can be easily translated into

|Q||W |
|Q|+ |W |

(cccQ − cccW )
2

=
|U |+ |Q|

|U |+ |V |+ |Q|
|U ||Q|
|U |+ |Q|

(cccQ − cccU )
2

+
|V |+ |Q|

|U |+ |V |+ |Q|
|V ||Q|
|V |+ |Q|

(cccQ − cccV )
2

− |Q|
|U |+ |V |+ |Q|

|U ||V |
|U |+ |V |

(cccV − cccU )
2
,

which can be verified replacing |W | = |U |+ |V | and cccW = |U |
|W |cccU + |V |

|W |cccV . ut
The equalities contained by Theorem 31 are often presented as a single

equality involving several coefficients.

Corollary 3 (The Lance-Williams Formula). Let U and V be two clusters
of the clustering π that are joined into a new cluster W . Then, if Q ∈ π −
{U, V }, the dissimilarity between W and Q can be expressed as

d(W,Q) = aUd(U,Q) + aV d(V,Q) + bd(U, V ) + c|d(U,Q)− d(V,Q)|,

where the coefficients aU , aV , b, c are given by the following table:

Function aU aV b c

sl 1
2

1
2 0 − 1

2

cl 1
2

1
2 0 1

2

gav |U |
|U |+|V |

|V |
|U |+|V | 0 0

cen |U |
|U |+|V |

|V |
|U |+|V | − |U ||V |

(|U |+|V |)2 0

ward |U |+|Q|
|U |+|V |+|Q|

|V |+|Q|
|U |+|V |+|Q| −

|Q|
|U |+|V |+|Q| 0

Proof. This statement is an immediate consequence of Theorem 31. ut
The variant of the algorithm that makes use of the function sl is known as

the single-link clustering. It tends to favor elongated clusters.
The group average method, which makes use of the gav function gener-

ates an intermediate approach between the single-link and the complete-link
method. What the methods mentioned so far have in common is the mono-
tonicity property expressed by the following statement.

Theorem 32. Let (S, d) be a finite metric space and let D1, . . . , Dm be the
sequence of matrices constructed by any of the first three hierarchical methods
(single, complete, or average link), where m = |S|. If µi is the smallest entry
of the matrix Di for 1 6 i 6 m, then µ1 6 µ2 6 · · · 6 µm. In other words, the
dissimilarity between clusters that are merged at each step is nondecreasing.
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Proof. Let Dj+1 be the matrix is obtained from the matrix Dj by merging the
clusters Cp and Cq that correspond to the lines p and q and to columns p, q
of Dj . This happens because dpq = dqp is one of the minimal elements of the
matrix Dj . Then, these lines and columns are replaced with a line and column
that corresponds to the new cluster Cr and the dissimilarities between this new
cluster and the previous clusters Ci, where i 6= p, q. The elements dj+1

rh of the

new line (and column) are obtained either as min{djph, d
j
qh}, max{djph, d

j
qh}, or

|Cp|
|Cr|d

j
ph+

|Cq|
|Cr|d

j
qh, for the single-link, complete-link, or group average methods,

respectively. In any of these cases, it is not possible to obtain a value for dj+1
rh

that is less than the minimal value of an element of Dj . ut
The last two methods captured by the Lance-Williams formula are the

centroid method and the Ward method of clustering. As we observed before,
Formula (7.3) shows that the dissimilarity of two clusters in the case of Ward’s
method equals the increase in the sum of the squared errors that results when
the clusters are merged. The centroid method adopts the distance between the
centroids as the distance between the corresponding clusters. Either method
lacks the monotonicity properties.

Example 40. Let S be a synthetic data set that contains 35 points generated
by using the function setofpoints2 introduced in Example 25 as follows:

S1 <- setofpoints2(10,c(2,4),c(0.2,0.3))

S2 <- setofpoints2(15,c(3,3),c(0.3,0.3))

S3 <- setofpoints2(10,c(4,4),c(0.2,0.4))

S <- rbind(S1,S2,S3)

colnames(S) <- c("x","y")

The plot of the objects is shown in Figure 7.6. Starting from the matrix S a
dist object is produced by d<-dist(S). Next, the function hclust is applied
in order to produce the single-link hierarchical clustering sLink:

sLink <- hclust(d,method="single")

The dendrogram of the clustering is visualized using plot(sLink) and its
representation is shown in Figure 7.7. To obtain three clusters, the dendrogram
is “cut” at an appropriate level using the function call rect.hclust(sLink,3)
generating the representation shown in Figure 7.8.

Similar clusterings are shown in Figures 7.9 and 7.10 obtained by the
application of the complete-link and Ward methods, respectively.

Note that at the leaf-level, when clusters are sigletons, all methods produce
exactly the same result. At higher levels the results diverge. The vertical axis
shows the fusion level.
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Fig. 7.8. Three clusters in S delimited by rectangles
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Metric Multidimensional Scaling

Multidimensional scaling (MDS) is a process that allows us to represent a dis-
similarity space using a low-dimensional Euclidean space. Scaling is important
for visualizing the result of data explorations.

Two basic types of scaling algorithms exist. The metric multidimensional
scaling starts with a finite dissimilarity space and produces a set of vectors
that optimizes a function known as strain. The non-metric multidimensional
scaling seeks a monotonic relationship between the values of a finite dissim-
ilarity and the distances between the vectors that represent the elements of
the dissimilarity space.

8.1 Metric Multidimensional Scaling

Metric multidimensional scaling (MMS) begins with a matrix of squares of
Euclidean distances D = (d2ij) ∈ Rm×m between m points situated in Rn,
xxx1, . . . ,xxxm and seeks to determine these points starting from D. In general,
m� n.

In view of the previous assumption, the rank of the matrixX = (xxx1 · · · xxxm)
is at most equal to n.

The definition of D implies that

d2ij =‖ xxxi − xxxj ‖22= (xxxi − xxxj)′(xxxi − xxxj)

for 1 ≤ i, j ≤ m. Clearly, this problem does not have a unique solution because
the matrix D is the same for xxx1, . . . ,xxxm and for xxx1 + ccc, . . . ,xxxm + ccc for every
ccc ∈ Rn.

The Gram matrix of xxx1, . . . ,xxxm is the matrix G ∈ Rm×m given by G =
GX = X ′X. Since gpq = xxx′pxxxq for 1 6 p, q 6 m, we have:

d2ij = (xxxi − xxxj)′(xxxi − xxxj) = gii + gjj − 2gij (8.1)

for 1 ≤ i, j ≤ m.
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Suppose now that F ∈ Rm×m is the Gram matrix of another sequence
of vectors Y = (yyy1, . . . , yyym) such that d(yyyi, yyyj) = d(xxxi,xxxj) for 1 6 i, j 6 m.
Then, gii + gjj − 2gij = fii + fjj − 2fij for 1 ≤ i, j ≤ m.

Let W = G−F . Then, W is a symmetric matrix and wii+wjj−2wij = 0,
so wij = 1

2 (wii + wjj). Let

www =
1

2

 w11

...
wmm


and note that the matrix W can now be written as W = www111′m + 111mwww

′, which
proves that W is a special, rank-2 matrix. Consequently,

G = F +www111′m + 111mwww
′. (8.2)

Thus, the set of vectors that correspond to a distance matrix is not unique,
and the Gram matrices of any two such sequences differ by a symmetric matrix
of rank 2.

It is possible to construct X = (xxx1 · · · xxxm) starting from D if we assume
that the centroid of the vectors of X is 000n, that is, if

∑m
i=1 xxxi = 000n.

Let A ∈ Rm×m be the matrix defined by A = − 1
2D. Elementwise, this

means that aij = − 1
2d

2
ij for 1 ≤ i, j ≤ m. Consider the averages defined by:

ai· =
1

m

m∑
j=1

aij ,

a·j =
1

m

m∑
i=1

aij ,

a·· =
1

m2

m∑
i=1

m∑
j=1

aij .

The components of the Gram matrix G ∈ Cm×m, gij = xxx′ixxxj for 1 ≤ i, j ≤ m,
can be expressed using these averages, assuming that the set of columns of X
is centered in 000n.

Theorem 33. Let X = (xxx1, . . . ,xxxm) ∈ Rn×m be a matrix such that
∑m
i=1 xxxi =

000n and let A be the matrix defined by aij = − 1
2 ‖ xxxi − xxxj ‖

2
2 for 1 ≤ i, j ≤ m.

The components of the Gram matrix G, gij = xxx′ixxxj are given by

gij = aij − ai· − a·j + a··

for 1 ≤ i, j ≤ m.

Proof. By Equality (8.1) we have
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−2aij = gii + gjj − 2gij

for 1 ≤ i, j ≤ m. Note that

m∑
i=1

gij =

m∑
j=1

gij = 0.

The averages introduced earlier can be written as

−2a·j =
1

m

m∑
i=1

d2ij =
1

m

m∑
i=1

(gii + gjj − 2gij)

=
1

m

m∑
i=1

gii + gjj − 2

(
1

m

m∑
i=1

xxx′i

)
xxxj

= gjj +
1

m

m∑
i=1

gii,

because
∑m
i=1 xxxi = 000n. Similarly, we have

−2ai· = gii +
1

m

m∑
j=1

gjj . (8.3)

Therefore,

1

n2

m∑
i=1

m∑
j=1

d2ij =
2

m

m∑
i=1

gii. (8.4)

Thus, we have

gii =
1

m

m∑
j=1

d2ij −
1

m

m∑
j=1

gjj

gjj =
1

m

m∑
j=1

d2ij −
1

m

m∑
i=1

gii

Equality (8.1) yields

gij = −1

2

(
d2ij − gii − gjj

)
= −1

2

d2ij − 1

m

m∑
j=1

d2ij +
1

m

m∑
j=1

xxxjxxx
′
j −

1

m

m∑
j=1

d2ij +
1

m

m∑
i=1

xxxixxx
′
i


= −1

2

d2ij − 1

m

m∑
j=1

d2ij −
1

m

m∑
j=1

d2ij +
1

r2

m∑
i=1

m∑
j=1

d2ij


= aij − ai· − a·j + a··,

which completes the proof.
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Corollary 4. The Gram matrix G = X ′X of the sequence of Rn vectors
X = (xxx1, . . . ,xxxm) can be obtained from the matrix A =

(
− 1

2 ‖ xxxi − xxxj ‖
2
2

)
as

G = HmAHm, where Hm is the centering matrix Hm = Im − 1
m111m111′m.

Proof. The matrix HmAHm can be written as

HmAHm =

(
Im −

1

m
111m111′m

)
A

(
Im −

1

m
111m111′m

)
=

(
Im −

1

m
111m111′m

)(
A− 1

m
A111m111′m

)
= A− 111m

(
1

m
111′mA

)
−
(

1

m
A111m

)
111′ +

1

m2
111m (111′mA111m)111′m.

The terms of the above sum correspond to aij , a· j , ai · and a· ·, respectively.
The desired conclusion then follows from Theorem 33.

The rank of the matrix G = X ′X ∈ Rm×m is equal to the rank of X,
namely rank(G) = n. Since G is symmetric, positive semi-definite and of rank
n, it follows that G has n non-negative eigenvalues and m−n zero eigenvalues.
By the Spectral Theorem for Hermitian matrices we have G = U ′DU , where
U is an orthogonal matrix, U = (uuu1 · · · uuum), D = (λ1, . . . , λn, 0, . . . , 0) and
λ1 ≥ · · · ≥ λn > 0.

Taking into account that the last m− n elements of the diagonal of G are
0 we can write G = V ′diag(λ1, . . . , λn)V , where V ∈ Rn×m. By defining X as
X = diag(

√
λ1, . . . ,

√
λn)V ∈ Rn×m we have G = X ′X and the m columns of

X yield the desired vectors in Rn.
A more general problem begins with a matrix of dissimilarities ∆ = (δij) ∈

Rm×m and seeks to determine whether there exists a sequence of vectors
(xxx1, . . . ,xxxm) in Rn such that d(xxxi,xxxj) = δij for 1 ≤ i, j ≤ m.

Lemma 3. Let A,G ∈ Rm×m be two matrices such that G = HmAHm, where
Hm is the centering matrix Hm = Im − 1

n111m111′m. Then, gii + gjj − 2gij =
aii + ajj − 2aij for 1 ≤ i, j ≤ m.

Proof. We saw that if G = HmAHm, then gij = aij−ai·−a·j +a··. Therefore,
we have

gii = aii − 2ai· + a··,

gjj = ajj − 2a·j + a··.

This allows us to write

gii + gjj − 2gij = aii − 2ai· + a·· + ajj − 2a·j + a··

−2(aij − ai· − a·j + a··)

= aii + ajj − 2aij .
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Theorem 34. Let ∆ ∈ Rm×m be a matrix of dissimilarities, A ∈ Rm×m
be the matrix defined by aij = − 1

2δ
2
ij for 1 ≤ i, j ≤ m, and let G be the

centered matrix G = HmAHm. If G is a positive semi-definite matrix and
rank(G) = n, then there exists a sequence (xxx1, . . . ,xxxm) of vectors in Rn such
that d(xxxi,xxxj) = δij for 1 ≤ i, j ≤ m.

Proof. Since G is a symmetric, positive semi-definite matrix having rank n,
it is possible to write G = V ′DV , where V = (vvv1 · · · vvvm) ∈ Rn×m, D =
(λ1, . . . , λn) and λ1 ≥ · · · ≥ λn > 0.

Let X = diag(
√
λ1, . . . ,

√
λn)V ∈ Rn×m. We claim that the distances

between xxx1, . . . ,xxxm equal the prescribed dissimilarities. Indeed, since xxxi =√
λivvvi, we have

d(xxxi,xxxj)
2 = (xxxi − xxxj)′(xxxi − xxxj)

= xxx′ixxxi + xxx′jxxxj − 2xxx′ixxxj

= λivvv
′
ivvvi + λjvvv

′
jvvvj − 2λiλjvvv

′
ivvvj

= gii + gjj − 2gij

(by Lemma 3)

= aii + ajj − 2aij = −2aij = δ2ij ,

which is the desired conclusion.

Since G = HmAHm and Hm has an eigenvalue equal to 0 it is clear that
G also has such an eigenvalue. Therefore, rank(G) ≤ m− 1, so there exist m
vectors of dimensionality not larger than m− 1 such that their distances are
equal to the given dissimilarities.

We saw that the matrices XX ′ and G = X ′X have the same rank and
their non-zero eigenvalues are positive numbers and have the same algebraic
multiplicities for both matrices.

Let www be a principal component of the matrix X ′ ∈ Rn×m, that is, an
eigenvector of the matrix XX ′. Suppose that rank(G) = r and let X ′ = UDV ′

be the thin SVD decomposition of the matrix X ′, where D = (σ1, . . . , σr) and
U, V ∈ Rm×r. The matrices U and V have orthogonal columns, so U ′U =
V ′V = Ir. Since the numbers σ1, . . . , σr are positive, D is invertible and we
obtain U = X ′V D−1. Thus, MDS involves a process that is dual to the usual
PCA; some authors refer to it as the dual PCA.

R deals with metric MDS using the function cmdscale.

Example 41. The function call

bid <- cmdscale(mdist,eig=TRUE,k=2)

is applied to a matrix mdist that reflects driving distances between five US
northeastern cities: Boston, Providence, Harford, New York and Concord
(NH). This matrix is



122 8 Metric Multidimensional Scaling

> mdist

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00 41.90 92.88 189.90 63.47

[2,] 41.90 0.00 65.36 154.84 95.78

[3,] 92.88 65.36 0.00 99.76 115.59

[4,] 189.90 154.84 99.76 0.00 213.78

[5,] 63.27 95.78 115.59 213.78 0.00

The object bid has the following structure:

> bid

$points

[,1] [,2]

[1,] -58.16771 20.378775

[2,] -19.31546 34.301551

[3,] 29.85819 -8.803585

[4,] 129.61745 -7.808648

[5,] -82.00508 -38.082192

$eig

[1] 28173.596590 3180.622307 32.655384 -1.526754 -6.099726

$x

NULL

$ac

[1] 0

$GOF

[1] 0.9987169 0.9989596

The points components are the coordinates of five points in two dimen-
sions, that are placed on a plot using

> x <- bid$points[,1]

> y <- bid$points[,2]

> plot(x,y,xlab="First Coord",ylab="Second Coord",main="Metric MDS",type="n")

> text(x,y,labels=c("Boston","Providence","Hartford","New York","Concord"),cex = 0.7)

which results in the representation contained in Figure 8.1.
Note that by rotationg this plot by 90 degrees clockwise we obtain an

image that is closer to the real geographic position of these cities, as shown
in Figure 8.2. Of course, the representation is approximative, but the relative
positions of the cities is reasonably close to their real placement.
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Fig. 8.1. Representation of the five cities.



−
50

0
50

100

−40 −20 0 20

M
ed

tric M
D

S

F
irst C

oord

Second Coord

B
oston

P
rovidence

H
artford

N
ew

 York

C
oncord

Fig. 8.2. Representation of the five cities.


